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Summary
Eye movement behaviour during visual exploration of
24 patients with probable Alzheimer's disease and 24
age-matched controls was compared in a clock reading
task. Controls were found to focus exploration on dis-
tinct areas at the end of each clock hand. The sum of
these two areas of highest ®xation density was de®ned
as the informative region of interest (ROI). In
Alzheimer's disease patients, visual exploration was less
focused, with fewer ®xations inside the ROI, and the
time until the ®rst ®xation was inside the ROI was sig-

ni®cantly delayed. Changes of ®xation distribution cor-

related signi®cantly with the ability to read the clock

correctly, but did not correlate with dementia severity.

In Alzheimer's disease patients, ®xations were longer

and saccade amplitudes were smaller. The altered visual

exploration in Alzheimer's disease might be related to

parietal dysfunction or to an imbalance between a

degraded occipito-parietal and relatively preserved occi-

pito-temporal visual network.
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Introduction
Visual information is processed in multiple cortical areas.

Temporal and parietal association areas include two highly

interconnected visual pathways, which extend from the

occipital to the frontal lobes (Haxby et al., 1991; Knierim

and Van Essen, 1992; Wilson et al., 1993; Ungerleider and

Haxby, 1994; Bullier et al., 1996). The parietal `where'

pathway is important for spatial perception, internal image

representation and sensomotor integration, and the more

ventral temporal `what' pathway for object recognition

(Wolpert et al., 1998; Mellet et al., 2002). Next to the

regions of visual perception, the posterior-parietal cortex

(PPC) closely links attentional and eye-movement networks

(Leichnetz and Goldberg, 1988; Kowler et al., 1995; Corbetta

et al., 1998; Perry and Zeki, 2000) and is activated during the

shifting of visuospatial attention (Corbetta et al., 2000) and

the triggering of visually guided saccades (Pierrot-

Deseilligny et al., 2002).

In Alzheimer's disease, progressive neuropathological

changes (i.e. death of neurons, neuro®brillary tangles and

amyloid plaques) affect certain laminae and cell types within

the neocortex, and this may lead to cortico-cortical discon-

nections (Braak and Braak, 1997; Newell et al., 1999; Grady

et al., 2001). Pathology preferentially involves temporo-

parietal association areas, whereas primary motor, somato-

sensory and visual cortices are typically spared until the very

late stages of the disease (Morrison et al., 1986; Lewis et al.,

1987). This makes Alzheimer's disease patients prone to

visual, attentional and eye movement disturbances. Visual
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disturbances include impairments in spatial and/or object

vision (Mendez et al., 1990; Cronin-Golomb et al., 1991; Hof

and Bouras, 1991; Fujimori et al., 1997, 2000; Tetewsky and

Duffy, 1999; Rizzo et al., 2000a). Common visuospatial

attentional de®cits (Perry and Hodges, 1999; Rizzo et al.,

2000b) manifest with impaired disengagement of attention

(Parasuraman et al., 1992), impaired target selection

(Parasuraman et al., 1995) or impaired shifting between

global and focal attention (Filoteo et al., 1992; Slavin et al.,

2002). Most studies that have assessed visually guided

saccades in Alzheimer's disease patients have reported

prolonged saccade latencies and inaccurate saccades

(Pirozzolo and Hansch, 1981; Fletcher et al., 1986; Hotson

and Steinke, 1988; Bylsma et al., 1995; Moser et al., 1995;

Schewe et al., 1999; Abel et al., 2002).

Visual exploration, i.e. the sequence of ®xations and

saccades, is crucial for perception and is a very effective

and selective way to sample information (Noton and

Stark, 1971; Rayner and Pollatsek, 1992; Land and

Furneaux, 1997; Henderson and Hollingworth, 1999;

Gilchrist and Harvey, 2000; Hodgson et al., 2000).

Visual information is processed during ®xation, and to

change ®xation, saccades direct the fovea towards a

particular element of interest. Fixation behaviour is the

end result of a complex interaction of features of the

explored picture (`bottom up' processing) and the instruc-

tion or question to be solved by the explorer (`top down'

processing) (Yarbus, 1967; Rayner and Pollatsek, 1992;

Henderson and Hollingworth, 1999). The analysis of

®xation distribution during exploration provides an indir-

ect, non-verbal neurophysiological measure of this com-

plex interaction. In Alzheimer's disease, visual exploration

has been employed to measure spatial attention (Scinto

et al., 1994), and to characterize exploration during visual

search and during reading of text or emotional facial

expressions (Daffner et al., 1992, 1999; Moser et al.,

1995; Lueck et al., 2000; Ogrocki et al., 2000; RoÈsler

et al., 2000). Most of these studies reported longer

®xation duration and less systematic exploration during

visual search.

The present study compares the visual exploration of

Alzheimer's disease patients with that of controls during

clock reading, a daily relevant, over-learned task, which is

often impaired during the progressive course of the disease.

We assumed that healthy controls explore clocks non-

randomly, and hence wanted to ®nd out which areas of the

clock face are normally targeted as most informative to read

the time. Measuring saccade and ®xation parameters enabled

a quantitative comparison of Alzheimer's disease patients and

controls. To exclude impaired saccade motoricity as a

possible cause of exploration changes in Alzheimer's disease

patients, saccade triggering and accuracy were tested separ-

ately in a gap and overlap task.

Methods
Subjects
A randomized sample of 24 consecutive outpatients with the

diagnosis of probable Alzheimer's disease was recruited in the

Memory Clinics at the University Hospital in Bern. Diagnosis was

based on the criteria for dementia outlined in the Diagnostic and

Statistical Manual of Mental Disorders, 4th edition (DSM-IV)

(American Psychiatric Association, 1994) and by the criteria for

probable Alzheimer's disease developed by the National Institute of

Neurological and Communicative Disorders and Stroke and

Alzheimer's Disease and Related Disorders Association

(NINCDS-ADRDA) (McKhann et al., 1984). In accordance with

these criteria patients were excluded if: (i) they suffered any medical

conditions that could account for, or interfere with, their cognitive

decline; (ii) had evidence of vascular lesions in computed

tomography or MRI; (iii) had a Hachinski Ischaemic Score

(Hachinski et al., 1975) > 4; or (iv) had evidence for an Axis I

diagnosis (e.g. major depression or drug abuse) as de®ned by DSM-

IV. To be eligible for the study, patients had to have at least one

caregiver providing regular care and support. Patients taking

cholinesterase inhibitors (ChE-I) were only included if they were

not in the dose escalation phase and if the dose has remained

unchanged for at least 6 weeks prior to inclusion. None of the

subjects was taking hypnotics, sedative drugs or major tranquillizers.

The control group consisted of elderly volunteers recruited from

relatives and friends of the patients. By history, they had no known

neurological and psychiatric disease, and no evidence of cognitive

decline or impairment in activities of daily living. Controls had to

score at least 28 out of 30 points in the Mini-Mental State

Examination (MMSE) (Folstein et al., 1975), 4 points in the clock

drawing (Shulman, 2000) and at least seven correct answers in the

clock reading task (for description of these tasks, see below). The

ethics committee of the University of Bern approved the study. All

patients and their caregivers, and all control subjects gave written

informed consent prior to inclusion into the study.

Fig. 1 The clock reading task included: (i) a training task to
ensure that the subjects understood the instruction and were able
to use the mouse button; (ii) the exploration task where eye
movements were recorded; and (iii) a feedback task to assess the
number of correctly read clocks. Each time was presented until the
subject pressed the mouse button or until 8 s had elapsed. Between
the times a grey screen with a CFP was presented for 1 s.
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Testing procedure
Neuro-ophthalmological assessment
Clinical neuro-ophthalmological screening included a detailed

history of current or past visual disturbances, the assessment of

visual acuity, saccadic and pursuit eye movements, and visual ®eld

examination by digital confronting test.

Additional neuropsychological testing
All subjects were assessed with the MMSE (Folstein et al., 1975)

and the clock drawing test. Scoring was according to Shulman

(2000), i.e. 5 points for a perfect clock and 0 for the inability to make

any representation of a clock.

Clock reading experiment
The clock reading experiment consisted of three consecutive parts

(Fig. 1). In the training task, eight times (i.e. 1:40, 2:30, 3:45, 5:15,

7:15, 8:50, 10:10, 11:40) were presented, and the instruction was to

read and state the time, then to press the mouse button to see the next

clock. All subjects did this training task before the main exploration

experiment to ensure that they understood the instruction and were

able to use the mouse button correctly.

Eye movements were recorded during the exploration task, while

subjects were required to read eight different times (11:30, 1:45,

7:20, 10:15, 4:40, 8:55, 2:05, 3:40). Talking was not allowed, in

order to avoid concomitant head movements. Therefore, the

instruction was to read the time without saying it, and then to

press the mouse button to see the next clock.

The feedback task helped to assess how many times shown during

the exploration task were read correctly. The instruction was to read

the time aloud and then to press the mouse button, to see the next

clock. The times were the same as those for the exploration task

(11:30, 1:45, 7:20, 10:15, 4:40, 8:55, 2:05, 3:40) and were used to

de®ne the percentage of correctly read times. In all three tasks, each

time was presented until the subject pressed the mouse button or

until 8 s elapsed. The clock face was the same during the whole

experiment and was presented in a visual angle of 18° (Fig. 1). Each

time was followed by a 1 s grey screen presentation with a central

®xation point (CFP).

Analysis of visual exploration during clock reading
During the exploration task, ®xation duration, saccade length and the

exploration time were assessed. Exploration time was the time

interval between the start of a clock presentation and the mouse

button response, or the elapsing of 8 s. For each time, we used

®xation density plots to present areas with high ®xation density,

since such areas have been considered to be informative (Loftus and

Mackworth, 1978). Density plots of the control group were used to

de®ne the region of interest (ROI) a posteriori. For each time, the

ROI included the two areas of highest ®xation density at the end of

the clock hands, containing at least 50% of all ®xations. The size

corresponded to 16% of the total clock face size. The percentage of

®xations inside the ROI and the time elapsed before the ®rst ®xation

inside the ROI were calculated.

Visually guided saccades: gap and overlap task
Fifty-six saccades were tested in the gap and overlap task (i.e. four

blocks of 14 saccades). In the gap task, the CFP disappeared 200 ms

before the target appeared (i.e. temporal gap) (Saslow, 1967). In the

overlap task, however, the CFP remained visible during target

presentation. The timing of CFP presentation (minimum 2000 ms,

maximum 3000 ms), and the direction (left, right) and amplitude

(minimum 3.7°, maximum 9.1°) of the lateral targets were kept

unpredictable. The target was presented for 1000 ms. Subjects were

instructed to look as precisely and as fast as possible at the targets.

The latency of the ®rst saccade and the gain (i.e. saccade amplitude/

target amplitude) of the ®rst saccade and ®nal eye position were

calculated.

Recording of eye movements
Eye movements were recorded with a commercially available,

video-based infrared system (EyelinkÔ; SensoMotorik Instruments,

Berlin, Germany). This system allows recording eye movements at a

sampling rate of 250 Hz with a spatial resolution of <0.1°. To avoid

head movements, subjects were asked to position their chin on a rest.

They were seated 70 cm in front of the 19-inch (36 3 27 cm) colour

screen. The refreshing rate of the screen was 120 Hz. The visual ®eld

was 27° in the horizontal and 21° in the vertical plane. Repeated

calibration procedures were used before each experimental block.

Statistics
All data were tested for normal distribution (Kolmogorov±Smirnov

test). Distribution and dispersion measures for parametric data were

calculated as mean and SD, and for non-parametric data as median

and range. Distribution measures were calculated per subject, and

two-group comparison was made either with parametric (t-tests for

Table 1 Description of study groups

Alzheimer's disease
patients

Controls P

Demographic data
n 24 24 ns
Male:female ratio 11:13 15:9 ns
Age (years)* 74.3 (6.3) 72.9 (6.9) ns
Years of education* 13.1 (3.2) 13.5 (2.7) ns
Neuropsychological data
MMSE (Folstein et al., 1975)* 20.1 (5.4) 29.1 (0.8) < 0.001
Clock drawing (Shulman, 2000)* 2 (1.9) 4.6 (0.5) < 0.001
Clock reading [% correct (range)] 56 (0±100) 97 (88±100) < 0.001

*Mean (SD); ns = non-signi®cant.
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dependent or independent samples) or non-parametric tests (Mann±

Whitney and Wilcoxon rank tests). A P-value of < 0.05 was

considered statistically signi®cant, and all reported P-values were

two-tailed. Bivariate Spearman rank correlations were used to

correlate exploration data and neuropsychological data.

Results
Demographic and neuropsychological data of Alzheimer's

disease patients and controls are summarized in Table 1. No

group differences were found for gender, age or years of

education. As expected, the groups were signi®cantly differ-

ent in the MMSE and clock drawing and reading tasks.

Clinical neuro-opthalmological examination did not reveal

any major abnormalities in patients or controls, and mean

visual acuity did not differ between the groups (Alzheimer's

disease: 0.6 6 0.1); controls: 0.5 6 0.2; t-test: not signi®-

cant).

Visual exploration during clock reading
Exploration data are summarized in Table 2.

Median ®xation duration was longer (Mann±Whitney test:

P = 0.043) and saccade length was shorter (Mann±Whitney

test: P = 0.001) in the Alzheimer's disease group than in

controls. In the control group, ®xation density plots revealed

two areas of highest ®xation density at the end of the clock

hands. Figure 2 shows a representative example of ®xation

density plots for the control and Alzheimer's disease group.

In Alzheimer's disease patients, the time until the ®rst

®xation was inside the ROI was longer (Mann±Whitney test:

P < 0.001) and the percentage of ®xations inside the ROI was

lower (Mann±Whitney test: P = 0.026) compared with

controls. Furthermore, the percentage of correctly read clocks

correlated negatively with the time until the ®rst ®xation was

inside the ROI (Spearman rank correlation: r = ±0.56, P =

0.005), and correlated positively with the percentage of

®xations inside the ROI (Spearman rank correlation: r = 0.45,

P = 0.028). Such correlations were not found for the MMSE

and other exploration data. Exploration time was longer in the

Alzheimer's disease group (median 5.8 s; range: 2.4±7.9 s)

compared with the control group (median 2.0 s; range: 0.8±

6.8 s) (Mann±Whitney test: P < 0.001).

Visually guided saccades: gap and overlap task
In Alzheimer's disease patients latency and gain of the ®rst

saccade and ®nal eye position in the gap and overlap task was

not signi®cantly different from controls. These results are

summarized in Table 3. As expected, the gap latency was

shorter than the overlap saccade latency in Alzheimer's

disease patients (Wilcoxon rank test: P < 0.001) and controls

(Wilcoxon rank test: P < 0.001).

Thirteen of the 24 Alzheimer's disease patients were

treated with ChE-I (galantamine 1, donepezil 7, rivastigmine

Table 2 Analysis of visual exploration during clock reading

Alzheimer's disease patients Controls P

Median Range Median Range

Fixation duration (ms) 250 204±326 220 188±356 0.043
Saccade length (°) 3.4 1.8±4.9 4.4 2.7±7.0 0.001
Fixations inside ROI (%) 59 23±86 72 48±92 0.026
Time until ®rst ®xation inside ROI (ms) 520 340±1727 357 269±569 < 0.001

Fig. 2 An example of ®xation density plots of (A) the control
group and (B) the Alzheimer's disease group. The highest ®xation
density in the control group was found at the end of the clock
hands.
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5) for an average duration of 20.1 months (SD 13 months). No

differences were found between patients with, and those

without, ChE-I for all eye movement variables (i.e. saccade

latency, accuracy, ®xation duration and saccade length) and

neuropsychological test scores (i.e. MMSE, clock reading and

drawing).

Discussion
The present study assessed visual exploration in healthy

controls and Alzheimer's disease patients during clock

reading and revealed the following. (i) Visual exploration

of controls was non-random and areas of high ®xation density

at the end of the clock hands de®ned ROI. (ii) In Alzheimer's

disease patients the exploration was less focused on the ROI.

in controls, the percentage of ®xation inside the ROI was

lower and the time until the ®rst ®xation was inside the ROI

was longer. These changes did not correlate with the global

cognitive impairment, but correlated signi®cantly with the

impaired ability to read the clock. (iii) During exploration,

Alzheimer's disease patients showed shorter saccade ampli-

tudes and longer ®xations than controls, but the two groups

were not different in latency and accuracy of visually guided

saccades.

To our knowledge, this is the ®rst study showing how

healthy controls explore clock faces during time reading.

Fixations are focused on areas at the end of each clock hand,

and such areas are explored during the very early course of

exploration. This observation suggests a speci®c exploration

strategy for ef®cient clock reading in healthy subjects, and is

in agreement with previous studies which suggested that

visual exploration may be task speci®c (Buswell, 1935;

Mackworth and Morandi, 1967; Yarbus, 1967; Antes, 1974;

Loftus and Mackworth, 1978). The importance of a speci®c

exploration strategy for successful task performance has been

shown in other over-learned, `automatic' activities of daily

living (Land and Furneaux, 1997; Land et al., 1999).

Recently, Hodgson et al. (2000) revealed the importance of

a selective strategy for successful performance in a

neuropsychological task. They found that subjects who

made errors spend more time looking at irrelevant items.

This also seems to be the case for clock reading: patients with

impaired clock reading presented a reduced strategy for

gazing at relevant items of the clock face compared with

controls. Moreover, the two studies using the Tower of

London task (Hodgson et al., 2000, 2002) suggested that

exploration of healthy controls and patients with Parkinson's

disease was more in¯uenced by problem-solving strategies

than the salience of the presented objects.

In healthy subjects, parieto-frontal networks are activated

when imagining a visual image (Spivey and Geng, 2001;

Mellet et al., 2002), and in particular during imagination of

clocks (Trojano et al., 2000). Neuropathological (Morrison

et al., 1986; Lewis et al., 1987) and neuroimaging studies

reported pronounced parietal dysfunction in Alzheimer's

disease patients (Meltzer et al., 1996; Bartenstein et al., 1997;

Jagust et al., 1997; Pietrini et al., 2000), which makes

Alzheimer's disease patients prone to impaired internal

representation and reduced `top down' control of the

exploration strategy (Fujimori et al., 1997, 2000; Tetewsky

and Duffy, 1999; Rizzo et al., 2000a). In agreement with

previous studies (Daffner et al., 1992; Ogrocki et al., 2000),

the changes in explorative strategy found in Alzheimer's

disease patients did not correlate with global cognitive

impairment, but were related to the ability or inability to read

the clock: in our patients a signi®cant correlation was found

between clock reading capacity and the time until the ®rst

saccade was inside the ROI, and the percentage of ®xation

inside the ROI.

The occipito-temporal network is important for central

vision and the generation of small saccades, and the occipito-

parietal network for spatial global vision and the generation

of long saccades (Ungerleider and Haxby, 1994; Bullier et al.,

1996). An imbalance between the two networks with a more

pronounced occipito-parietal dysfunction, and a relatively

spared occipito-temporal function, may lead to predomin-

antly shorter saccade amplitudes and longer ®xations during

exploration. This hypothesis is supported by a recent fMRI

study, which found a reduced parietal activation and

increased temporal activation during visuospatial processing

Table 3 Saccade latency and accuracy of visually guided saccades

Alzheimer's disease patients Controls P

Median Range Median Range

Gap task
Latency (ms) 165 136±318 159 92±237 0.23 (ns)
Gain: ®rst saccade 0.86 0.60±1.01 0.9 0.73±0.99 0.15 (ns)
Gain: ®nal eye position 0.97 0.87±1.11 0.99 0.92±1.09 0.85 (ns)
Overlap task
Latency (ms) 293 189±518 258 153±367 0.14 (ns)
Gain: ®rst saccade 0.90 0.56±1.05 0.94 0.72±1.01 0.33 (ns)
Gain: ®nal eye position 0.99 0.90±1.07 0.99 0.94±1.04 0.67 (ns)

ns = not signi®cant; gain = saccade amplitude/target amplitude.
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in Alzheimer's disease patients (Prvulovic et al., 2002).

Longer ®xations are in agreement with impaired parietal

function due to impaired disengagement of ®xation, as

reported in previous studies (Daffner et al., 1992; Moser et al.,

1995; Lueck et al., 2000; RoÈsler et al., 2000). Smaller

saccades may also be the consequence of a reduced visual

area from which information can be acquired within one

®xation, i.e. reduced functional ®eld of view (Ball et al.,

1988; Rizzo et al., 2000a, b), or impaired shifting between

focal and global vision (Filoteo et al., 1992; Parasuraman

et al., 2000; Slavin et al., 2002).

Eye movements of Alzheimer's disease patients taking

ChE-I were not different from Alzheimer's disease patients

not on such medication, and therefore exploration changes

revealed in Alzheimer's disease patients are unlikely to be

related to the presence or absence of medication. Impaired

motor output of the saccadic eye movement system is another

unlikely explanation for longer ®xation and smaller saccade

amplitudes during exploration, since saccade latency and gain

of visually guided saccades were normal in our Alzheimer's

disease patients. This dissociation of normal saccade latency

in a visually guided saccade task and prolonged ®xation

during exploration can be due to the fact, that visually guided

saccades are mainly driven `bottom up' by the visual

stimulus, whereas the exploration of a clock face needs

more `top down' control for target selection and ®xation

disengagement. This notion is well in line with the ®nding

that response selection and shifting between spatial locations

are particularly vulnerable in Alzheimer's disease, whereas

cue-driven shifting of attention is only minimally affected

(Rizzo et al., 2000b).

In conclusion, the Alzheimer's disease group showed a

distinct pattern of exploration changes during clock reading,

which can be related to a parietal dysfunction in terms of an

imbalance between the dorsal and ventral visual pathways,

with degraded occipito-parietal and relatively preserved

occipito-temporal visual pathway. The changes were not

related to global cognitive impairments, but rather to

impaired clock reading. Our results con®rm the importance

of eye movements in daily relevant tasks, and when previous

results are taken into consideration (Land and Furneaux,

1997; Land et al., 1999; Hodgson et al., 2002) there is

increasing evidence that eye movement behaviour is expli-

citly related to speci®c action in daily life, even for over-

learned and `automatic' tasks. Furthermore, there is a close

relationship between successful performance and eye move-

ment behaviour. We may speculate that the combination of

impaired spatial orientation (i.e. changes of ®xation distribu-

tion), and loss of exploration strategy, shorter saccade

amplitudes and longer ®xation duration, may put

Alzheimer's disease patients at a disadvantage for many

daily tasks associated with visual exploration demand. The

present study also showed that the quantitative assessment of

visual exploration behaviour is well tolerated by and feasible

for Alzheimer's disease patients.
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