Characterization of the potential role for RNA-binding protein FUS/TLS in DNA damage response: A quantitative proteomic approach

Ruepp, Marc-David (25 January 2013). Characterization of the potential role for RNA-binding protein FUS/TLS in DNA damage response: A quantitative proteomic approach (Unpublished). In: Swiss RNA Workshop 2013. Bern, CH. 25.01.2013.

FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein of the hnRNP family, that has been discovered as fused to transcription factors, through chromosomal translocations, in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis (ALS) [1].
To date, FUS/TLS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2].
In addition, some evidences link FUS/TLS to genome stability control and DNA damage response. In fact, mice lacking FUS/TLS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and in response to double-strand breaks, FUS/TLS gets phosphorylated by the protein kinase ATM [3,4,5].
Furthermore, the inducible depletion of FUS/TLS in a neuroblastoma cell line (SH-SY5Y FUS/TLS TET-off iKD) subjected to genotoxic stress (IR) resulted in an increased phosphorylation of γH2AX respect to control cells, suggesting an higher activation of the DNA damage response.
The study aims to investigate the specific role of FUS/TLS in DNA damage response through the characterization of the proteomic profile of SH-SY5Y FUS/TLS iKD cells subjected to DNA damage stress, by mass spectrometry-based quantitative proteomics (e.g. SILAC).
Preliminary results of mass spectrometric identification of FUS/TLS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS/TLS protein, highlighted the interactions with several proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS/TLS is involved in this pathway, even thou its exact role still need to be addressed.

Item Type:

Conference or Workshop Item (Poster)

Division/Institute:

08 Faculty of Science > Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP)

UniBE Contributor:

Ruepp, Marc-David

Subjects:

500 Science > 570 Life sciences; biology
500 Science > 540 Chemistry

Language:

English

Submitter:

Christina Schüpbach

Date Deposited:

05 Aug 2014 14:18

Last Modified:

05 Dec 2022 14:36

URI:

https://boris.unibe.ch/id/eprint/57520

Actions (login required)

Edit item Edit item
Provide Feedback