Rapid diagnosis of experimental meningitis by bacterial heat production in cerebrospinal fluid

Trampuz, Andrej; Steinhuber, Andrea; Wittwer, Matthias; Leib, Stephen L. (2007). Rapid diagnosis of experimental meningitis by bacterial heat production in cerebrospinal fluid. BMC infectious diseases, 7, p. 116. London: BioMed Central 10.1186/1471-2334-7-116

[img]
Preview
Text
1471-2334-7-116.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (409kB) | Preview

BACKGROUND: Calorimetry is a nonspecific technique which allows direct measurement of heat generated by biological processes in the living cell. We evaluated the potential of calorimetry for rapid detection of bacterial growth in cerebrospinal fluid (CSF) in a rat model of bacterial meningitis. METHODS: Infant rats were infected on postnatal day 11 by direct intracisternal injection with either Streptococcus pneumoniae, Neisseria meningitidis or Listeria monocytogenes. Control animals were injected with sterile saline or heat-inactivated S. pneumoniae. CSF was obtained at 18 hours after infection for quantitative cultures and heat flow measurement. For calorimetry, 10 microl and 1 microl CSF were inoculated in calorimetry ampoules containing 3 ml trypticase soy broth (TSB). RESULTS: The mean bacterial titer (+/- SD) in CSF was 1.5 +/- 0.6 x 108 for S. pneumoniae, 1.3 +/- 0.3 x 106 for N. meningitidis and 3.5 +/- 2.2 x 104 for L. monocytogenes. Calorimetric detection time was defined as the time until heat flow signal exceeded 10 microW. Heat signal was detected in 10-microl CSF samples from all infected animals with a mean (+/- SD) detection time of 1.5 +/- 0.2 hours for S. pneumoniae, 3.9 +/- 0.7 hours for N. meningitidis and 9.1 +/- 0.5 hours for L. monocytogenes. CSF samples from non-infected animals generated no increasing heat flow (<10 microW). The total heat was the highest in S. pneumoniae ranging from 6.7 to 7.5 Joules, followed by L. monocytogenes (5.6 to 6.1 Joules) and N. meningitidis (3.5 to 4.4 Joules). The lowest detectable bacterial titer by calorimetry was 2 cfu for S. pneumoniae, 4 cfu for N. meningitidis and 7 cfu for L. monocytogenes. CONCLUSION: By means of calorimetry, detection times of <4 hours for S. pneumoniae and N. meningitidis and <10 hours for Listeria monocytogenes using as little as 10 microl CSF were achieved. Calorimetry is a new diagnostic method allowing rapid and accurate diagnosis of bacterial meningitis from a small volume of CSF.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Service Sector > Institute for Infectious Diseases

UniBE Contributor:

Leib, Stephen

ISSN:

1471-2334

ISBN:

17927816

Publisher:

BioMed Central

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:56

Last Modified:

05 Dec 2022 14:17

Publisher DOI:

10.1186/1471-2334-7-116

PubMed ID:

17927816

Web of Science ID:

000252421000001

BORIS DOI:

10.7892/boris.23926

URI:

https://boris.unibe.ch/id/eprint/23926 (FactScience: 45256)

Actions (login required)

Edit item Edit item
Provide Feedback