Hybridization and adaptive radiation

Seehausen, Ole (2004). Hybridization and adaptive radiation. Trends in ecology & evolution, 19(4), pp. 198-207. Elsevier Current Trends 10.1016/j.tree.2004.01.003

[img] Text
2004_ole_tree.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (331kB) | Request a copy

Whether interspecific hybridization is important as a mechanism that generates biological diversity is a matter of controversy. Whereas some authors focus on the potential of hybridization as a source of genetic variation, functional novelty and new species, others argue against any important role, because reduced fitness would typically render hybrids an evolutionary dead end. By drawing on recent developments in the genetics and ecology of hybridization and on principles of ecological speciation theory, I develop a concept that reconciles these views and adds a new twist to this debate. Because hybridization is common when populations invade new environments and potentially elevates rates of response to selection, it predisposes colonizing populations to rapid adaptive diversification under disruptive or divergent selection. I discuss predictions and suggest tests of this hybrid swarm theory of adaptive radiation and review published molecular phylogenies of adaptive radiations in light of the theory.

Some of the confusion about the role of hybridization in evolutionary diversification stems from the contradiction between a perceived necessity for cessation of gene flow to enable adaptive population differentiation on the one hand [1], and the potential of hybridization for generating adaptive variation, functional novelty and new species 2, 3 and 4 on the other. Much progress in the genetics 5, 6, 7, 8 and 9 and ecology of hybridization 9, 10 and 11, and in our understanding of the role of ecology in speciation (see Glossary) 12, 13 and 14 make a re-evaluation timely.

Whereas botanists traditionally stressed the diversity-generating potential of hybridization 2, 3 and 14, zoologists traditionally saw it as a process that limits diversification [1] and refer to it mainly in the contexts of hybrid zones (Box 1) and reinforcement of reproductive isolation [15]. Judging by the wide distribution of allopolyploidy among plants, many plant species might be of direct hybrid origin or descended from a hybrid species in the recent past [16]. The ability to reproduce asexually might explain why allopolyploid hybrid species are more common in plants than in animals. Allopolyploidy arises when meiotic mismatch of parental chromosomes or karyotypes causes hybrid sterility. Mitotic error, duplicating the karyotype, can restore an asexually maintained hybrid line to fertility. Although bisexual allopolyploid hybrid species are not uncommon in fish [17] and frogs [18], the difficulty with which allopolyploid animals reproduce, typically requiring gynogenesis[19], makes establishment and survival of allopolyploid animal species difficult.

Item Type:

Journal Article (Review Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Ecology and Evolution (IEE) > Aquatic Ecology

UniBE Contributor:

Seehausen, Ole

Subjects:

500 Science > 570 Life sciences; biology

ISSN:

0169-5347

Publisher:

Elsevier Current Trends

Language:

English

Submitter:

Marcel Häsler

Date Deposited:

05 Sep 2014 11:48

Last Modified:

05 Dec 2022 14:32

Publisher DOI:

10.1016/j.tree.2004.01.003

BORIS DOI:

10.7892/boris.49538

URI:

https://boris.unibe.ch/id/eprint/49538

Actions (login required)

Edit item Edit item
Provide Feedback