Metal-ion-dependent biological properties of a chelator-derived somatostatin analogue for tumour targeting

Heppeler, Axel; André, João P; Buschmann, Ingeborg; Wang, Xuejuan; Reubi, Jean-Claude; Hennig, Michael; Kaden, Thomas A; Maecke, Helmut R (2008). Metal-ion-dependent biological properties of a chelator-derived somatostatin analogue for tumour targeting. Chemistry - a European journal, 14(10), pp. 3026-34. Weinheim: Wiley-VCH 10.1002/chem.200701264

Full text not available from this repository. (Request a copy)

Somatostatin-based radioligands have been shown to have sensitive imaging properties for neuroendocrine tumours and their metastases. The potential of [(55)Co(dotatoc)] (dotatoc =4,7,10-tricarboxymethyl-1,4,7,10-tetraazacyclododecane-1-ylacetyl-D-Phe-(Cys-Tyr-D-Trp-Lys-Thr-Cys)-threoninol (disulfide bond)) as a new radiopharmaceutical agent for PET has been evaluated. (57)Co was used as a surrogate of the positron emitter (55)Co and the pharmacokinetics of [(57)Co(dotatoc)] were investigated by using two nude mouse models. The somatostatin receptor subtype (sst1-sst5) affinity profile of [(nat)Co(dotatoc)] on membranes transfected with human somatostatin receptor subtypes was assessed by using autoradiographic methods. These studies revealed that [(57)Co(dotatoc)] is an sst2-specific radiopeptide which presents the highest affinity ever found for the sst2 receptor subtype. The rate of internalisation into the AR4-2J cell line also was the highest found for any somatostatin-based radiopeptide. Biodistribution studies, performed in nude mice bearing an AR4-2J tumour or a transfected HEK-sst2 cell-based tumour, showed high and specific uptake in the tumour and in other sst-receptor-expressing tissues, which reflects the high receptor binding affinity and the high rate of internalisation. The pharmacologic differences between [(57)Co(dotatoc)] and [(67)Ga(dotatoc)] are discussed in terms of the structural parameters found for the chelate models [Co(II)(dota)](2-) and [Ga(III)(dota)](-) whose X-ray structures have been determined. Both chelates show six-fold coordination in pseudo-octahedral arrangements.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Service Sector > Institute of Pathology

UniBE Contributor:

Reubi-Kattenbusch, Jean-Claude

Subjects:

500 Science > 570 Life sciences; biology
600 Technology > 610 Medicine & health

ISSN:

0947-6539

ISBN:

18246556

Publisher:

Wiley-VCH

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 15:02

Last Modified:

05 Dec 2022 14:19

Publisher DOI:

10.1002/chem.200701264

PubMed ID:

18246556

Web of Science ID:

000254872600009

URI:

https://boris.unibe.ch/id/eprint/27067 (FactScience: 101631)

Actions (login required)

Edit item Edit item
Provide Feedback