EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2012-325 Submitted to: Phys. Lett. B

Measurement of angular correlations in Drell–Yan lepton pairs to probe Z/γ^* boson transverse momentum at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

A measurement of angular correlations in Drell–Yan lepton pairs via the ϕ_{η}^{*} observable is presented. This variable probes the same physics as the Z/γ^{*} boson transverse momentum with a better experimental resolution. The $Z/\gamma^{*} \rightarrow e^{+}e^{-}$ and $Z/\gamma^{*} \rightarrow \mu^{+}\mu^{-}$ decays produced in proton–proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV are used. The data were collected with the ATLAS detector at the LHC and correspond to an integrated luminosity of 4.6 fb⁻¹. Normalised differential cross sections as a function of ϕ_{η}^{*} are measured separately for electron and muon decay channels. These channels are then combined for improved accuracy. The cross section is also measured double differentially as a function of ϕ_{η}^{*} for three independent bins of the Z boson rapidity. The results are compared to QCD calculations and to predictions from different Monte Carlo event generators. The data are reasonably well described, in all measured Z boson rapidity regions, by resummed QCD predictions combined with fixed-order perturbative QCD calculations or by some Monte Carlo event generators. The measurement precision is typically better by one order of magnitude than present theoretical uncertainties.

Measurement of angular correlations in Drell–Yan lepton pairs to probe Z/γ^* boson transverse momentum at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

A measurement of angular correlations in Drell–Yan lepton pairs via the ϕ_{η}^{*} observable is presented. This variable probes the same physics as the Z/γ^{*} boson transverse momentum with a better experimental resolution. The $Z/\gamma^{*} \rightarrow e^{+}e^{-}$ and $Z/\gamma^{*} \rightarrow \mu^{+}\mu^{-}$ decays produced in proton–proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV are used. The data were collected with the ATLAS detector at the LHC and correspond to an integrated luminosity of 4.6 fb⁻¹. Normalised differential cross sections as a function of ϕ_{η}^{*} are measured separately for electron and muon decay channels. These channels are then combined for improved accuracy. The cross section is also measured double differentially as a function of ϕ_{η}^{*} for three independent bins of the Z boson rapidity. The results are compared to QCD calculations and to predictions from different Monte Carlo event generators. The data are reasonably well described, in all measured Z boson rapidity regions, by resummed QCD predictions combined with fixed-order perturbative QCD calculations or by some Monte Carlo event generators. The measurement precision is typically better by one order of magnitude than present theoretical uncertainties.

Keywords:

Z Boson, Differential Cross Section, Perturbative QCD, Event Generators, Monte Carlo Models

1. Introduction

In hadron collisions at TeV energies the vector bosons W and Z/γ^* are copiously produced with non-zero momentum transverse to the beam direction $(p_{\rm T})$ because of radiation of quarks and gluons from the initial-state partons. In this context the signatures $Z/\gamma^* \rightarrow e^+e^$ and $Z/\gamma^* \to \mu^+\mu^-$ provide an ideal testing ground for QCD due to the absence of colour flow between the initial and final state [1–3]. The study of the low $p_{\rm T}^Z$ spectrum $(p_T^Z < m_Z)$, which dominates the cross section, has important implications on the understanding of Higgs boson production since the transverse-momentum resummation formalism required to describe the Z/γ^* boson cross section is valid also for the Higgs boson [4-7]. A precise understanding of the p_T^Z spectrum is also necessary to further improve the modelling of W boson production in QCD calculations and Monte Carlo (MC) event generators, since the measurement of the W mass is directly affected by uncertainties in the $p_{\rm T}^W$ shape [8, 9].

The transverse momentum spectra of W and Z/γ^* bosons produced via the Drell–Yan mechanism have been extensively studied by the Tevatron collaborations [10–14] and, recently, also by the LHC experiments [15–17]. However, the precision of direct measurements of the Z/γ^* spectrum at low p_T^Z at the LHC and the Tevatron is limited by the experimental resolution and systematic uncertainties rather than by the size of the available data samples. This limitation affects the choice of bin widths and the ultimate precision of the p_T^Z spectrum. In recent years, and smaller sensitivity to experimental systematic uncertainties have been investigated [18–21]. The optimal experimental observable to probe the low- $p_{\rm T}^Z$ domain of Z/γ^* production was found to be ϕ_{η}^* which is defined [20] as:

additional observables with better experimental resolution

$$\phi_{\eta}^* \equiv \tan(\phi_{\rm acop}/2) \cdot \sin(\theta_{\eta}^*) , \qquad (1)$$

where $\phi_{\text{acop}} \equiv \pi - \Delta \phi$, $\Delta \phi$ being the azimuthal opening angle between the two leptons, and the angle θ_{η}^{*} is a measure of the scattering angle of the leptons with respect to the proton beam direction in the rest frame of the dilepton system. The angle θ_{η}^{*} is defined [20] by $\cos(\theta_{\eta}^{*}) \equiv \tanh[(\eta^{-} - \eta^{+})/2]$ where η^{-} and η^{+} are the pseudorapidities¹ of the negatively and positively charged lepton, respectively. Therefore, ϕ_{η}^{*} depends exclusively on the directions of the two lepton tracks, which are better measured than their momenta. The ϕ_{η}^{*} variable is positive by definition. It is correlated to the quantity $p_{T}^{Z}/m_{\ell\ell}$, where $m_{\ell\ell}$ is the invariant mass of the lepton pair, and therefore probes the same physics as the transverse momentum p_{T}^{Z} [22]. Values of ϕ_{η}^{*} ranging from 0 to 1 probe

¹ATLAS uses a right-handed coordinate system with its origin at the nominal pp interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$ and the rapidity is defined as $y = \ln[(E + p_z)/(E - p_z)]/2$.

the $p_{\rm T}^Z$ distribution mainly up to ~ 100 GeV. The ϕ_{η}^* distribution of Z/γ^* bosons has been measured in three bins of the Z boson rapidity (y_Z) by the DØ Collaboration using 7.3 fb⁻¹ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV [23].

This Letter presents a measurement of the normalised ϕ_n^* distribution in bins of the Z boson rapidity y_Z using 4.6 fb⁻¹ of pp interactions collected at $\sqrt{s} = 7$ TeV in 2011 by the ATLAS detector. The normalised differential cross section is measured in both the electron and muon channels in the fiducial lepton acceptance defined by the lepton $(\ell = e, \mu)$ transverse momentum $p_{\rm T}^{\ell} > 20$ GeV, the lepton pseudorapidity $|\eta^{\ell}| < 2.4$ and the invariant mass of the lepton pair 66 GeV $< m_{\ell\ell} < 116$ GeV. Correction factors allowing the extrapolation of the cross section from the fiducial letpton acceptance to the full lepton acceptance, restricted to 66 GeV $< m_{\ell\ell} < 116$ GeV, are also presented. The reconstructed ϕ^*_η distribution, after background subtraction, is corrected for all detector effects. The measurements are reported with respect to three distinct reference points at particle level regarding QED final-state radiation (FSR) corrections. The true dilepton mass $m_{\ell\ell}$ and ϕ_n^* are defined by the final-state leptons after QED FSR ("bare" leptons), or by recombining them with radiated photons within a cone of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.1$ ("dressed" leptons), or by the final-state leptons before QED FSR ("Born leptons"). The bare definition does not require any QED FSR correction for muons, whilst the dressed definition is the closest to the experimental measurement for electrons. The Born definition corresponds to the full correction for QED FSR effects, so that it can be used for the combination of the electron and muon channels. The combination of the electron and muon channels is compared to QCD predictions obtained by matching resummed and fixed order QCD calculations, as well as to the predictions of MC event generators implementing a parton shower (PS) algorithm.

2. QCD predictions

Non-zero $p_{\rm T}^Z$ is mainly generated through the emission of partons in the initial state. In the high $p_{\rm T}^Z$ region $(p_{\rm T}^Z \gtrsim m_Z)$ the spectrum is determined primarily by hard parton emission. Perturbative QCD calculations, based on the truncation of the perturbative series at a fixed order in α_s , are theoretically justified and provide reliable predictions. The inclusive cross-section prediction is finite but the differential cross section diverges as $p_{\rm T}^Z$ approaches zero. In this limit $(p_{\rm T}^Z \ll m_Z)$ the convergence of the fixed-order expansion is spoiled by the presence of powers of large logarithmic terms which have to be resummed to restore the convergence.

Differential cross sections calculated to $\mathcal{O}(\alpha_s^2)$ are available for Z/γ^* production through the FEWZ [24, 25] and DYNNLO [26, 27] programs. The RESBOS [28–30] generator resums the leading contributions up to next-to-next-to-leading logarithms (NNLL) and matches the result to fixed-order calculations at $\mathcal{O}(\alpha_s)$. This is corrected to

 $\mathcal{O}(\alpha_s^2)$ using a k-factor depending on p_T^T and y_Z [31]. In addition, the RESBOS generator includes a non-perturbative form factor that needs to be determined from data [32]. A slightly different approach has been proposed recently to describe the Tevatron Run II data by matching NNLL accuracy to MCFM calculations [33], with no apparent need for non-perturbative contributions [22, 34].

Similarly to resummed calculations, PS algorithms such as those used in PYTHIA [35] and HERWIG [36] provide an all-order approximation of parton radiation in the soft and collinear region through the iterative splitting and radiation of partons. The POWHEG [37–40] and MC@NLO [41] event generators combine next-to-leading order (NLO) QCD matrix elements with a PS algorithm to produce differential cross-section predictions that are finite for all $p_{\rm T}^Z$. The ALPGEN [42] and SHERPA [43] event generators implement tree-level matrix elements for the generation of multiple hard partons in association with the weak boson. They are matched to parton showers either by a PS algorithm using re-weighting procedures [44, 45] or through a veto [42], in order to avoid the double counting of QCD emissions in the matrix element and the parton shower.

3. The ATLAS detector

The ATLAS detector [46] is a multi-purpose particle physics detector operating at one of the beam interaction points of the LHC. It covers nearly the entire solid angle around the collision region and consists of an inner tracking detector (inner detector or ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS).

Measurements in the ID are performed with silicon pixel and microstrip detectors covering $|\eta| < 2.5$. A strawtube tracking detector follows radially and covers the range $|\eta| < 2.0$. The lead/liquid-argon electromagnetic calorimeter is divided into barrel ($|\eta| < 1.5$) and endcap $(1.4 < |\eta| < 3.2)$ sections. The hadronic calorimeter is based on steel/scintillating tiles in the central region ($|\eta| < 1.7$), and is extended to $|\eta| = 4.9$ by endcap and forward calorimeters which use liquid argon. The MS comprises separate trigger and high-precision tracking chambers to measure the deflection of muons in a magnetic field generated by three large superconducting toroids arranged with an eightfold azimuthal coil symmetry around the calorimeters. The high-precision chambers cover a range of $|\eta| < 2.7$. The muon trigger system covers the range $|\eta| < 2.4$ with resistive plate chambers in the barrel, and thin gap chambers in the endcap regions.

4. Event simulation

MC simulations are used to calculate efficiencies and acceptances for the $Z/\gamma^* \rightarrow \ell^+ \ell^-$ signal processes and to unfold the measured ϕ_{η}^* spectrum for detector effects and

for different levels of QED FSR. The POWHEG MC generator is used with CT10 [47] parton distribution functions (PDFs) to generate both the $Z/\gamma^* \to e^+e^-$ and $Z/\gamma^* \to$ $\mu^+\mu^-$ signal events. It is interfaced to PYTHIA 6.4 with the AUET2B-CTEQ6L1 tune [48] to simulate the parton shower and the underlying event. Generated events are re-weighted as a function of $p_{\rm T}^Z$ to the predictions from RESBOS, which describes the $p_{\rm T}^Z$ spectrum more accurately [15]. Simulated events are also used to estimate background contributions. The electroweak background processes $W \to \ell \nu$ and $Z/\gamma^* \to \tau^+ \tau^-$ are generated using PYTHIA 6.4. The production of $t\bar{t}$ events is modelled using MC@NLO and diboson processes are simulated using HER-WIG. The event generators are interfaced to PHOTOS [49] to simulate QED FSR for all of the simulated samples, except SHERPA which is interfaced to an implementation of the YFS algorithm [50, 51].

Multiple interactions per bunch crossing (pile-up) are accounted for by overlaying simulated minimum bias events. To match the observed instantaneous luminosity profile, the simulated events are re-weighted to yield the same distribution of the number of interactions per bunch crossing as measured in the data. The response of the ATLAS detector to the generated particles is modelled using GEANT4 [52], and the fully simulated events [53] are passed through the same reconstruction chain as the data. Simulated event samples are corrected for differences with respect to the data in the trigger efficiencies, lepton reconstruction and identification efficiencies as well as in energy (momentum) scale and resolution. The efficiencies are determined by using a tag-and-probe method similar to the one described in Section 4.3 of Ref. [54] based on reconstructed Z and W events, while the energy resolution and scale corrections are obtained from a fit to the observed Zboson line shape.

5. Event reconstruction, selection and background estimation

Events recorded during periods with stable beam conditions and passing detector and data-quality requirements are selected. At least one primary vertex reconstructed from at least three tracks is required in each event.

Events in the electron channel are selected online by requiring a single electron candidate with a threshold in transverse momentum $p_{\rm T}$ that was increased during the data-taking from 20 GeV to 22 GeV in response to increased LHC luminosity. Electrons are reconstructed from a cluster of cells with significant energy deposits in the electromagnetic calorimeter matched to an inner detector track. Electron reconstruction uses track refitting with a Gaussian-sum filter to be less sensitive to bremsstrahlung losses and improve the estimates of the electron track parameters [55, 56]. The typical angular resolutions in the electron direction measurements are 0.6 mrad for ϕ and 0.0012 for η . The highest and second highest $p_{\rm T}$ electrons are required to have a transverse momentum $p_{\rm T}^{\rm e} > 25$ GeV and $p_{\rm T}^e > 20$ GeV, respectively. The electron pseudorapidity must satisfy $|\eta^e| < 2.4$ with the calorimeter barrel/endcap transition region $1.37 < |\eta^e| < 1.52$ excluded. Electrons are required to pass "medium" identification criteria based on shower shape and track-quality variables, as described in Refs. [57, 58]. The criteria are re-optimised for both higher pile-up conditions and higher instantaneous luminosity in 2011.

Events in the muon channel are selected online by a trigger requiring a single muon candidate with $p_{\rm T}^{\mu} > 18$ GeV. Muons are identified as tracks reconstructed in the muon spectrometer matched to tracks reconstructed in the inner detector and are required to have $p_{\rm T}^{\mu}$ > 20 GeV and $|\eta^{\mu}| < 2.4$. Only isolated muons are selected by requiring the scalar sum of the $p_{\rm T}$ of the tracks within a cone $\Delta R = 0.2$ around the muon to be less than 10% of the muon $p_{\rm T}$. Muons are required to have a longitudinal impact parameter with respect to the primary vertex less than 10 mm to reduce contributions from cosmic-ray muons and in-time pile-up. In addition, the transverse impact parameter of the track with respect to the primary vertex divided by its uncertainty must be smaller than ten to reduce non-prompt muon backgrounds. The typical angular resolutions in the muon direction measurements are 0.4 mrad for ϕ and 0.001 for η .

 $Z/\gamma^* \rightarrow \ell^+ \ell^-$ events are selected by requiring two oppositely charged same-flavour leptons with an invariant mass 66 GeV $< m_{\ell\ell} < 116$ GeV. After these selection requirements $1.22 \cdot 10^6$ dielectron and $1.69 \cdot 10^6$ dimuon candidate events are found in data.

Background contributions from $Z/\gamma^* \to \tau^+\tau^-$, $W \to \ell\nu$, $t\bar{t}$ and diboson production are estimated using MC simulations. The cross sections are normalised to next-to-next-to-leading-order (NNLO) predictions for Z/γ^* and W production using FEWZ, NLL-NLO predictions for $t\bar{t}$ production [54] and NLO predictions for diboson production [59]. For both the e^+e^- and $\mu^+\mu^-$ channels, the main background at high ϕ^*_{η} values arises from $t\bar{t}$ and diboson production.

At low ϕ_{η}^* values the background is dominated by multijet production, where a jet is falsely identified as a primary $e \text{ or } \mu$. In this case the background is determined by datadriven methods. A data event sample dominated by jets faking electrons or muons in the final state is employed to determine the shape of the multi-jet background. For the e^+e^- channel, the multi-jet sample is obtained from electrons failing the medium identification criteria. In order to assess systematic uncertainties in the shape of the multi-jet background, an alternative multi-jet control sample was also selected using non-isolated electrons. For the $\mu^+\mu^-$ channel, the multi-jet sample is extracted by inverting the isolation requirement on muons. The uncertainty in its shape was studied by comparing same-sign and opposite-sign dimuon events. The normalisation of this multi-jet background template is determined by adjusting the sum of it and other background and signal MC predictions to data as a function of the invariant mass

Table 1: The measured normalised differential cross section $1/\sigma^{\text{fid}} \cdot d\sigma^{\text{fid}}/d\phi^*_{\eta}$ in bins of ϕ^*_{η} for $Z/\gamma^* \to e^+e^-$ and $Z/\gamma^* \to \mu^+\mu^-$ channels. The cross sections, which are to be multiplied for convenience by a factor f, are reported with respect to the three different treatments of QED final-state radiation. The relative statistical (δ_{stat}) and total systematic (δ_{sys}) uncertainties are given in percent. The overall point-to-point uncorrelated additional uncertainty in QED FSR of 0.3% is not included.

	$Z/\gamma^* \to e^+e^-$					$Z/\gamma^* \to \mu^+\mu^-$						
ϕ_n^*	$1/\sigma^{\text{fid}}$	$\cdot d\sigma^{\rm fid}/d\phi_n^*$			δ_{stat}	δ_{sys}	$1/\sigma^{\text{fid}}$	$\cdot d\sigma^{\rm fid}/d\phi_n^*$			δ_{stat}	δ_{svs}
bin range	Born	dressed	bare	f	[%]	[%]	Born	dressed	bare	f	[%]	[%]
0.000 - 0.004	9.77	9.69	9.70	1	0.46	0.35	9.77	9.67	9.67	1	0.39	0.28
0.004 - 0.008	9.68	9.59	9.59	1	0.47	0.26	9.76	9.66	9.66	1	0.39	0.18
0.008 - 0.012	9.42	9.36	9.38	1	0.47	0.28	9.42	9.34	9.35	1	0.40	0.24
0.012 - 0.016	9.14	9.06	9.07	1	0.48	0.35	9.26	9.17	9.18	1	0.40	0.24
0.016 - 0.020	8.82	8.76	8.77	1	0.49	0.24	8.83	8.76	8.77	1	0.41	0.19
0.020 - 0.024	8.48	8.43	8.43	1	0.50	0.25	8.51	8.44	8.45	1	0.42	0.27
0.024 - 0.029	7.97	7.93	7.94	1	0.46	0.26	8.05	8.00	8.01	1	0.39	0.24
0.029 - 0.034	7.57	7.52	7.53	1	0.47	0.22	7.57	7.52	7.53	1	0.40	0.19
0.034 - 0.039	7.02	7.00	7.01	1	0.49	0.29	7.11	7.09	7.09	1	0.41	0.17
0.039 - 0.045	6.55	6.53	6.53	1	0.46	0.22	6.50	6.49	6.49	1	0.39	0.17
0.045 - 0.051	5.93	5.92	5.92	1	0.48	0.22	6.00	5.99	5.99	1	0.41	0.16
0.051 - 0.057	5.52	5.52	5.52	1	0.50	0.22	5.52	5.53	5.53	1	0.42	0.22
0.057 - 0.064	5.04	5.04	5.04	1	0.48	0.22	5.00	5.01	5.01	1	0.41	0.16
0.064 - 0.072	4.55	4.56	4.56	1	0.48	0.22	4.52	4.52	4.52	1	0.41	0.23
0.072 - 0.081	4.01	4.03	4.03	1	0.48	0.21	4.04	4.06	4.06	1	0.40	0.18
0.081 - 0.091	3.58	3.59	3.59	1	0.48	0.22	3.53	3.55	3.55	1	0.41	0.19
0.091 - 0.102	3.15	3.16	3.16	1	0.49	0.23	3.14	3.16	3.16	1	0.41	0.21
0.102 - 0.114	2.73	2.74	2.74	1	0.50	0.26	2.73	2.75	2.74	1	0.43	0.23
0.114 - 0.128	2.34	2.35	2.35	1	0.50	0.29	2.35	2.37	2.37	1	0.42	0.24
0.128 - 0.145	2.00	2.01	2.01	1	0.49	0.24	2.00	2.01	2.01	1	0.42	0.21
0.145 - 0.165	1.687	1.697	1.698	1	0.49	0.28	1.669	1.680	1.679	1	0.42	0.28
0.165 - 0.189	1.355	1.364	1.363	1	0.50	0.25	1.355	1.365	1.365	1	0.43	0.19
0.189 - 0.219	1.079	1.087	1.087	1	0.50	0.23	1.086	1.093	1.093	1	0.43	0.20
0.219 - 0.258	8.27	8.34	8.32	10^{-1}	0.50	0.24	8.22	8.28	8.27	10^{-1}	0.43	0.19
0.258 - 0.312	5.97	6.00	5.99	10^{-1}	0.50	0.25	5.94	5.97	5.97	10^{-1}	0.43	0.17
0.312 - 0.391	3.97	3.99	3.99	10^{-1}	0.51	0.22	3.94	3.96	3.96	10^{-1}	0.44	0.17
0.391 - 0.524	2.28	2.28	2.28	10^{-1}	0.52	0.24	2.29	2.29	2.29	10^{-1}	0.45	0.19
0.524 - 0.695	1.176	1.179	1.177	10^{-1}	0.64	0.29	1.164	1.168	1.166	10^{-1}	0.55	0.23
0.695 - 0.918	5.79	5.80	5.79	10^{-2}	0.79	0.37	5.77	5.79	5.78	10^{-2}	0.69	0.29
0.918 - 1.153	2.94	2.95	2.95	10^{-2}	1.07	0.47	2.91	2.91	2.91	10^{-2}	0.95	0.37
1.153 - 1.496	1.54	1.55	1.54	10^{-2}	1.22	0.52	1.50	1.51	1.51	10^{-2}	1.09	0.41
1.496 - 1.947	7.25	7.26	7.25	10^{-3}	1.55	0.66	7.05	7.06	7.06	10^{-3}	1.39	0.48
1.947 - 2.522	3.52	3.51	3.50	10^{-3}	1.97	0.78	3.56	3.56	3.55	10^{-3}	1.74	0.62
2.522 - 3.277	1.73	1.73	1.72	10^{-3}	2.46	0.96	1.79	1.80	1.80	10^{-3}	2.13	0.71

spectrum of the dilepton pair. An extended dilepton mass range, 50 GeV $< m_{\ell\ell} < 150$ GeV (200 GeV for electrons), was employed to better constrain the off-resonance region and improve the accuracy of the multi-jet background normalisation.

The total fraction of background events is $(0.61\pm0.31)\%$ in the e^+e^- channel and $(0.56\pm0.28)\%$ in the $\mu^+\mu^-$ channel. The multi-jet background represents ~ 50% of the total background in both channels and dominates at low ϕ_{η}^* values. An irreducible background may also arise from the production of a lepton pair via photon-photon interactions, $\gamma\gamma \rightarrow \ell^+\ell^-$. This contribution was evaluated at leading order using FEWZ 3.1 [24, 60] and the MRST2004qed [61] PDF, currently the only available PDF set containing a description of the QED part of the proton. According to the LO cross section calculated in the fiducial lepton acceptance, the fraction of photon-induced events is expected to be below 0.1%, with an uncertainty of 50%. This contribution is six times lower than the sum of other background contributions and is therefore neglected.

6. Cross-section measurement and systematic uncertainties

The differential cross section is evaluated in bins of ϕ_{η}^* , or of (ϕ_{η}^*, y_Z) , from the number of observed data events in each bin after subtraction of the estimated number of background events.

A bin-by-bin correction is used to correct the observed data for detector acceptances and inefficiencies, as well as for QED FSR. The correction factors are determined using signal MC events. For the chosen bin widths the purity, defined as the fraction of simulated events reconstructed in a ϕ_{η}^{*} bin which have generator-level ϕ_{η}^{*} in the same bin, is always more than 83% and reaches 98% in the highest ϕ_{η}^{*} bins. In each bin, the data are normalised to the cross section integrated over the fiducial acceptance region.

An analysis of systematic uncertainties was performed, in which the sensitivity of the measurements to variations in the efficiencies and energy scales of the detector components and to the details of the correction procedure is tested. The systematic uncertainties in the measured cross section are determined by repeating the analysis after applying appropriate variations for each source of systematic uncertainty to the simulated samples. The systematic uncertainties which are correlated between ϕ_{η}^* bins are listed below.

- Uncertainties in the estimation of the number of background events from multi-jet, $W \to \ell \nu$ and $Z/\gamma^* \to \tau^+ \tau^-$ decays, $t\bar{t}$ and diboson processes yield values of up to 0.3% in the e^+e^- and $\mu^+\mu^-$ channels, when propagated to the normalised differential cross section.
- Possible mis-modelling of the angular resolution of tracking detectors leads to uncertainties of up to 0.3% (0.2%) on the normalised differential cross section in the e^+e^- ($\mu^+\mu^-$) channel.
- The dependence of the bin-by-bin correction factors on the shape of the assumed ϕ_{η}^{*} distribution was tested by re-weighting simulated events to the measured ϕ_{η}^{*} cross section. An iterative Bayesian unfolding technique [62] was employed as an alternative approach to assess systematic uncertainties. The uncertainty in the correction procedure is found to be smaller than 0.1% in both channels and for the full ϕ_{η}^{*} range.
- As the definition of the ϕ_{η}^{*} variable is based on the lepton angles, the normalised differential cross section depends only weakly on uncertainties in the lepton energy/momentum scale and resolution. When propagated to the normalised differential cross section, these uncertainties amount to less than 0.1% and 0.03% in the e^+e^- and $\mu^+\mu^-$ channels, respectively.
- Uncertainties arising from the mis-modelling of lepton identification efficiencies and trigger efficiencies in the simulation amount respectively to 0.05% (0.03%) and 0.04% (0.02%) in the $e^+e^- (\mu^+\mu^-)$ channel.
- Pile-up has only a weak influence on this measurement and results in an uncertainty of at most 0.05% on the normalised differential cross section.

A second class of systematic uncertainties, listed below, are considered uncorrelated across ϕ_{η}^{*} bins.

- Uncertainties on the bin-by-bin correction factors arising from the MC sample statistics are 0.2% (0.13%) at low ϕ_{η}^* in the e^+e^- ($\mu^+\mu^-$) channel, increasing to 0.9% (0.6%) in the highest ϕ_{η}^* bins.
- Possible local biases in angular measurements (ϕ, η) by tracking detectors yield an estimated constant uncertainty of 0.1% on the normalised differential cross section. The local effect of these biases allows bin-to-bin correlations to be neglected. The impact of this assumption on the combination of electron and muon channel results is small.

• A conservative systematic uncertainty of 0.3% due to ϕ_{η}^* -dependent modelling of QED FSR is assigned by comparing predictions from PHOTOS [49] and from the SHERPA implementation of the YFS algorithm [50, 51]. This comparison provides the size of the uncertainty but however does not allow the shape of the ϕ_{η}^* dependence to be estimated. This uncertainty was therefore treated as uncorrelated across ϕ_{η}^* bins. The uncertainty is assumed to hold for cross sections at Born, dressed and bare levels and for both electron and muon channel measurements. It therefore does not affect the combination of them.

The total systematic uncertainty on each data point is formed by adding the individual contributions in quadrature.

Figure 1: The measured normalised differential cross section $1/\sigma^{\rm fid} \cdot d\sigma^{\rm fid}/d\phi^*_{\eta}$ as a function of ϕ^*_{η} for $Z/\gamma^* \to e^+e^-$ (closed dots) and $Z/\gamma^* \to \mu^+\mu^-$ (open dots) channels. The measurements are compared to RESBOS predictions represented by a line. The ratio of measured cross sections to RESBOS predictions is presented in the bottom panel. The measurements are displaced horizontally for better visibility. The inner and outer error bars on the data points represent the statistical and total uncertainties, respectively. The uncertainty due to QED FSR is included in the total uncertainties.

7. Results and discussion

The normalised differential cross sections measured for $Z/\gamma^* \to e^+e^-$ and $Z/\gamma^* \to \mu^+\mu^-$ production in the fiducial acceptance are presented in Table 1. The measurements are reported with respect to the Born, dressed and

bare reference points at particle level regarding QED FSR. The QED FSR corrections for the three levels are calculated using PHOTOS. The measured cross sections defined at the Z/γ^* Born level are shown in Fig. 1 for the e^+e^- and $\mu^+\mu^-$ channels and are compared to predictions from ResBos.

The normalised differential cross sections measured in the fiducial acceptance for the two channels are combined using a χ^2 minimisation method which takes into account the point-to-point correlated and uncorrelated systematic uncertainties [63–65] and correlations between electron and muon channels. The procedure allows a model independent check of the electron and muon data consistency and leads to a significant reduction of the correlated uncertainties.

Table 2: The combined normalised differential cross section $1/\sigma^{\rm fid} \cdot d\sigma^{\rm fid}/d\sigma^{\rm fi}_{\eta}$ in bins of ϕ^{*}_{η} at Born level. The statistical ($\delta_{\rm stat}$) and total systematic ($\delta_{\rm sys}$) uncertainties are given in percent. The normalised differential cross section extrapolated to the full lepton acceptance $1/\sigma^{\rm tot} \cdot d\sigma^{\rm tot}/d\phi^{*}_{\eta}$ is obtained at Born level by multiplication with the inverse acceptance correction factor A_c^{-1} . The uncertainty $\delta(A_c^{-1})$ on this acceptance correction factor is also given in percent. The overall point-to-point uncorrelated additional uncertainty in QED FSR of 0.3% is not included.

ϕ_n^*	$1/\sigma^{\rm fid} \cdot {\rm d}\sigma^{\rm fid}/{\rm d}\phi_n^*$	δ_{stat}	$\delta_{\rm sys}$	A_c^{-1}	$\delta(A_c^{-1})$
bin range	1	[%]	[%]		[%]
0.000 - 0.004	9.77	0.30	0.21	1.06	3.8
0.004 - 0.008	9.73	0.30	0.20	1.06	3.0
0.008 - 0.012	9.41	0.31	0.18	1.06	3.7
0.012 - 0.016	9.21	0.31	0.22	1.06	2.4
0.016 - 0.020	8.82	0.31	0.16	1.05	2.5
0.020 - 0.024	8.49	0.32	0.18	1.05	2.2
0.024 - 0.029	8.01	0.29	0.18	1.05	1.8
0.029 - 0.034	7.56	0.30	0.14	1.04	2.4
0.034 - 0.039	7.07	0.31	0.15	1.04	2.2
0.039 - 0.045	6.52	0.30	0.14	1.03	2.2
0.045 - 0.051	5.97	0.31	0.13	1.02	2.8
0.051 - 0.057	5.52	0.32	0.16	1.01	2.1
0.057 - 0.064	5.02	0.31	0.13	1.01	1.9
0.064 - 0.072	4.54	0.31	0.18	1.00	2.0
0.072 - 0.081	4.03	0.31	0.13	0.99	1.8
0.081 - 0.091	3.56	0.31	0.15	0.99	1.0
0.091 - 0.102	3.15	0.32	0.16	0.98	1.1
0.102 - 0.114	2.731	0.32	0.17	0.97	1.3
0.114 - 0.128	2.347	0.32	0.19	0.97	1.3
0.128 - 0.145	1.996	0.32	0.16	0.96	1.7
0.145 - 0.165	1.677	0.32	0.19	0.95	2.0
0.165 - 0.189	1.355	0.32	0.16	0.95	2.7
0.189 - 0.219	1.084	0.32	0.15	0.94	2.3
0.219 - 0.258	$8.24 \cdot 10^{-1}$	0.33	0.15	0.94	2.9
0.258 - 0.312	$5.95 \cdot 10^{-1}$	0.33	0.14	0.93	2.9
0.312 - 0.391	$3.96 \cdot 10^{-1}$	0.33	0.14	0.92	3.4
0.391 - 0.524	$2.282 \cdot 10^{-1}$	0.34	0.15	0.92	3.5
0.524 - 0.695	$1.169 \cdot 10^{-1}$	0.42	0.18	0.92	4.4
0.695 - 0.918	$5.78 \cdot 10^{-2}$	0.52	0.23	0.93	4.0
0.918 - 1.153	$2.92 \cdot 10^{-2}$	0.71	0.29	0.94	5.3
1.153 - 1.496	$1.52 \cdot 10^{-2}$	0.81	0.33	0.98	10.5
1.496 - 1.947	$7.13 \cdot 10^{-3}$	1.04	0.40	1.04	10.3
1.947 - 2.522	$3.54 \cdot 10^{-3}$	1.30	0.49	1.11	17.5
2522 = 3277	$1.77 \cdot 10^{-3}$	1 61	0.58	1 1 9	16.2

The uncertainties due to the unfolding procedure, the pile-up, and QED FSR are considered to be completely correlated between the e^+e^- and $\mu^+\mu^-$ channels. The minimisation yields a total χ^2 per degree of freedom

 $(n_{\rm dof})$ of $\chi^2/n_{\rm dof} = 33.2/34$, indicating a good consistency between the electron and muon data. Measured values of the combined normalised differential cross section $1/\sigma^{\rm fid}\cdot {\rm d}\sigma^{\rm fid}/{\rm d}\phi^*_\eta$ within the fiducial lepton acceptance are presented in Table 2. At lower ϕ_{η}^* values the statistical and systematic uncertainties are of the same order, whilst for large ϕ_{η}^* values statistical uncertainties are dominating. The acceptance correction factors A_c needed to extrapolate the measurement to the full lepton acceptance are determined using the POWHEG simulation with the CT10 PDF set and reweighted as a function of $p_{\rm T}^Z$ to ResBos predictions. The uncertainty in A_c is estimated from the extreme differences among predictions obtained with RES-BOS, MC@NLO, SHERPA, ALPGEN, HERWIG and POWHEG interfaced to PYTHIA8. Uncertainties in A_c resulting from PDF uncertainties are below 1%.

Figure 2: The ratio of the combined normalised differential cross section $1/\sigma^{\rm fid} \cdot d\sigma^{\rm fid}/d\phi_{\eta}^*$ to RESBOS predictions as a function of ϕ_{η}^* . The inner and outer error bars on the data points represent the statistical and total uncertainties, respectively. The uncertainty due to QED FSR is included in the total uncertainties. The measurements are also compared to predictions, which are represented by a dashed line, from Ref. [22] and from FEWZ in the top and bottom panels, respectively. Uncertainties associated with these two calculations are represented by shaded bands. The prediction from FEWZ is only presented for $\phi_{\eta}^* > 0.1$.

Table 3: The combined normalised differential cross section $1/\sigma^{\text{fid}} \cdot d\sigma^{\text{fid}}/d\phi_{\eta}^{*}$ in bins of ϕ_{η}^{*} and in three $|y_{Z}|$ ranges. The statistical (δ_{stat}) and total systematic (δ_{sys}) uncertainties are given in percent. The overall point-to-point uncorrelated additional uncertainty in QED FSR of 0.3% is not included.

	$ y_Z < 0.8$			$0.8 \le y_Z < 1.6$			$ y_Z \ge 1.6$		
ϕ_n^*	$1/\sigma^{\rm fid} \cdot {\rm d}\sigma^{\rm fid}/{\rm d}\phi_n^*$	δ_{stat}	δ_{sys}	$1/\sigma^{\rm fid} \cdot {\rm d}\sigma^{\rm fid}/{\rm d}\phi_n^*$	δ_{stat}	$\delta_{\rm sys}$	$1/\sigma^{\rm fid} \cdot {\rm d}\sigma^{\rm fid}/{\rm d}\phi_n^*$	δ_{stat}	δ_{sys}
bin range	-1	[%]	[%]	-1	[%]	[%]	-1	[%]	[%]
0.000 - 0.004	9.73	0.45	0.25	9.81	0.48	0.21	9.79	0.75	0.33
0.004 - 0.008	9.65	0.45	0.23	9.81	0.48	0.26	9.77	0.75	0.35
0.008 - 0.012	9.37	0.46	0.24	9.45	0.49	0.23	9.45	0.76	0.30
0.012 - 0.016	9.12	0.46	0.24	9.31	0.49	0.25	9.25	0.77	0.38
0.016 - 0.020	8.81	0.47	0.21	8.88	0.50	0.22	8.72	0.79	0.31
0.020 - 0.024	8.49	0.48	0.20	8.48	0.51	0.25	8.52	0.80	0.38
0.024 - 0.029	7.99	0.44	0.23	8.05	0.47	0.21	7.99	0.74	0.29
0.029 - 0.034	7.54	0.46	0.21	7.64	0.48	0.19	7.45	0.77	0.28
0.034 - 0.039	7.12	0.47	0.19	7.07	0.50	0.21	6.99	0.79	0.31
0.039 - 0.045	6.53	0.45	0.18	6.57	0.47	0.19	6.38	0.75	0.27
0.045 - 0.051	5.92	0.47	0.18	6.01	0.50	0.19	6.02	0.78	0.28
0.051 - 0.057	5.52	0.48	0.20	5.50	0.52	0.21	5.53	0.81	0.30
0.057 - 0.064	5.06	0.47	0.18	5.00	0.50	0.19	4.97	0.79	0.28
0.064 - 0.072	4.53	0.46	0.22	4.53	0.49	0.21	4.56	0.77	0.30
0.072 - 0.081	4.02	0.46	0.19	4.04	0.49	0.18	4.02	0.77	0.27
0.081 - 0.091	3.56	0.47	0.19	3.55	0.50	0.20	3.55	0.78	0.27
0.091 - 0.102	3.15	0.47	0.20	3.14	0.50	0.21	3.15	0.79	0.28
0.102 - 0.114	2.72	0.49	0.20	2.73	0.52	0.21	2.75	0.81	0.29
0.114 - 0.128	2.34	0.48	0.22	2.34	0.52	0.22	2.37	0.81	0.31
0.128 - 0.145	2.00	0.47	0.19	2.00	0.51	0.22	1.99	0.80	0.27
0.145 - 0.165	1.667	0.48	0.20	1.677	0.51	0.21	1.707	0.80	0.38
0.165 - 0.189	1.342	0.49	0.19	1.356	0.52	0.21	1.385	0.81	0.28
0.189 - 0.219	1.073	0.49	0.19	1.085	0.52	0.19	1.112	0.81	0.28
0.219 - 0.258	$8.18 \cdot 10^{-1}$	0.49	0.18	$8.22 \cdot 10^{-1}$	0.52	0.19	$8.47 \cdot 10^{-1}$	0.81	0.28
0.258 - 0.312	$5.96 \cdot 10^{-1}$	0.49	0.18	$5.87 \cdot 10^{-1}$	0.53	0.19	$6.13 \cdot 10^{-1}$	0.81	0.26
0.312 - 0.391	$3.95 \cdot 10^{-1}$	0.50	0.18	$3.89 \cdot 10^{-1}$	0.54	0.19	$4.14 \cdot 10^{-1}$	0.82	0.26
0.391 - 0.524	$2.28 \cdot 10^{-1}$	0.50	0.20	$2.25 \cdot 10^{-1}$	0.55	0.20	$2.36 \cdot 10^{-1}$	0.84	0.28
0.524 - 0.695	$1.174 \cdot 10^{-1}$	0.62	0.24	$1.151 \cdot 10^{-1}$	0.67	0.25	$1.21 \cdot 10^{-1}$	1.03	0.34
0.695 - 0.918	$5.88 \cdot 10^{-2}$	0.77	0.30	$5.70 \cdot 10^{-2}$	0.84	0.31	$5.69 \cdot 10^{-2}$	1.32	0.42
0.918 - 1.153	$3.05 \cdot 10^{-2}$	1.04	0.40	$2.87 \cdot 10^{-2}$	1.15	0.42	$2.67 \cdot 10^{-2}$	1.86	0.58
1.153 - 1.496	$1.62 \cdot 10^{-2}$	1.17	0.44	$1.50 \cdot 10^{-2}$	1.30	0.47	$1.29 \cdot 10^{-2}$	2.21	0.71
1.496 - 1.947	$7.67 \cdot 10^{-3}$	1.50	0.56	$7.08 \cdot 10^{-3}$	1.65	0.58	$5.66 \cdot 10^{-3}$	2.91	0.95
1.947 - 2.522	$4.08 \cdot 10^{-3}$	1.83	0.70	$3.53 \cdot 10^{-3}$	2.06	0.69	$2.00 \cdot 10^{-3}$	4.35	1.39
2.522 - 3.277	$2.10 \cdot 10^{-3}$	2.22	0.80	$1.70 \cdot 10^{-3}$	2.59	0.87	$9.66 \cdot 10^{-4}$	5.39	1.92

The ratio of the combined normalised differential cross section to the RESBOS prediction is shown as a function of ϕ_n^* in Fig. 2. The measurement is also compared to a QCD calculation by A. Banfi *et al.* [22] and to another obtained with FEWZ 2.1. The ratios of these two calculations to ResBos predictions are also shown in Fig. 2. The CTEQ6m [66] PDF set is used in the calculations in Ref. [22]. The theoretical uncertainties on this calculation are evaluated by varying the resummation, renormalisation and factorisation scales μ_Q , μ_R and μ_F between $m_Z/2$ and $2m_Z$, with the constraints $0.5 \leq \mu_i/\mu_j \leq 2$, where $i, j \in \{F, Q, R\}$, and $\mu_F/\mu_Q \ge 1$. Uncertainties coming from the PDFs are also considered [22]. For FEWZ, the CT10 PDF set is used. Uncertainties are evaluated by varying μ_R and μ_F by factors of two around the nominal scale m_Z with the constraint $0.5 \leq \mu_R/\mu_F \leq 2$, by varying α_s within a range corresponding to 90% confidence-level (CL) limits [67], and by using the PDF error eigenvector sets.

The difference between the RESBOS prediction and data is ~ 2% for $\phi_{\eta}^* < 0.1$, increasing to 5% for higher ϕ_{η}^* values. This difference is smaller than the uncertainty in RESBOS predictions due to the propagation of PDF eigenvectors sets, which amounts to 4% for $\phi_{\eta}^* < 0.1$ and 6% above. The description of data provided by calculations from A. Banfi et al. [22] is less good than RESBOS but observed differences remain within the theoretical uncertainties of the calculation. The prediction obtained with FEWZ undershoots the data by ~ 10%, as already observed for the p_T^Z spectrum in Ref. [15]. At low ϕ_{η}^* values, corresponding mainly to low p_T^Z , fixed-order perturbative QCD calculations are not expected to give an adequate description of the cross section. The prediction from FEWZ is therefore only presented for $\phi_{\eta}^* > 0.1$. It is normalised using the total cross section predicted by FEWZ, which accurately describes experimental measurements [58].

The cross section is also measured double differentially in bins of ϕ_{η}^* for three independent bins of $|y_Z|$ for both the e^+e^- and $\mu^+\mu^-$ channels. The double differential crosssection measurements in the two channels are combined using the same χ^2 minimisation procedure as used for the single differential cross section. The minimisation yields a total $\chi^2/n_{\rm dof} = 118/102$. Measured values of the combined normalised differential cross section $1/\sigma^{\rm fid} \cdot d\sigma^{\rm fid}/d\phi_{\eta}^*$ within the fiducial lepton acceptance in all ϕ_{η}^* and $|y_Z|$ bins are presented in Table 3.

The ratio of the combined normalised differential cross

Figure 3: The ratio of the combined normalised differential cross section $1/\sigma^{\text{fid}} \cdot d\sigma^{\text{fid}}/d\phi_{\eta}^{*}$ to the RESBOS predictions as a function of ϕ_{η}^{*} in three ranges of $|y_{Z}|$. The inner and outer error bars on the data points represent the statistical and total uncertainties, respectively. The uncertainty due to QED FSR is included in the total uncertainties. The measurements are also compared to predictions from different MC event generators.

section to the RESBOS prediction is shown as a function of ϕ_n^* for the three $|y_Z|$ ranges in Fig. 3. The measurement is also compared to predictions obtained using different MC event generators. The PDF set CT10 is employed in all calculations, except for ALPGEN where the CTEQ6L1 PDF set is used. The parton-shower parameters of each MC generator are set to their default values, except for Pythia6 where a specific ATLAS re-tuning was used [48]. The generators ALPGEN, interfaced to HERWIG, and SHERPA provide a good description of the spectrum for $\phi_{\eta}^* > 0.1$. In particular, SHERPA describes the data better than RESBOS over all $|y_Z|$ bins for $\phi_{\eta}^* > 0.1$. However, for $\phi_n^* < 0.1$ the deviations of SHERPA or ALPGEN from the data are \sim 5%, somewhat larger than those of **ResBos.** The Powheg generator interfaced to Pythia8 is also able to describe the data to within 5% over the whole ϕ_n^* range.

The effect of changing the PS tunings and algorithms interfaced to POWHEG was investigated by using PYTHIA6 and HERWIG interfaced to the same POWHEG NLO calculation. These two variations give a worse description of data than PYTHIA8, and deviations from data of $\sim 10\%$ are observed. The MC@NLO generator interfaced to HER-WIG does not properly describe the data for $\phi_{\eta}^* > 0.1$, and deviations from data of the order of 4–7% are observed for $\phi_{\eta}^* < 0.1$ depending on the $|y_Z|$ bin. The level of agreement between MC generators and data is very similar for comparisons at the dressed level.

8. Conclusion

A measurement of the ϕ_{η}^* distribution of Z/γ^* boson candidates in $\sqrt{s} = 7$ TeV pp collisions at the LHC is presented. The data were collected with the ATLAS detector and correspond to an integrated luminosity of 4.6 fb⁻¹. Normalised differential cross sections as a function of ϕ_{η}^* have been measured in bins of the Z boson rapidity y_Z up to $\phi_{\eta}^* \sim 3$ for electron and muon pairs with an invariant mass 66 GeV $< m_{\ell\ell} < 116$ GeV. The high number of Z/γ^* boson candidates recorded permits the use of finer bins as compared to a similar study performed at the Tevatron. The typical uncertainty achieved by the combination of electron and muon data integrated over the whole Z rapidity range is below 0.5% for $\phi_{\eta}^* < 0.5$ increasing to 0.8% at larger ϕ_{η}^* values.

The cross-section measurements have been compared to resummed QCD predictions combined with fixed-order perturbative QCD calculations. Calculations using RES-BOS provide the best descriptions of the data. However, they are unable to reproduce the detailed shape of the measured cross section to better than 4%.

The cross-section measurements have also been compared to predictions from different Monte Carlo generators interfaced to a parton shower algorithm. The best descriptions of the measured ϕ_{η}^{*} spectrum are provided by SHERPA and POWHEG+PYTHIA8 Monte Carlo event generators. For ϕ_{η}^{*} values above 0.1, predictions from SHERPA are able to reproduce the data to within ~ 2%. The low ϕ_{η}^{*} part of the spectrum is, however, described less accurately than by RESBOS. Double differential measurements as a function of ϕ_{η}^{*} and y_{Z} provide valuable information for the tuning of MC generators. None of the tested predictions is able to reproduce the detailed shape of the measured cross section within the experimental precision reached, which is typically lower by one order of magnitude than present theoretical uncertainties.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MIN-ERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

- [1] G. Bozzi et al., Phys. Lett. B 696 (2011) 207,
- arXiv:1007.2351 [hep-ph]. [2] S. Mantry and F. Petriello, Phy
- S. Mantry and F. Petriello, Phys. Rev. D 84 (2011) 014030, arXiv:1011.0757 [hep-ph].
- [3] T. Becher and M. Neubert, Eur. Phys. J. C 71 (2011) 1665, arXiv:1007.4005 [hep-ph].
- [4] G. Bozzi et al., Phys. Lett. B 564 (2003) 65, arXiv:hep-ph/0302104 [hep-ph].
- [5] G. Bozzi et al., Nucl. Phys. B 737 (2006) 73, arXiv:hep-ph/0508068 [hep-ph].
- [6] D. de Florian et al., JHEP 11 (2011) 064, arXiv:1109.2109 [hep-ph].
- [7] S. Berge et al., Phys. Rev. D 72 (2005) 033015, arXiv:hep-ph/0410375 [hep-ph].
- [8] CDF Collaboration, T. Aaltonen et al., Phys. Rev. Lett. 108 (2012) 151803, arXiv:1203.0275 [hep-ex].
- [9] DØ Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 108 (2012) 151804, arXiv:1203.0293 [hep-ex].
- [10] CDF Collaboration, T. Affolder et al., Phys. Rev. Lett. 84 (2000) 845, arXiv:hep-ex/0001021 [hep-ex].
- [11] DØ Collaboration, B. Abbott et al., Phys. Rev. Lett. 84
 (2000) 2792, arXiv:hep-ex/9909020 [hep-ex].
- [12] DØ Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 100 (2008) 102002, arXiv:0712.0803 [hep-ex].
- [13] DØ Collaboration, V. M. Abazov et al., Phys. Lett. B 693 (2010) 522, arXiv:1006.0618 [hep-ex].
- [14] CDF Collaboration, T. Aaltonen et al., Phys. Rev. D 86 (2012) 052010, arXiv:1207.7138 [hep-ex].
- [15] ATLAS Collaboration, Phys. Lett. B 705 (2011) 415, arXiv:1107.2381 [hep-ex].
- [16] CMS Collaboration, Phys. Rev. D 85 (2012) 032002, arXiv:1110.4973 [hep-ex].
- [17] ATLAS Collaboration, Phys. Rev. D 85 (2012) 012005, arXiv:1108.6308 [hep-ex].
- [18] M. Boonekamp and M. Schott, JHEP 11 (2010) 153, arXiv:1002.1850 [hep-ex].
- [19] M. Vesterinen and T. Wyatt, Nucl. Instrum. Meth. A 602 (2009) 432, arXiv:0807.4956 [hep-ex].
- [20] A. Banfi et al., Eur. Phys. J. C 71 (2011) 1600, arXiv:1009.1580 [hep-ex].
- [21] A. Banfi, M. Dasgupta and S. Marzani, Phys. Lett. B 701 (2011) 75, arXiv:1102.3594 [hep-ph].
- [22] A. Banfi et al., Phys. Lett. B 715 (2012) 152, arXiv:1205.4760 [hep-ph].
- [23] DØ Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 106 (2011) 122001, arXiv:1010.0262 [hep-ex].
- [24] K. Melnikov and F. Petriello, Phys. Rev. D 74 (2006) 114017, arXiv:hep-ph/0609070.
- [25] R. Gavin et al., Comput. Phys. Commun. 182 (2011) 2388, arXiv:1011.3540 [hep-ph].
- [26] S. Catani et al., Phys. Rev. Lett. 103 (2009) 082001, arXiv:0903.2120 [hep-ph].
- [27] S. Catani and M. Grazzini, Phys. Rev. Lett. 98 (2007) 222002, arXiv:hep-ph/0703012 [hep-ph].
- [28] G. Ladinsky and C. Yuan, Phys. Rev. D 50 (1994) 4239, arXiv:hep-ph/9311341 [hep-ph].
- [29] C. Balazs and C. Yuan, Phys. Rev. D 56 (1997) 5558, arXiv:hep-ph/9704258 [hep-ph].
- [30] F. Landry et al., Phys. Rev. D 67 (2003) 073016, arXiv:hep-ph/0212159 [hep-ph].
- [31] P. B. Arnold and M. H. Reno, Nucl. Phys. B 319 (1989) 37.
 [Erratum-ibid. B 330, 284 (1990)].
- [32] F. Landry et al., Phys. Rev. D 63 (2001) 013004, arXiv:hep-ph/9905391 [hep-ph].
- [33] J. M. Campbell and R. K. Ellis, Phys. Rev. D 65 (2002) 113007, arXiv:hep-ph/0202176 [hep-ph].

- [34] A. Banfi et al., JHEP 01 (2012) 044, arXiv:1110.4009 [hep-ph].
- [35] T. Sjöstrand, S. Mrenna and P. Z. Skands, JHEP 05 (2006) 026, arXiv:hep-ph/0603175 [hep-ph].
- [36] G. Corcella et al., JHEP 01 (2001) 010, arXiv:0011363 [hep-ph].
- [37] P. Nason, JHEP 11 (2004) 040, arXiv:hep-ph/0409146 [hep-ph].
- [38] S. Frixione, P. Nason and C. Oleari, JHEP 11 (2007) 070, arXiv:0709.2092 [hep-ph].
- [39] S. Alioli et al., JHEP 06 (2010) 043, arXiv:1002.2581 [hep-ph].
- [40] S. Alioli et al., JHEP 07 (2008) 060, arXiv:0805.4802 [hep-ph].
- [41] S. Frixione and B. R. Webber, JHEP 06 (2002) 029, arXiv:hep-ph/0204244.
- [42] M. L. Mangano et al., JHEP 07 (2003) 001, arXiv:hep-ph/0206293.
- [43] T. Gleisberg et al., JHEP 02 (2009) 007, arXiv:0811.4622 [hep-ph].
- [44] S. Hoeche et al., JHEP 05 (2009) 053, arXiv:0903.1219 [hep-ph].
- [45] F. Krauss, JHEP 08 (2002) 015, hep-ph/0205283.
- [46] ATLAS Collaboration, JINST 3 (2008) S08003.
- [47] H.-L. Lai et al., Phys. Rev. D 82 (2010) 074024, arXiv:1007.2241 [hep-ph].
- [48] ATLAS Collaboration, ATL-PHYS-PUB-2011-009. http://cdsweb.cern.ch/record/1363300.
- [49] P. Golonka and Z. Was, Eur. Phys. J. C 45 (2006) 97, arXiv:hep-ph/0506026.
- [50] D. Yennie, S. Frautschi and H. Suura, Ann. Phys. (NY) 13 (1961) 379.
- [51] M. Schonherr and F. Krauss, JHEP 12 (2008) 018, arXiv:0810.5071 [hep-ph].
- [52] GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instrum. Meth. A506 (2003) 250.
- [53] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568 [physics.ins-det].
- [54] ATLAS Collaboration, JHEP 12 (2010) 060, arXiv:1010.2130 [hep-ex].
- [55] R. Frühwirth, Comput. Phys. Commun. 100 (1997) 1.
- [56] ATLAS Collaboration, ATLAS-CONF-2012-047. http://cdsweb.cern.ch/record/1449796.
- [57] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1909, arXiv:1110.3174 [hep-ex].
- [58] ATLAS Collaboration, Phys. Rev. D 85 (2012) 072004, arXiv:1109.5141 [hep-ex].
- [59] J. M. Campbell, R. K. Ellis and C. Williams, JHEP 07 (2011) 018, arXiv:1105.0020 [hep-ph].
- [60] Y. Li and F. Petriello, arXiv:1208.5967 [hep-ph].
- [61] A. D. Martin et al., Eur. Phys. J. C 39 (2005) 155,
- arXiv:hep-ph/0411040 [hep-ph]. [62] G. D'Agostini, Nucl. Instrum. Meth. A 362 (1995) 487.
- [63] A. Glazov, AIP Conf. Proc. 792 (2005) 237.
- [64] H1 Collaboration, F. D. Aaron et al., Eur. Phys. J. C 63 (2009) 625, arXiv:0904.0929 [hep-ex].
- [65] H1 and ZEUS Collaboration, F. D. Aaron et al., JHEP 01 (2010) 109, arXiv:0911.0884 [hep-ex].
- [66] J. Pumplin et al., JHEP 07 (2002) 012, arXiv:hep-ph/0201195.
- [67] A. D. Martin et al., Eur. Phys. J. C 64 (2009) 653, arXiv:0905.3531 [hep-ph].

The ATLAS Collaboration

G. Aad⁴⁸, T. Abajyan²¹, B. Abbott¹¹¹, J. Abdallah¹², S. Abdel Khalek¹¹⁵, A.A. Abdelalim⁴⁹, O. Abdinov¹¹, R. Aben¹⁰⁵, B. Abi¹¹², M. Abolins⁸⁸, O.S. AbouZeid¹⁵⁸, H. Abramowicz¹⁵³, H. Abreu¹³⁶, B.S. Acharya^{164a,164b,a}, L. Adamczyk³⁸, D.L. Adams²⁵, T.N. Addy⁵⁶, J. Adelman¹⁷⁶, S. Adomeit⁹⁸, P. Adragna⁷⁵, T. Adye¹²⁹, S. Aefsky²³, J.A. Aguilar-Saavedra^{124b,b}, M. Agustoni¹⁷, S.P. Ahlen²², F. Ahles⁴⁸, A. Ahmad¹⁴⁸, M. Ahsan⁴¹, G. Aielli^{133a,133b}, T.P.A. Åkesson⁷⁹, G. Akimoto¹⁵⁵, A.V. Akimov⁹⁴, M.A. Alam⁷⁶, J. Albert¹⁶⁹, S. Albrand⁵⁵, M. Aleksa³⁰, T.P.A. Akesson¹⁹, G. Akimoto¹⁵⁵, A.V. Akimov⁹⁴, M.A. Alam¹⁰, J. Albert¹⁰⁹, S. Albrand⁵⁵, M. Aleksa⁵⁶, I.N. Aleksandrov⁶⁴, F. Alessandria^{89a}, C. Alexa^{26a}, G. Alexander¹⁵³, G. Alexandre⁴⁹, T. Alexopoulos¹⁰, M. Alhroob^{164a,164c}, M. Aliev¹⁶, G. Alimonti^{89a}, J. Alison¹²⁰, B.M.M. Allbrooke¹⁸, L.J. Allison⁷¹, P.P. Allport⁷³, S.E. Allwood-Spiers⁵³, J. Almond⁸², A. Aloisio^{102a,102b}, R. Alon¹⁷², A. Alonso⁷⁹, F. Alonso⁷⁰, A. Altheimer³⁵, B. Alvarez Gonzalez⁸⁸, M.G. Alviggi^{102a,102b}, K. Amako⁶⁵, C. Amelung²³, V.V. Ammosov^{128,*}, S.P. Amor Dos Santos^{124a}, A. Amorim^{124a,c}, S. Amoroso⁴⁸, N. Amram¹⁵³, C. Anastopoulos³⁰, L.S. Ancu¹⁷, N. Andari¹¹⁵, T. Andeen³⁵, C.F. Anders^{58b}, G. Anders^{58a}, K.J. Anderson³¹, A. Andreazza^{89a,89b}, V. Andrei^{58a}, M. Andrieux⁵⁵, X.S. Anduaga⁷⁰, S. Angelidakis⁹, P. Anger⁴⁴, A. Angerami³⁵, F. Anghinolfi³⁰, A. Anisenkov¹⁰⁷, N. Anjos^{124a}, A. Annovi⁴⁷, A. Antonaki⁹, M. Antonelli⁴⁷, A. Antonov⁹⁶, J. Antos^{144b}, F. Anulli^{132a}, M. Aoki¹⁰¹, S. Aoun⁸³, L. Aperio Bella⁵, R. Apolle^{118,d}, G. Arabidze⁸⁸, I. Aracena¹⁴³, Y. Arai⁶⁵, A.T.H. Arce⁴⁵, S. Arfaoui¹⁴⁸, S. Aoun⁶⁵, L. Aperio Bella⁵, R. Apolle^{116,a}, G. Arabidze⁵⁸, I. Aracena¹⁴⁵, Y. Arai⁶⁵, A.T.H. Arce⁴⁵, S. Arfaou¹⁴
J-F. Arguin⁹³, S. Argyropoulos⁴², E. Arik^{19a,*}, M. Arik^{19a}, A.J. Armbruster⁸⁷, O. Arnaez⁸¹, V. Arnal⁸⁰,
A. Artamonov⁹⁵, G. Artoni^{132a,132b}, D. Arutinov²¹, S. Asai¹⁵⁵, S. Ask²⁸, B. Åsman^{146a,146b}, L. Asquith⁶,
K. Assamagan^{25,e}, A. Astbury¹⁶⁹, M. Atkinson¹⁶⁵, B. Aubert⁵, E. Auge¹¹⁵, K. Augsten¹²⁶, M. Aurousseau^{145a},
G. Avolio³⁰, D. Axen¹⁶⁸, G. Azuelos^{93, f}, Y. Azuma¹⁵⁵, M.A. Baak³⁰, G. Baccaglioni^{89a}, C. Bacci^{134a,134b},
A.M. Bach¹⁵, H. Bachacou¹³⁶, K. Bachas¹⁵⁴, M. Backes⁴⁹, M. Backhaus²¹, J. Backus Mayes¹⁴³, E. Badescu^{26a},
P. Bagnaia^{132a,132b}, Y. Bai^{33a}, D.C. Bailey¹⁵⁸, T. Bain³⁵, J.T. Baines¹²⁹, O.K. Baker¹⁷⁶, S. Baker⁷⁷, P. Balek¹²⁷, E. Banas³⁹, P. Banerjee⁹³, Sw. Banerjee¹⁷³, D. Banfi³⁰, A. Bangert¹⁵⁰, V. Bansal¹⁶⁹, H.S. Bansil¹⁸, L. Barak¹⁷², L. Banasov, F. Banerjeev, Sw. Banerjeev, D. Bannov, A. Bangertov, V. Bansarov, H.S. Bansnov, L. Barakov, S.P. Baranov⁹⁴, T. Barber⁴⁸, E.L. Barberio⁸⁶, D. Barberis^{50a,50b}, M. Barbero²¹, D.Y. Bardin⁶⁴, T. Barillari⁹⁹, M. Barisonzi¹⁷⁵, T. Barklow¹⁴³, N. Barlow²⁸, B.M. Barnett¹²⁹, R.M. Barnett¹⁵, A. Baroncelli^{134a}, G. Barone⁴⁹, A.J. Barr¹¹⁸, F. Barreiro⁸⁰, J. Barreiro Guimarães da Costa⁵⁷, R. Bartoldus¹⁴³, A.E. Barton⁷¹, V. Bartsch¹⁴⁹, A. Basye¹⁶⁵, R.L. Bates⁵³, L. Batkova^{144a}, J.R. Batley²⁸, A. Battaglia¹⁷, M. Battistin³⁰, F. Bauer¹³⁶, H.S. Bawa^{143,g}, S. Beale⁹⁸, T. Beau⁷⁸, P.H. Beauchemin¹⁶¹, R. Beccherle^{50a}, P. Bechtle²¹, H.P. Beck¹⁷, K. Becker¹⁷⁵, S. Becker⁹⁸, M. Beckingham¹³⁸, K.H. Becks¹⁷⁵, A.J. Beddall^{19c}, A. Beddall^{19c}, S. Bedikian¹⁷⁶, V.A. Bednyakov⁶⁴, C.P. Bee⁸³, L.J. Beemster¹⁰⁵, M. Begel²⁵, S. Behar Harpaz¹⁵², P.K. Behera⁶², M. Beimforde⁹⁹, C. Belanger-Champagne⁸⁵, P.J. Bell⁴⁹, W.H. Bell⁴⁹, G. Bella¹⁵³, L. Bellagamba^{20a}, M. Bellomo³⁰, A. Belloni⁵⁷, O. Beloborodova^{107,h}, K. Belotskiy⁹⁶, O. Beltramello³⁰, O. Benary¹⁵³, D. Benchekroun^{135a}, K. Bendtz^{146a,146b}, N. Benekos¹⁶⁵, Y. Benhammou¹⁵³, E. Benhar Noccioli⁴⁹, J.A. Benitez Garcia^{159b}, D.P. Benjamin⁴⁵, M. Benoit¹¹⁵, J.R. Bensinger²³, K. Benslama¹³⁰, S. Bentvelsen¹⁰⁵, D. Berge³⁰, E. Bergeaas Kuutmann⁴², N. Berger⁵, F. Berghaus¹⁶⁹, E. Berglund¹⁰⁵, J. Beringer¹⁵, P. Bernat⁷⁷, R. Bernhard⁴⁸, C. Bernius²⁵, T. Berry⁷⁶, C. Bertella⁸³, A. Bertin^{20a,20b},
F. Bertolucci^{122a,122b}, M.I. Besana^{89a,89b}, G.J. Besjes¹⁰⁴, N. Besson¹³⁶, S. Bethke⁹⁹, W. Bhimji⁴⁶, R.M. Bianchi³⁰, L. Bianchini²³, M. Bianco^{72a,72b}, O. Biebel⁹⁸, S.P. Bieniek⁷⁷, K. Bierwagen⁵⁴, J. Biesiada¹⁵, M. Biglietti^{134a}, L. Bianchini²³, M. Bianco^{72a,72b}, O. Biebel⁹⁸, S.P. Bieniek⁷⁷, K. Bierwagen⁵⁴, J. Biesiada¹⁵, M. Biglietti^{134a}, H. Bilokon⁴⁷, M. Bindi^{20a,20b}, S. Binet¹¹⁵, A. Bingul^{19c}, C. Bini^{132a,132b}, C. Biscarat¹⁷⁸, B. Bittner⁹⁹, C.W. Black¹⁵⁰, K.M. Black²², R.E. Blair⁶, J.-B. Blanchard¹³⁶, T. Blazek^{144a}, I. Bloch⁴², C. Blocker²³, J. Blocki³⁹, W. Blum⁸¹, U. Blumenschein⁵⁴, G.J. Bobbink¹⁰⁵, V.S. Bobrovnikov¹⁰⁷, S.S. Bocchetta⁷⁹, A. Bocci⁴⁵, C.R. Boddy¹¹⁸, M. Boehler⁴⁸, J. Boek¹⁷⁵, T.T. Boek¹⁷⁵, N. Boelaert³⁶, J.A. Bogaerts³⁰, A. Bogdanchikov¹⁰⁷, A. Bogouch^{90,*}, C. Bohm^{146a}, J. Bohm¹²⁵, V. Boisvert⁷⁶, T. Bold³⁸, V. Boldea^{26a}, N.M. Bolnet¹³⁶, M. Bomben⁷⁸, M. Bona⁷⁵, M. Boonekamp¹³⁶, S. Bordoni⁷⁸, C. Borer¹⁷, A. Borisov¹²⁸, G. Borissov⁷¹, I. Borjanovic^{13a}, M. Borri⁸², S. Borroni⁴², J. Bortfeldt⁹⁸, V. Bortolotto^{134a,134b}, K. Bos¹⁰⁵, D. Boscherini^{20a}, M. Bosman¹², H. Boterenbrood¹⁰⁵, J. Bouchami⁹³, J. Boudreau¹²³, E.V. Bouhova-Thacker⁷¹, D. Boumediene³⁴, C. Bourdarios¹¹⁵, N. Bousson⁸³, A. Boveia³¹, J. Boyd³⁰, I.R. Boyko⁶⁴, I. Bozovic-Jelisavcic^{13b}, J. Bracinik¹⁸, P. Branchini^{134a}, A. Brandt⁸, G. Brandt¹¹⁸, O. Brandt⁵⁴, U. Bratzler¹⁵⁶, B. Brau⁸⁴, J.E. Brau¹¹⁴, H.M. Braun^{175,*}, S.F. Brazzale^{164a,164c}, B. Brelier¹⁵⁸, J. Bremer³⁰, K. Brendlinger¹²⁰, B. Brau⁻¹, J.E. Brau⁻¹, M. Brau⁻¹, J.F. Brazzale⁻¹, B. Brene¹, J. Brene¹, K. Brendmige⁻¹,
R. Brenner¹⁶⁶, S. Bressler¹⁷², T.M. Bristow^{145b}, D. Britton⁵³, F.M. Brochu²⁸, I. Brock²¹, R. Brock⁸⁸, F. Broggi^{89a},
C. Bromberg⁸⁸, J. Bronner⁹⁹, G. Brooijmans³⁵, T. Brooks⁷⁶, W.K. Brooks^{32b}, G. Brown⁸²,
P.A. Bruckman de Renstrom³⁹, D. Bruncko^{144b}, R. Bruneliere⁴⁸, S. Brunet⁶⁰, A. Bruni^{20a}, G. Bruni^{20a}, M. Bruschi^{20a}, L. Bryngemark⁷⁹, T. Buanes¹⁴, Q. Buat⁵⁵, F. Bucci⁴⁹, J. Buchanan¹¹⁸, P. Buchholz¹⁴¹, R.M. Buckingham¹¹⁸, A.G. Buckley⁴⁶, S.I. Buda^{26a}, I.A. Budagov⁶⁴, B. Budick¹⁰⁸, V. Büscher⁸¹, L. Bugge¹¹⁷, O. Bulekov⁹⁶, A.G. Buckley¹², S.I. Buda¹³³, I.A. Budagov³⁴, B. Budick¹³⁰, V. Buscher³⁴, L. Bugge¹⁴¹, O. Bulekov³⁵,
A.C. Bundock⁷³, M. Bunse⁴³, T. Buran¹¹⁷, H. Burckhart³⁰, S. Burdin⁷³, T. Burgess¹⁴, S. Burke¹²⁹, E. Busato³⁴,
P. Bussey⁵³, C.P. Buszello¹⁶⁶, B. Butler¹⁴³, J.M. Butler²², C.M. Buttar⁵³, J.M. Butterworth⁷⁷, W. Buttinger²⁸,
M. Byszewski³⁰, S. Cabrera Urbán¹⁶⁷, D. Caforio^{20a,20b}, O. Cakir^{4a}, P. Calafiura¹⁵, G. Calderini⁷⁸, P. Calfayan⁹⁸,
R. Calkins¹⁰⁶, L.P. Caloba^{24a}, R. Caloi^{132a,132b}, D. Calvet³⁴, S. Calvet³⁴, R. Camacho Toro³⁴, P. Camarri^{133a,133b},
D. Cameron¹¹⁷, L.M. Caminada¹⁵, R. Caminal Armadans¹², S. Campana³⁰, M. Campanelli⁷⁷, V. Canale^{102a,102b},

F. Canelli³¹, A. Canepa^{159a}, J. Cantero⁸⁰, R. Cantrill⁷⁶, M.D.M. Capeans Garrido³⁰, I. Caprini^{26a}, M. Caprini^{26a}, D. Capriotti⁹⁹, M. Capua^{37a,37b}, R. Caputo⁸¹, R. Cardarelli^{133a}, T. Carli³⁰, G. Carlino^{102a}, L. Carminati^{89a,89b}, S. Caron¹⁰⁴, E. Carquin^{32b}, G.D. Carrillo-Montoya^{145b}, A.A. Carter⁷⁵, J.R. Carter²⁸, J. Carvalho^{124a,i}, D. Casadei¹⁰⁸, M.P. Casado¹², M. Cascella^{122a,122b}, C. Caso^{50a,50b,*}, A.M. Castaneda Hernandez^{173,j}, E. Castaneda-Miranda¹⁷³, V. Castillo Gimenez¹⁶⁷, N.F. Castro^{124a}, G. Cataldi^{72a}, P. Catastini⁵⁷, A. Catinaccio³⁰, J.R. Catmore³⁰, A. Cattai³⁰, G. Cattani^{133a,133b}, S. Caughron⁸⁸, V. Cavaliere¹⁶⁵, P. Cavalleri⁷⁸, D. Cavalli^{89a}, M. Cavalli-Sforza¹², V. Cavasinni^{122a,122b}, F. Ceradini^{134a,134b}, A.S. Cerqueira^{24b}, A. Cerri¹⁵, L. Cerrito⁷⁵, F. Cerutti¹⁵, S.A. Cetin^{19b}, V. Cavasinn^{1224,122}, F. Ceradin^{1512,131}, A.S. Cerqueira¹²¹, A. Cerri¹², L. Cerrito¹³, F. Ceruti¹⁴, S.A. Cetin⁴, A. Chafaq^{135a}, D. Chakraborty¹⁰⁶, I. Chalupkova¹²⁷, K. Chan³, P. Chang¹⁶⁵, B. Chapleau⁸⁵, J.D. Chapman²⁸, J.W. Chapman⁸⁷, D.G. Charlton¹⁸, V. Chavda⁸², C.A. Chavez Barajas³⁰, S. Cheatham⁸⁵, S. Chekanov⁶, S.V. Chekulaev^{159a}, G.A. Chelkov⁶⁴, M.A. Chelstowska¹⁰⁴, C. Chen⁶³, H. Chen²⁵, S. Chen^{33c}, X. Chen¹⁷³, Y. Chen³⁵, Y. Cheng³¹, A. Cheplakov⁶⁴, R. Cherkaoui El Moursli^{135e}, V. Chernyatin²⁵, E. Cheu⁷, S.L. Cheung¹⁵⁸, L. Chevalier¹³⁶, G. Chiefari^{102a,102b}, L. Chikovani^{51a,*}, J.T. Childers³⁰, A. Chilingarov⁷¹, G. Chiodini^{72a}, A.S. Chisholm¹⁸, R.T. Chislett⁷⁷, A. Chitan^{26a}, M.V. Chizhov⁶⁴, G. Choudalakis³¹, S. Chouridou¹³⁷, I.A. Christidi⁷⁷, A. Christov⁴⁸, D. Chromek-Burckhart³⁰, M.L. Chu¹⁵¹, J. Chudoba¹²⁵, G. Ciapetti^{132a,132b}, A.K. Ciftci^{4a}, R. Ciftci^{4a}, D. Cinca³⁴, V. Cindro⁷⁴, A. Ciocio¹⁵, M. Cirilli⁸⁷, P. Cirkovic^{13b}, Z.H. Citron¹⁷², M. Citterio^{89a}, M. Ciubancan^{26a}, A. Clark⁴⁹, V. Chullo¹⁰, A. Clocho¹, M. Chull¹², P. Chković¹⁰, Z.H. Chlobi¹⁰, M. Chull¹⁰, M. Chullandan¹⁰, A. Chak⁴,
P.J. Clark⁴⁶, R.N. Clarke¹⁵, W. Cleland¹²³, J.C. Clemens⁸³, B. Clement⁵⁵, C. Clement^{146a,146b}, Y. Coadou⁸³,
M. Cobal^{164a,164c}, A. Coccaro¹³⁸, J. Cochran⁶³, L. Coffey²³, J.G. Cogan¹⁴³, J. Coggeshall¹⁶⁵, J. Colas⁵, S. Cole¹⁰⁶,
A.P. Colijn¹⁰⁵, N.J. Collins¹⁸, C. Collins-Tooth⁵³, J. Collot⁵⁵, T. Colombo^{119a,119b}, G. Colon⁸⁴, G. Compostella⁹⁹,
P. Conde Muiño^{124a}, E. Coniavitis¹⁶⁶, M.C. Conidi¹², S.M. Consonni^{89a,89b}, V. Consorti⁴⁸, S. Constantinescu^{26a},
C. Conta^{119a,119b}, G. Conti⁵⁷, F. Conventi^{102a,k}, M. Cooke¹⁵, B.D. Cooper⁷⁷, A.M. Cooper-Sarkar¹¹⁸, K. Copic¹⁵, T. Cornelissen¹⁷⁵, M. Corradi^{20a}, F. Corriveau^{85,l}, A. Cortes-Gonzalez¹⁶⁵, G. Cortiana⁹⁹, G. Costa^{89a}, M.J. Costa¹⁶⁷ D. Costanzo¹³⁹, D. Côté³⁰, L. Courneyea¹⁶⁹, G. Cowan⁷⁶, B.E. Cox⁸², K. Cranmer¹⁰⁸, F. Crescioli⁷⁸, M. Cristinziani²¹, G. Crosetti^{37a,37b}, S. Crépé-Renaudin⁵⁵, C.-M. Cuciuc^{26a}, C. Cuenca Almenar¹⁷⁶, T. Cuhadar Donszelmann¹³⁹, J. Cummings¹⁷⁶, M. Curatolo⁴⁷, C.J. Curtis¹⁸, C. Cuthbert¹⁵⁰, P. Cwetanski⁶⁰, H. Czirr¹⁴¹, P. Czodrowski⁴⁴, Z. Czyczula¹⁷⁶, S. D'Auria⁵³, M. D'Onofrio⁷³, A. D'Orazio^{132a,132b}, M.J. Da Cunha Sargedas De Sousa^{124a}, C. Da Via⁸², W. Dabrowski³⁸, A. Dafinca¹¹⁸, T. Dai⁸⁷, F. Dallaire⁹³, C. Dallapiccola⁸⁴, M. Dam³⁶, M. Dameri^{50a,50b}, D.S. Damiani¹³⁷, H.O. Danielsson³⁰, V. Dao¹⁰⁴, G. Darbo^{50a}, G.L. Darlea^{26b}, J.A. Dassoulas⁴², W. Davey²¹, T. Davidek¹²⁷, N. Davidson⁸⁶, R. Davidson⁷¹, E. Davies^{118,d}, M. Davies⁹³, O. Davignon⁷⁸, A.R. Davison⁷⁷, Y. Davygora^{58a}, E. Dawe¹⁴², I. Dawson¹³⁹, R.K. Daya-Ishmukhametova²³, K. De⁸, R. de Asmundis^{102a}, S. De Castro^{20a,20b}, S. De Cecco⁷⁸, J. de Graat⁹⁸, N. De Groot¹⁰⁴, P. de Jong¹⁰⁵, C. De La Taille¹¹⁵, H. De la Torre⁸⁰, F. De Lorenzi⁶³, L. De Nooij¹⁰⁵, D. De Pedis^{132a}, A. De Salvo^{132a}, U. De Sanctis^{164a,164c}, A. De Santo¹⁴⁹, J.B. De Vivie De Regie¹¹⁵, G. De Zorzi^{132a,132b}, W.J. Dearnaley⁷¹, R. Debbe²⁵, C. Debenedetti⁴⁶, B. Dechenaux⁵⁵, D.V. Dedovich⁶⁴, J. Degenhardt¹²⁰, J. Del Peso⁸⁰, T. Del Prete^{122a,122b}, T. Delemontex⁵⁵, M. Deliyergiyev⁷⁴, A. Dell'Acqua³⁰, L. Dell'Asta²², M. Della Pietra^{102a,k}, D. della Volpe^{102a,102b}, M. Delmastro⁵, P.A. Delsart⁵⁵, A. Den Acqua¹⁰, E. Den Asta¹¹, M. Denia Fletta^{11,10}, D. dena voipe^{11,10}, M. Dennastro¹⁰, F.A. Dersart¹⁰,
C. Deluca¹⁰⁵, S. Demers¹⁷⁶, M. Demichev⁶⁴, B. Demirkoz^{12,m}, S.P. Denisov¹²⁸, D. Derendarz³⁹, J.E. Derkaoui^{135d},
F. Derue⁷⁸, P. Dervan⁷³, K. Desch²¹, E. Devetak¹⁴⁸, P.O. Deviveiros¹⁰⁵, A. Dewhurst¹²⁹, B. DeWilde¹⁴⁸,
S. Dhaliwal¹⁵⁸, R. Dhullipudi^{25,n}, A. Di Ciaccio^{133a,133b}, L. Di Ciaccio⁵, C. Di Donato^{102a,102b}, A. Di Girolamo³⁰,
B. Di Girolamo³⁰, S. Di Luise^{134a,134b}, A. Di Mattia¹⁵², B. Di Micco³⁰, R. Di Nardo⁴⁷, A. Di Simone^{133a,133b}, R. Di Sipio^{20a,20b}, M.A. Diaz^{32a}, E.B. Diehl⁸⁷, J. Dietrich⁴², T.A. Dietzsch^{58a}, S. Diglio⁸⁶, K. Dindar Yagci⁴⁰, J. Dingfelder²¹, F. Dinut^{26a}, C. Dionisi^{132a,132b}, P. Dita^{26a}, S. Dita^{26a}, F. Ditus³⁰, F. Djama⁸³, T. Djobava^{51b}, J. Dingelder^{1,}, F. Dinut^{2,4}, C. Diohis^{1014,00}, F. Dita^{10,5}, S. Dita^{10,7}, F. Dittus^{0,7}, F. Djama^{0,7}, I. Djobava^{10,7},
M.A.B. do Vale^{24c}, A. Do Valle Wemans^{124a,o}, T.K.O. Doan⁵, M. Dobbs⁸⁵, D. Dobos³⁰, E. Dobson^{30,p}, J. Dodd³⁵,
C. Doglioni⁴⁹, T. Doherty⁵³, Y. Doi^{65,*}, J. Dolejsi¹²⁷, Z. Dolezal¹²⁷, B.A. Dolgoshein^{96,*}, T. Dohmae¹⁵⁵,
M. Donadelli^{24d}, J. Donini³⁴, J. Dopke³⁰, A. Doria^{102a}, A. Dos Anjos¹⁷³, A. Dotti^{122a,122b}, M.T. Dova⁷⁰,
A.D. Doxiadis¹⁰⁵, A.T. Doyle⁵³, N. Dressnandt¹²⁰, M. Dris¹⁰, J. Dubbert⁹⁹, S. Dube¹⁵, E. Dubreuil³⁴, E. Duchovni¹⁷², G. Duckeck⁹⁸, D. Duda¹⁷⁵, A. Dudarev³⁰, F. Dudziak⁶³, M. Dührssen³⁰, I.P. Duerdoth⁸², L. Duflot¹¹⁵, M-A. Dufour⁸⁵, L. Duguid⁷⁶, M. Dunford^{58a}, H. Duran Yildiz^{4a}, R. Duxfield¹³⁹, M. Dwuznik³⁸, M. Düren⁵², W.L. Ebenstein⁴⁵, J. Ebke⁹⁸, S. Eckweiler⁸¹, W. Edson², C.A. Edwards⁷⁶, N.C. Edwards⁵³, W. Ehrenfeld²¹, T. Eifert¹⁴³, G. Eigen¹⁴, K. Einsweiler¹⁵, E. Eisenhandler⁷⁵, T. Ekelof¹⁶⁶, M. El Kacimi^{135c}, M. Ellert¹⁶⁶, S. Elles⁵, F. Ellinghaus⁸¹, K. Ellis⁷⁵, N. Ellis³⁰, J. Elmsheuser⁹⁸, M. Elsing³⁰, D. Emeliyanov¹²⁹, R. Engelmann¹⁴⁸, A. Engl⁹⁸, B. Epp⁶¹, J. Erdmann¹⁷⁶, A. Ereditato¹⁷, D. Eriksson^{146a}, J. Ernst², M. Ernst²⁵, J. Ernwein¹³⁶, D. Errede¹⁶⁵, S. Errede¹⁶⁵, E. Ertel⁸¹, M. Escalier¹¹⁵, H. Esch⁴³, C. Escobar¹²³, X. Espinal Curull¹², B. Esposito⁴⁷, F. Etienne⁸³, A.I. Etienvre¹³⁶, E. Etzion¹⁵³, D. Evangelakou⁵⁴, H. Evans⁶⁰, L. Fabbri^{20a,20b}, C. Fabre³⁰, R.M. Fakhrutdinov¹²⁸, S. Falciano^{132a}, Y. Fang^{33a}, M. Fanti^{89a,89b}, A. Farbin⁸, A. Farilla^{134a}, J. Farley¹⁴⁸, T. Farooque¹⁵⁸, S. Farrell¹⁶³, S.M. Farrington¹⁷⁰, P. Farthouat³⁰, F. Fassi¹⁶⁷, P. Fassnacht³⁰, D. Fassouliotis⁹, B. Fatholahzadeh¹⁵⁸, A. Favareto^{89a,89b}, L. Fayard¹¹⁵,
P. Federic^{144a}, O.L. Fedin¹²¹, W. Fedorko¹⁶⁸, M. Fehling-Kaschek⁴⁸, L. Feligioni⁸³, C. Feng^{33d}, E.J. Feng⁶, A.B. Fenyuk¹²⁸, J. Ferencei^{144b}, W. Fernando⁶, S. Ferrag⁵³, J. Ferrando⁵³, V. Ferrara⁴², A. Ferrari¹⁶⁶, P. Ferrari¹⁰⁵, R. Ferrari^{119a}, D.E. Ferreira de Lima⁵³, A. Ferrer¹⁶⁷, D. Ferrere⁴⁹, C. Ferretti⁸⁷, A. Ferretto Parodi^{50a,50b},

M. Fiascaris³¹, F. Fiedler⁸¹, A. Filipčič⁷⁴, F. Filthaut¹⁰⁴, M. Fincke-Keeler¹⁶⁹, M.C.N. Fiolhais^{124a,i}, L. Fiorini¹⁶⁷, A. Firan⁴⁰, G. Fischer⁴², M.J. Fisher¹⁰⁹, E.A. Fitzgerald²³, M. Flechl⁴⁸, I. Fleck¹⁴¹, J. Fleckner⁸¹, P. Fleischmann¹⁷⁴, S. Fleischmann¹⁷⁵, G. Fletcher⁷⁵, T. Flick¹⁷⁵, A. Floderus⁷⁹, L.R. Flores Castillo¹⁷³, A.C. Florez Bustos^{159b}, M.J. Flowerdew⁹⁹, T. Fonseca Martin¹⁷, A. Formica¹³⁶, A. Forti⁸², D. Fortin^{159a}, D. Fournier¹¹⁵, A.J. Fowler⁴⁵, H. Fox⁷¹, P. Francavilla¹², M. Franchini^{20a,20b}, S. Franchino^{119a,119b}, D. Francis³⁰, T. Frankl¹⁷², M. Franklin⁵⁷, S. Franz³⁰, M. Fraternali^{119a,119b}, S. Fratina¹²⁰, S.T. French²⁸, C. Friedrich⁴², F. Friedrich⁴⁴, D. Froidevaux³⁰, J.A. Frost²⁸, C. Fukunaga¹⁵⁶, E. Fullana Torregrosa¹²⁷, B.G. Fulsom¹⁴³, J. Fuster¹⁶⁷, C. Gabaldon³⁰, O. Gabizon¹⁷², J.A. Frost^{2*}, C. Fukunaga^{2**}, E. Fuhana Torregrosa^{2**}, B.G. Fuston^{2**}, J. Fuster^{2**}, C. Gabaidon^{2**}, O. Gabizon^{2**},
S. Gadatsch¹⁰⁵, T. Gadfort²⁵, S. Gadomski⁴⁹, G. Gagliardi^{50a,50b}, P. Gagnon⁶⁰, C. Galea⁹⁸, B. Galhardo^{124a},
E.J. Gallas¹¹⁸, V. Gallo¹⁷, B.J. Gallop¹²⁹, P. Gallus¹²⁶, K.K. Gan¹⁰⁹, Y.S. Gao^{143,g}, A. Gaponenko¹⁵, F. Garberson¹⁷⁶,
M. Garcia-Sciveres¹⁵, C. García¹⁶⁷, J.E. García Navarro¹⁶⁷, R.W. Gardner³¹, N. Garelli¹⁴³, V. Garonne³⁰, C. Gatti⁴⁷,
G. Gaudio^{119a}, B. Gaur¹⁴¹, L. Gauthier¹³⁶, P. Gauzzi^{132a,132b}, I.L. Gavrilenko⁹⁴, C. Gay¹⁶⁸, G. Gaycken²¹,
E.N. Gazis¹⁰, P. Ge^{33d}, Z. Gecse¹⁶⁸, C.N.P. Gee¹²⁹, D.A.A. Geerts¹⁰⁵, Ch. Geich-Gimbel²¹, K. Gellerstedt^{146a,146b},
G. G. Contentina and the state of the state o C. Gemme^{50a}, A. Gemmell⁵³, M.H. Genest⁵⁵, S. Gentile^{132a,132b}, M. George⁵⁴, S. George⁷⁶, D. Gerbaudo¹², P. Gerlach¹⁷⁵, A. Gershon¹⁵³, C. Geweniger^{58a}, H. Ghazlane^{135b}, N. Ghodbane³⁴, B. Giacobbe^{20a}, S. Giagu^{132a,132b}, V. Giangiobbe¹², F. Gianotti³⁰, B. Gibbard²⁵, A. Gibson¹⁵⁸, S.M. Gibson³⁰, M. Gilchriese¹⁵, T.P.S. Gillam²⁸, D. Gillberg³⁰, A.R. Gillman¹²⁹, D.M. Gingrich^{3, f}, J. Ginzburg¹⁵³, N. Giokaris⁹, M.P. Giordani^{164c}, D. Ginberg¹, A.R. Ginman¹, D.M. Gingri¹⁶, P. Giovannini⁹⁹, P.F. Giraud¹³⁶, D. Giugni^{89a}, M. Giunta⁹³, B.K. Gjelsten¹¹⁷,
L.K. Gladilin⁹⁷, C. Glasman⁸⁰, J. Glatzer²¹, A. Glazov⁴², G.L. Glonti⁶⁴, J.R. Goddard⁷⁵, J. Godfrey¹⁴²,
J. Godlewski³⁰, M. Goebel⁴², T. Göpfert⁴⁴, C. Goeringer⁸¹, C. Gössling⁴³, S. Goldfarb⁸⁷, T. Golling¹⁷⁶, D. Golubkov¹²⁸, A. Gomes^{124a,c}, L.S. Gomez Fajardo⁴², R. Gonçalo⁷⁶, J. Goncalves Pinto Firmino Da Costa⁴², L. Gonella²¹, S. González de la Hoz¹⁶⁷, G. Gonzalez Parra¹², M.L. Gonzalez Silva²⁷, S. Gonzalez-Sevilla⁴⁹, J.J. Goodson¹⁴⁸, L. Goossens³⁰, P.A. Gorbounov⁹⁵, H.A. Gordon²⁵, I. Gorelov¹⁰³, G. Gorfine¹⁷⁵, B. Gorini³⁰, E. Gorini^{72a,72b}, A. Gorišek⁷⁴, E. Gornicki³⁹, A.T. Goshaw⁶, M. Gosselink¹⁰⁵, M.I. Gostkin⁶⁴, I. Gough Eschrich¹⁶³, E. Gorini^{1,23,12-7}, A. Gorisek^{1,2}, A. I. Gosinaw³, M. Gossenik^{1,2,1}, Gostkin^{1,2}, I. Gough Eschrich^{1,2,4},
M. Gouighri^{135a}, D. Goujdami^{135c}, M.P. Goulette⁴⁹, A.G. Goussiou¹³⁸, C. Goy⁵, S. Gozpinar²³, I. Grabowska-Bold³⁸,
P. Grafström^{20a,20b}, K-J. Grahn⁴², E. Gramstad¹¹⁷, F. Grancagnolo^{72a}, S. Grancagnolo¹⁶, V. Grassi¹⁴⁸,
V. Gratchev¹²¹, H.M. Gray³⁰, J.A. Gray¹⁴⁸, E. Graziani^{134a}, O.G. Grebenyuk¹²¹, T. Greenshaw⁷³,
Z.D. Greenwood^{25,n}, K. Gregersen³⁶, I.M. Gregor⁴², P. Grenier¹⁴³, J. Griffiths⁸, N. Grigalashvili⁶⁴, A.A. Grillo¹³⁷,
K. Grimm⁷¹, S. Grinstein¹², Ph. Gris³⁴, Y.V. Grishkevich⁹⁷, J.-F. Grivaz¹¹⁵, A. Grobsjean⁴², E. Gross¹⁷², J. Grosse-Knetter⁵⁴, J. Groth-Jensen¹⁷², K. Grybel¹⁴¹, D. Guest¹⁷⁶, C. Guicheney³⁴, E. Guido^{50a,50b}, T. Guillemin¹¹⁵, S. Guindon⁵⁴, U. Gul⁵³, J. Gunther¹²⁵, B. Guo¹⁵⁸, J. Guo³⁵, P. Gutierrez¹¹¹, N. Guttman¹⁵³, O. Gutzwiller¹⁷³, C. Guyot¹³⁶, C. Gwenlan¹¹⁸, C.B. Gwilliam⁷³, A. Haas¹⁰⁸, S. Haas³⁰, C. Haber¹⁵, H.K. Hadavand⁸, D.R. Hadley¹⁸, P. Haefner²¹, F. Hahn³⁰, Z. Hajduk³⁹, H. Hakobyan¹⁷⁷, D. Hall¹¹⁸, G. Halladjian⁶², K. Hamacher¹⁷⁵, P. Hamal¹¹³, K. Hamano⁸⁶, M. Hamer⁵⁴, A. Hamilton^{145b,q}, S. Hamilton¹⁶¹, L. Han^{33b}, K. Hanagaki¹¹⁶, K. Hanawa¹⁶⁰, M. Hance¹⁵, C. Handel⁸¹, P. Hanke^{58a}, J.R. Hansen³⁶, J.B. Hansen³⁶, J.D. Hansen³⁶, P.H. Hansen³⁶, P. Hansen¹⁴³, K. Hara¹⁶⁰, T. Harenberg¹⁷⁵, S. Harkusha⁹⁰, D. Harper⁸⁷, R.D. Harrington⁴⁶, O.M. Harris¹³⁸, J. Hartert⁴⁸, F. Hartjes¹⁰⁵, T. Haruyama⁶⁵, A. Harvey⁵⁶, S. Hasegawa¹⁰¹, Y. Hasegawa¹⁴⁰, S. Hassani¹³⁶, S. Haug¹⁷, M. Hauschild³⁰, R. Hauser⁸⁸, M. Havranek²¹, C.M. Hawkes¹⁸, R.J. Hawkings³⁰, A.D. Hawkins⁷⁹, T. Hayakawa⁶⁶, T. Hayashi¹⁶⁰, D. Hayden⁷⁶, C.P. Hays¹¹⁸, H.S. Hayward⁷³, S.J. Haywood¹²⁹, S.J. Head¹⁸, V. Hedberg⁷⁹, L. Heelan⁸, S. Heim¹²⁰, B. Heinemann¹⁵, C.P. Hays¹¹⁶, H.S. Hayward¹³, S.J. Haywood¹²⁹, S.J. Head¹⁶, V. Hedberg¹⁹, L. Heelan⁶, S. Heim¹²⁰, B. Heinemar, S. Heisterkamp³⁶, L. Helary²², C. Heller⁹⁸, M. Heller³⁰, S. Hellman^{146a,146b}, D. Hellmich²¹, C. Helsens¹², R.C.W. Henderson⁷¹, M. Henke^{58a}, A. Henrichs¹⁷⁶, A.M. Henriques Correia³⁰, S. Henrot-Versille¹¹⁵, C. Hensel⁵⁴, C.M. Hernandez⁸, Y. Hernández Jiménez¹⁶⁷, R. Herrberg¹⁶, G. Herten⁴⁸, R. Hertenberger⁹⁸, L. Hervas³⁰, G.G. Hesketh⁷⁷, N.P. Hessey¹⁰⁵, R. Hickling⁷⁵, E. Higón-Rodriguez¹⁶⁷, J.C. Hill²⁸, K.H. Hiller⁴², S. Hillert²¹, S.J. Hillier¹⁸, I. Hinchliffe¹⁵, E. Hines¹²⁰, M. Hirose¹¹⁶, F. Hirsch⁴³, D. Hirschbuehl¹⁷⁵, J. Hobbs¹⁴⁸, N. Hod¹⁵³, M.C. Hodgkinson¹³⁹, P. Hodgson¹³⁹, A. Hoecker³⁰, M.R. Hoeferkamp¹⁰³, J. Hoffman⁴⁰, D. Hoffmann⁸³, M. Hohlfeld⁸¹, M. Holder¹⁴¹, S.O. Holmgren^{146a}, T. Holy¹²⁶, J.L. Holzbauer⁸⁸, T.M. Hong¹²⁰, L. Hooft van Huysduynen¹⁰⁸, S. Horner⁴⁸, J-Y. Hostachy⁵⁵, S. Hou¹⁵¹, A. Hoummada^{135a}, J. Howard¹¹⁸, J. Howarth⁸², I. Hristova¹⁶, J. Hrivnac¹¹⁵, S. Horner¹⁵, J-Y. Hostachy¹⁵, S. Hou¹³, A. Hoummada¹⁵, J. Howard¹⁵, J. Howard¹⁵, J. Hustova¹⁵, J. Huston⁴², T. Hryn'ova⁵, P.J. Hsu⁸¹, S.-C. Hsu¹³⁸, D. Hu³⁵, Z. Hubacek³⁰, F. Hubaut⁸³, F. Huegging²¹, A. Huettmann⁴², T.B. Huffman¹¹⁸, E.W. Hughes³⁵, G. Hughes⁷¹, M. Huhtinen³⁰, M. Hurwitz¹⁵, N. Huseynov^{64,r}, J. Huston⁸⁸, J. Huth⁵⁷, G. Iacobucci⁴⁹, G. Iakovidis¹⁰, M. Ibbotson⁸², I. Ibragimov¹⁴¹, L. Iconomidou-Fayard¹¹⁵, J. Idarraga¹¹⁵, P. Iengo^{102a}, O. Igonkina¹⁰⁵, Y. Ikegami⁶⁵, M. Ikeno⁶⁵, D. Iliadis¹⁵⁴, N. Ilic¹⁵⁸, T. Ince⁹⁹, P. Ioannou⁹, M. Iodice^{134a}, K. Iordanidou⁹, V. Ippolito^{132a,132b}, A. Irles Quiles¹⁶⁷, C. Isaksson¹⁶⁶, M. Ishino⁶⁷, M. Ishitsuka¹⁵⁷, R. Ishmukhametov¹⁰⁹, C. Issever¹¹⁸, S. Istin^{19a}, A.V. Ivashin¹²⁸, W. Iwanski³⁹, H. Iwasaki⁶⁵, J.M. Izen⁴¹, V. Izzo^{102a}, B. Jackson¹²⁰, J.N. Jackson⁷³, P. Jackson¹, M.R. Jaekel³⁰, V. Jain², K. Jakobs⁴⁸, S. Jakobsen³⁶, T. Jakoubek¹²⁵, J. Jakubek¹²⁶, D.O. Jamin¹⁵¹, D.K. Jana¹¹¹, E. Jansen⁷⁷, H. Jansen³⁰, J. Janssen²¹, A. Jantsch⁹⁹, M. Janus⁴⁸, R.C. Jared¹⁷³, G. Jarlskog⁷⁹, L. Jeanty⁵⁷, I. Jen-La Plante³¹, G.-Y. Jeng¹⁵⁰, D. Jennens⁸⁶, P. Jenni³⁰,
A.E. Loevschall-Jensen³⁶, P. Jež³⁶, S. Jézéquel⁵, M.K. Jha^{20a}, H. Ji¹⁷³, W. Ji⁸¹, J. Jia¹⁴⁸, Y. Jiang^{33b},
M. Jimenez Belenguer⁴², S. Jin^{33a}, O. Jinnouchi¹⁵⁷, M.D. Joergensen³⁶, D. Joffe⁴⁰, M. Johansen^{146a,146b},

K.E. Johansson^{146a}, P. Johansson¹³⁹, S. Johnert⁴², K.A. Johns⁷, K. Jon-And^{146a,146b}, G. Jones¹⁷⁰, R.W.L. Jones⁷¹, R.E. Johansson , F. Johansson , S. Johnert , K.A. Johns , K. Johns , K. Johns , G. Johes , R. W.L. Johes T.J. Jones⁷³, C. Joram³⁰, P.M. Jorge^{124a}, K.D. Joshi⁸², J. Jovicevic¹⁴⁷, T. Jovin^{13b}, X. Ju¹⁷³, C.A. Jung⁴³, R.M. Jungst³⁰, V. Juranek¹²⁵, P. Jussel⁶¹, A. Juste Rozas¹², S. Kabana¹⁷, M. Kaci¹⁶⁷, A. Kaczmarska³⁹, P. Kadlecik³⁶, M. Kado¹¹⁵, H. Kagan¹⁰⁹, M. Kagan⁵⁷, E. Kajomovitz¹⁵², S. Kalinin¹⁷⁵, L.V. Kalinovskaya⁶⁴, S. Kama⁴⁰, N. Kanaya¹⁵⁵, M. Kaneda³⁰, S. Kaneti²⁸, T. Kanno¹⁵⁷, V.A. Kantserov⁹⁶, J. Kanzaki⁶⁵, B. Kaplan¹⁰⁸, M. Katoka and Kanaka and A. Kapliy³¹, D. Kar⁵³, M. Karagounis²¹, K. Karakostas¹⁰, M. Karnevskiy^{58b}, V. Kartvelishvili⁷¹, A.N. Karyukhin¹²⁸, A. Kapliy³¹, D. Kar⁵⁵, M. Karagounis²¹, K. Karakostas¹⁰, M. Karnevskiy³⁸⁵, V. Kartvelishvili¹¹, A.N. Karyukhin¹²⁸, L. Kashif¹⁷³, G. Kasieczka^{58b}, R.D. Kass¹⁰⁹, A. Kastanas¹⁴, M. Kataoka⁵, Y. Kataoka¹⁵⁵, J. Katzy⁴², V. Kaushik⁷, K. Kawagoe⁶⁹, T. Kawamoto¹⁵⁵, G. Kawamura⁸¹, S. Kazama¹⁵⁵, V.F. Kazanin¹⁰⁷, M.Y. Kazarinov⁶⁴, R. Keeler¹⁶⁹, P.T. Keener¹²⁰, R. Kehoe⁴⁰, M. Keil⁵⁴, G.D. Kekelidze⁶⁴, J.S. Keller¹³⁸, M. Kenyon⁵³, H. Keoshkerian⁵, O. Kepka¹²⁵, N. Kerschen³⁰, B.P. Kerševan⁷⁴, S. Kersten¹⁷⁵, K. Kessoku¹⁵⁵, J. Keung¹⁵⁸, F. Khalil-zada¹¹, H. Khandanyan^{146a,146b}, A. Khanov¹¹², D. Kharchenko⁶⁴, A. Khodinov⁹⁶, A. Khomich^{58a}, T.J. Khoo²⁸, G. Khoriauli²¹, A. Khoroshilov¹⁷⁵, V. Khovanskiy⁹⁵, E. Khramov⁶⁴, J. Khubua^{51b}, H. Kim^{146a,146b}, S.H. Kim¹⁶⁰, N. Kimura¹⁷¹, O. Kind¹⁶, B.T. King⁷³, M. King⁶⁶, R.S.B. King¹¹⁸, J. Kirk¹²⁹, A.E. Kiryunin⁹⁹, T. Kishimoto⁶⁶, D. Kisielewska³⁸, T. Kitamura⁶⁶, T. Kittelmann¹²³, K. Kiuchi¹⁶⁰, E. Kladiva^{144b}, M. Klein⁷³, U. Klein⁷³, K. Kleinknecht⁸¹, M. Klemetti⁸⁵, A. Klier¹⁷², T. Kittelmann¹²³, K. Kiuchi¹⁶⁰, E. Kladiva¹⁴⁴⁵, M. Klein⁷³, U. Klein⁷³, K. Kleinknecht⁸¹, M. Klemetti⁸⁵, A. Klier¹⁷, P. Klimek^{146a,146b}, A. Klimentov²⁵, R. Klingenberg⁴³, J.A. Klinger⁸², E.B. Klinkby³⁶, T. Klioutchnikova³⁰, P.F. Klok¹⁰⁴, S. Klous¹⁰⁵, E.-E. Kluge^{58a}, T. Kluge⁷³, P. Kluit¹⁰⁵, S. Kluth⁹⁹, E. Kneringer⁶¹, E.B.F.G. Knoops⁸³, A. Knue⁵⁴, B.R. Ko⁴⁵, T. Kobayashi¹⁵⁵, M. Kobel⁴⁴, M. Kocian¹⁴³, P. Kodys¹²⁷, K. Köneke³⁰, A.C. König¹⁰⁴, S. Koenig⁸¹, L. Köpke⁸¹, F. Koetsveld¹⁰⁴, P. Koevesarki²¹, T. Koffas²⁹, E. Koffeman¹⁰⁵, L.A. Kogan¹¹⁸, S. Kohlmann¹⁷⁵, F. Kohn⁵⁴, Z. Kohout¹²⁶, T. Kohriki⁶⁵, T. Koi¹⁴³, G.M. Kolachev^{107,*}, H. Kolanoski¹⁶, V. Kolesnikov⁶⁴, I. Koletsou^{89a}, J. Koll⁸⁸, A.A. Komar⁹⁴, Y. Komori¹⁵⁵, T. Kondo⁶⁵, T. Kono^{42,s}, A.I. Kononov⁴⁸, R. Koroplich^{108,t}, N. Konstantinidis⁷⁷, R. Kopeliansky¹⁵², S. Koperny³⁸, A.K. Kopp⁴⁸, K. Korcyl³⁹, K. Kordas¹⁵⁴, A. Korn¹¹⁸, A. Korol¹⁰⁷, I. Korolkov¹², E.V. Korolkova¹³⁹, V.A. Korotkov¹²⁸, O. Kortner⁹⁹, S. Kortner⁹⁹, V.K. Kostantinidis⁷¹, M. Kotstan⁴⁴, A. Kottan⁴⁴⁵, C. Kouthev¹⁶⁵, V. Kouther⁹⁹, K. Kortner⁹⁹, K. Kortner¹⁵⁹, K. Kortne V.V. Kostyukhin²¹, S. Kotov⁹⁹, V.M. Kotov⁶⁴, A. Kotwal⁴⁵, C. Kourkoumelis⁹, V. Kouskoura¹⁵⁴, A. Koutsman^{159a}, R. Kowalewski¹⁶⁹, T.Z. Kowalski³⁸, W. Kozanecki¹³⁶, A.S. Kozhin¹²⁸, V. Kral¹²⁶, V.A. Kramarenko⁹⁷,
G. Kramberger⁷⁴, M.W. Krasny⁷⁸, A. Krasznahorkay¹⁰⁸, J.K. Kraus²¹, A. Kravchenko²⁵, S. Kreiss¹⁰⁸, F. Krejci¹²⁶,
J. Kretzschmar⁷³, K. Kreutzfeldt⁵², N. Krieger⁵⁴, P. Krieger¹⁵⁸, K. Kroeninger⁵⁴, H. Kroha⁹⁹, J. Kroll¹²⁰,
J. Kroseberg²¹, J. Krstic^{13a}, U. Kruchonak⁶⁴, H. Krüger²¹, T. Kruker¹⁷, N. Krumack⁶³, Z.V. Krumshteyn⁶⁴, M.K. Kruse⁴⁵, T. Kubota⁸⁶, S. Kuday^{4a}, S. Kuehn⁴⁸, A. Kugel^{58c}, T. Kuhl⁴², V. Kukhtin⁶⁴, Y. Kulchitsky⁹⁰, S. Kuleshov^{32b}, M. Kuna⁷⁸, J. Kunkle¹²⁰, A. Kupco¹²⁵, H. Kurashige⁶⁶, M. Kurata¹⁶⁰, Y.A. Kurochkin⁹⁰, V. Kus¹²⁵, E.S. Kuwertz¹⁴⁷, M. Kuze¹⁵⁷, J. Kvita¹⁴², R. Kwee¹⁶, A. La Rosa⁴⁹, L. La Rotonda^{37a,37b}, L. Labarga⁸⁰, S. Lablak^{135a}, C. Lacasta¹⁶⁷, F. Lacava^{132a,132b}, J. Lacey²⁹, H. Lacker¹⁶, D. Lacour⁷⁸, V.R. Lacuesta¹⁶⁷, E. Ladygin⁶⁴, R. Lafaye⁵, C. Lacasta¹⁰¹, F. Lacava^{1024,1025}, J. Lacey²⁵, H. Lacker¹⁶, D. Lacour¹⁶, V.R. Lacuesta¹⁰¹, E. Ladygin⁶⁴, R. Lataye⁵,
B. Laforge⁷⁸, T. Lagouri¹⁷⁶, S. Lai⁴⁸, E. Laisne⁵⁵, L. Lambourne⁷⁷, C.L. Lampen⁷, W. Lampl⁷, E. Lancon¹³⁶,
U. Landgraf⁴⁸, M.P.J. Landon⁷⁵, V.S. Lang^{58a}, C. Lange⁴², A.J. Lankford¹⁶³, F. Lanni²⁵, K. Lantzsch³⁰, A. Lanza^{119a},
S. Laplace⁷⁸, C. Lapoire²¹, J.F. Laporte¹³⁶, T. Lari^{89a}, A. Larner¹¹⁸, M. Lassnig³⁰, P. Laurelli⁴⁷, V. Lavorini^{37a,37b},
W. Lavrijsen¹⁵, P. Laycock⁷³, O. Le Dortz⁷⁸, E. Le Guirriec⁸³, E. Le Menedeu¹², T. LeCompte⁶, F. Ledroit-Guillon⁵⁵,
H. Lee¹⁰⁵, J.S.H. Lee¹¹⁶, S.C. Lee¹⁵¹, L. Lee¹⁷⁶, M. Lefebvre¹⁶⁹, M. Legendre¹³⁶, F. Legger⁹⁸, C. Leggett¹⁵,
M. Lehmacher²¹, G. Lehmann Miotto³⁰, A.G. Leister¹⁷⁶, M.A.L. Leite^{24d}, R. Leitner¹²⁷, D. Lellouch¹⁷², B. Lemmer⁵⁴, V. Lendermann^{58a}, K.J.C. Leney^{145b}, T. Lenz¹⁰⁵, G. Lenzen¹⁷⁵, B. Lenzi³⁰, K. Leonhardt⁴⁴, S. Leontsinis¹⁰, V. Lendermann¹⁵⁰, K.J.C. Leney¹⁵⁰, T. Lenz¹⁵⁰, G. Lenze¹⁵⁰, B. Lenz¹⁵⁰, K. Leonnardt¹⁷, S. Leontsimi⁵⁷,
F. Lepold^{58a}, C. Leroy⁹³, J-R. Lessard¹⁶⁹, C.G. Lester²⁸, C.M. Lester¹²⁰, J. Levêque⁵, D. Levin⁸⁷, L.J. Levinson¹⁷²,
A. Lewis¹¹⁸, G.H. Lewis¹⁰⁸, A.M. Leyko²¹, M. Leyton¹⁶, B. Li^{33b}, B. Li⁸³, H. Li¹⁴⁸, H.L. Li³¹, S. Li^{33b,u}, X. Li⁸⁷,
Z. Liang^{118,v}, H. Liao³⁴, B. Liberti^{133a}, P. Lichard³⁰, K. Lie¹⁶⁵, W. Liebig¹⁴, C. Limbach²¹, A. Limosani⁸⁶,
M. Limper⁶², S.C. Lin^{151,w}, F. Linde¹⁰⁵, J.T. Linnemann⁸⁸, E. Lipeles¹²⁰, A. Lipniacka¹⁴, T.M. Liss¹⁶⁵, D. Lissauer²⁵,
A. Lister⁴⁹, A.M. Litke¹³⁷, D. Liu¹⁵¹, J.B. Liu^{33b}, L. Liu⁸⁷, M. Liu^{33b}, Y. Liu^{33b}, M. Livan^{119a,119b}, S.S.A. Livermore¹¹⁸, A. Lleres⁵⁵, J. Llorente Merino⁸⁰, S.L. Lloyd⁷⁵, E. Lobodzinska⁴², P. Loch⁷, W.S. Lockman¹³⁷, T. Loddenkoetter²¹, F.K. Loebinger⁸², A. Loginov¹⁷⁶, C.W. Loh¹⁶⁸, T. Lohse¹⁶, K. Lohwasser⁴⁸, M. Lokajicek¹²⁵, V.P. Lombardo⁵, R.E. Long⁷¹, L. Lopes^{124a}, D. Lopez Mateos⁵⁷, J. Lorenz⁹⁸, N. Lorenzo Martinez¹¹⁵, M. Losada¹⁶²,
P. Loscutoff¹⁵, F. Lo Sterzo^{132a,132b}, M.J. Losty^{159a,*}, X. Lou⁴¹, A. Lounis¹¹⁵, K.F. Loureiro¹⁶², J. Love⁶, P.A. Love⁷¹,
A.J. Lowe^{143,g}, F. Lu^{33a}, H.J. Lubatti¹³⁸, C. Luci^{132a,132b}, A. Lucotte⁵⁵, D. Ludwig⁴², I. Ludwig⁴⁸, J. Ludwig⁴⁸,
F. Luehring⁶⁰, G. Luijckx¹⁰⁵, W. Lukas⁶¹, L. Luminari^{132a}, E. Lund¹¹⁷, B. Lund-Jensen¹⁴⁷, B. Lundberg⁷⁹,
J. Lundberg^{146a,146b}, O. Lundberg^{146a,146b}, J. Lundquist³⁶, M. Lungwitz⁸¹, D. Lynn²⁵, E. Lytken⁷⁹, H. Ma²⁵, L.L. Ma¹⁷³, G. Maccarrone⁴⁷, A. Macchiolo⁹⁹, B. Maček⁷⁴, J. Machado Miguens^{124a}, D. Macina³⁰, R. Mackeprang³⁶, R.J. Madaras¹⁵, H.J. Maddocks⁷¹, W.F. Mader⁴⁴, T. Maeno²⁵, P. Mättig¹⁷⁵, S. Mättig⁴², L. Magnoni¹⁶³, E. Magradze⁵⁴, K. Mahboubi⁴⁸, J. Mahlstedt¹⁰⁵, S. Mahmoud⁷³, G. Mahout¹⁸, C. Maiani¹³⁶, C. Maidantchik^{24a}, A. Maio^{124a,c}, S. Majewski²⁵, Y. Makida⁶⁵, N. Makovec¹¹⁵, P. Mal¹³⁶, B. Malaescu⁷⁸, Pa. Malecki³⁹, P. Malecki³⁹, V.P. Maleev¹²¹, F. Malek⁵⁵, U. Mallik⁶², D. Malon⁶, C. Malone¹⁴³, S. Maltezos¹⁰, V. Malyshev¹⁰⁷, S. Malyukov³⁰, J. Mamuzic^{13b}, A. Manabe⁶⁵, L. Mandelli^{89a}, I. Mandić⁷⁴, R. Mandrysch⁶², J. Maneira^{124a}, A. Manfredini⁹⁹, L. Manhaes de Andrade Filho^{24b}, J.A. Manjarres Ramos¹³⁶, A. Mann⁹⁸, P.M. Manning¹³⁷, A. Manousakis-Katsikakis⁹,

B. Mansoulie¹³⁶, R. Mantifel⁸⁵, A. Mapelli³⁰, L. Mapelli³⁰, L. March¹⁶⁷, J.F. Marchand²⁹, F. Marchese^{133a,133b}, G. Marchiori⁷⁸, M. Marcisovsky¹²⁵, C.P. Marino¹⁶⁹, F. Marroquim^{24a}, Z. Marshall³⁰, L.F. Marti¹⁷, S. Marti-Garcia¹⁶⁷, B. Martin³⁰, B. Martin⁸⁸, J.P. Martin⁹³, T.A. Martin¹⁸, V.J. Martin⁴⁶, B. Martin dit Latour⁴⁹, S. Martin-Haugh¹⁴⁹, H. Martinez¹³⁶, M. Martinez¹², V. Martinez Outschoorn⁵⁷, A.C. Martyniuk¹⁶⁹, M. Marx⁸², F. Marzano^{132a}, A. Marzin¹¹¹, L. Masetti⁸¹, T. Mashimo¹⁵⁵, R. Mashinistov⁹⁴, J. Masik⁸², A.L. Maslennikov¹⁰⁷, I. Massa^{20a,20b}, G. Massaro¹⁰⁵, N. Massol⁵, P. Mastrandrea¹⁴⁸, A. Mastroberardino^{37a,37b}, T. Masubuchi¹⁵⁵, H. Matsunaga¹⁵⁵, T. Matsushita⁶⁶, C. Mattravers^{118,d}, J. Maurer⁸³, S.J. Maxfield⁷³, D.A. Maximov^{107,h}, R. Mazini¹⁵¹, M. Mazur²¹, Matsushita¹⁰, C. Mattravers^{20,9}, J. Matrier¹⁰, S.J. Matrier¹⁰, D.A. Mathiov^{20,10}, K. Mazin¹⁰⁵, M. McCarthy¹⁴⁸,
 T.G. McCarthy²⁹, N.A. McCubbin¹²⁹, K.W. McFarlane^{56,*}, J.A. Mcfayden¹³⁹, G. Mchedlidze^{51b}, T. Mclaughlan¹⁸,
 S.J. McMahon¹²⁹, R.A. McPherson^{169,l}, A. Meade⁸⁴, J. Mechnich¹⁰⁵, M. Mechtel¹⁷⁵, M. Medinnis⁴², S. Meehan³¹,
 R. Meera-Lebbai¹¹¹, T. Meguro¹¹⁶, S. Mehlhase³⁶, A. Mehta⁷³, K. Meier^{58a}, B. Meirose⁷⁹, C. Melachrinos³¹,
 B.R. Mellado Garcia¹⁷³, F. Meloni^{89a,89b}, L. Mendoza Navas¹⁶², Z. Meng^{151,x}, A. Mengarelli^{20a,20b}, S. Menke⁹⁹,
 E. M. ¹⁶¹, K.M. M. M. ¹⁷⁹, I.M. M. ¹⁴⁹, L. M. ¹¹⁰, ¹⁰², E. Meoni¹⁶¹, K.M. Mercurio⁵⁷, P. Mermod⁴⁹, L. Merola^{102a,102b}, C. Meroni^{89a}, F.S. Merritt³¹, H. Merritt¹⁰⁹, A. Messina^{30,y}, J. Metcalfe²⁵, A.S. Mete¹⁶³, C. Meyer⁸¹, C. Meyer³¹, J-P. Meyer¹³⁶, J. Meyer¹⁷⁴, J. Meyer⁵⁴, S. Michal³⁰, L. Micu^{26a}, R.P. Middleton¹²⁹, S. Migas⁷³, L. Mijović¹³⁶, G. Mikenberg¹⁷², M. Mikestikova¹²⁵, S. Michal³⁰, L. Micu^{20a}, R.P. Middleton¹²⁹, S. Migas¹³, L. Mijovič¹³⁰, G. Mikenberg¹¹², M. Mikestikova¹²³,
M. Mikuž⁷⁴, D.W. Miller³¹, R.J. Miller⁸⁸, W.J. Mills¹⁶⁸, C. Mills⁵⁷, A. Milov¹⁷², D.A. Milstead^{146a,146b}, D. Milstein¹⁷²,
A.A. Minaenko¹²⁸, M. Miñano Moya¹⁶⁷, I.A. Minashvili⁶⁴, A.I. Mincer¹⁰⁸, B. Mindur³⁸, M. Mineev⁶⁴, Y. Ming¹⁷³,
L.M. Mir¹², G. Mirabelli^{132a}, J. Mitrevski¹³⁷, V.A. Mitsou¹⁶⁷, S. Mitsui⁶⁵, P.S. Miyagawa¹³⁹, J.U. Mjörnmark⁷⁹,
T. Moa^{146a,146b}, V. Moeller²⁸, K. Mönig⁴², N. Möser²¹, S. Mohapatra¹⁴⁸, W. Mohr⁴⁸, R. Moles-Valls¹⁶⁷, A. Molfetas³⁰,
J. Monk⁷⁷, E. Monnier⁸³, J. Montejo Berlingen¹², F. Monticelli⁷⁰, S. Morzani^{20a,20b}, R.W. Moore³, G.F. Moorhead⁸⁶,
C. Mora Herrera⁴⁹, A. Moraes⁵³, N. Morange¹³⁶, J. Morel⁵⁴, G. Morello^{37a,37b}, D. Moreno⁸¹, M. Moreno Llácer¹⁶⁷,
P. Morettini^{50a}, M. Morgenstern⁴⁴, M. Morii⁵⁷, A.K. Morley³⁰, G. Mornacchi³⁰, J.D. Morris⁷⁵, L. Morvaj¹⁰¹, H.G. Moser⁹⁹, M. Mosidze^{51b}, J. Moss¹⁰⁹, R. Mount¹⁴³, E. Mountricha^{10,z}, S.V. Mouraviev^{94,*}, E.J.W. Moyse⁸⁴, F. Mueller^{58a}, J. Mueller¹²³, K. Mueller²¹, T.A. Müller⁹⁸, T. Mueller⁸¹, D. Muenstermann³⁰, Y. Munwes¹⁵³, F. Mueller¹²⁵, J. Mueller¹²⁵, K. Mueller¹²⁵, I.A. Muller¹⁵⁵, I. Mueller¹⁵⁷, D. Mueller¹²⁵, J. Muller¹²⁵, W.J. Murray¹²⁹, I. Mussche¹⁰⁵, E. Musto¹⁵², A.G. Myagkov¹²⁸, M. Myska¹²⁵, O. Nackenhorst⁵⁴, J. Nadal¹², K. Nagai¹⁶⁰, R. Nagai¹⁵⁷, Y. Nagai⁸³, K. Nagano⁶⁵, A. Nagarkar¹⁰⁹, Y. Nagasaka⁵⁹, M. Nagel⁹⁹, A.M. Nairz³⁰, Y. Nakahama³⁰, K. Nakamura⁶⁵, T. Nakamura¹⁵⁵, I. Nakano¹¹⁰, G. Nanava²¹, A. Napier¹⁶¹, R. Narayan^{58b}, M. Nash^{77,d}, T. Nattermann²¹, T. Naumann⁴², G. Navarro¹⁶², H.A. Neal⁸⁷, P.Yu. Nechaeva⁹⁴, T.J. Neep⁸², M. Nash^{77,d}, T. Nattermann²¹, T. Naumann⁴², G. Navarro¹⁶², H.A. Neal⁸⁷, P.Yu. Nechaeva⁹⁴, T.J. Neep⁸² A. Negri^{119a,119b}, G. Negri³⁰, M. Negrini^{20a}, S. Nektarijevic⁴⁹, A. Nelson¹⁶³, T.K. Nelson¹⁴³, S. Nemecek¹²⁵, P. Nemethy¹⁰⁸, A.A. Nepomuceno^{24a}, M. Nessi^{30,aa}, M.S. Neubauer¹⁶⁵, M. Neumann¹⁷⁵, A. Neusiedl⁸¹, R.M. Neves¹⁰⁸, P. Nevski²⁵, F.M. Newcomer¹²⁰, P.R. Newman¹⁸, V. Nguyen Thi Hong¹³⁶, R.B. Nickerson¹¹⁸, R. Nicolaidou¹³⁶, P. Nevski¹⁰, F. M. Newcomer¹²⁰, P.R. Newman¹⁶, V. Nguyen 1ni Hong²⁰⁰, R.B. Nickerson¹¹⁰, K. Nicolaidou¹³⁰,
B. Nicquevert³⁰, F. Niedercorn¹¹⁵, J. Nielsen¹³⁷, N. Nikiforou³⁵, A. Nikiforov¹⁶, V. Nikolaenko¹²⁸, I. Nikolic-Audit⁷⁸,
K. Nikolics⁴⁹, K. Nikolopoulos¹⁸, H. Nilsen⁴⁸, P. Nilsson⁸, Y. Ninomiya¹⁵⁵, A. Nisati^{132a}, R. Nisius⁹⁹, T. Nobe¹⁵⁷,
L. Nodulman⁶, M. Nomachi¹¹⁶, I. Nomidis¹⁵⁴, S. Norberg¹¹¹, M. Nordberg³⁰, J. Novakova¹²⁷, M. Nozaki⁶⁵,
L. Nozka¹¹³, A.-E. Nuncio-Quiroz²¹, G. Nunes Hanninger⁸⁶, T. Nunnemann⁹⁸, E. Nurse⁷⁷, B.J. O'Brien⁴⁶,
D.C. O'Neil¹⁴², V. O'Shea⁵³, L.B. Oakes⁹⁸, F.G. Oakham^{29,f}, H. Oberlack⁹⁹, J. Ocariz⁷⁸, A. Ochi⁶⁶, S. Oda⁶⁹,
C. Ol a⁶⁵, J. O.K. ⁸³, H. O. a⁶⁰, A. Ol ⁴⁵, G.G. Okham^{29,f}, H. Oberlack⁹⁹, J. Ocariz⁷⁸, A. Ochi⁶⁶, S. Oda⁶⁹, S. Odaka⁶⁵, J. Odier⁸³, H. Ogren⁶⁰, A. Oh⁸², S.H. Oh⁴⁵, C.C. Ohm³⁰, T. Ohshima¹⁰¹, W. Okamura¹¹⁶, H. Okawa²⁵, Y. Okumura³¹, T. Okuyama¹⁵⁵, A. Olariu^{26a}, A.G. Olchevski⁶⁴, S.A. Olivares Pino^{32a}, M. Oliveira^{124a,i}, D. Oliveira Damazio²⁵, E. Oliver Garcia¹⁶⁷, D. Olivito¹²⁰, A. Olszewski³⁹, J. Olszowska³⁹, A. Onofre^{124a,ab}, P.U.E. Onyisi^{31,ac}, C.J. Oram^{159a}, M.J. Oreglia³¹, Y. Oren¹⁵³, D. Orestano^{134a,134b}, N. Orlando^{72a,72b},
C. Oropeza Barrera⁵³, R.S. Orr¹⁵⁸, B. Osculati^{50a,50b}, R. Ospanov¹²⁰, C. Osuna¹², G. Otero y Garzon²⁷,
J.P. Ottersbach¹⁰⁵, M. Ouchrif^{135d}, E.A. Ouellette¹⁶⁹, F. Ould-Saada¹¹⁷, A. Ouraou¹³⁶, Q. Ouyang^{33a}, A. Ovcharova¹⁵, M. Owen⁸², S. Owen¹³⁹, V.E. Ozcan^{19a}, N. Ozturk⁸, A. Pacheco Pages¹², C. Padilla Aranda¹², S. Pagan Griso¹⁵, E. Paganis¹³⁹, C. Pahl⁹⁹, F. Paige²⁵, P. Pais⁸⁴, K. Pajchel¹¹⁷, G. Palacino^{159b}, C.P. Paleari⁷, S. Palestini³⁰, D. Pallin³⁴, A. Palma^{124a}, J.D. Palmer¹⁸, Y.B. Pan¹⁷³, E. Panagiotopoulou¹⁰, J.G. Panduro Vazquez⁷⁶, P. Pani¹⁰⁵, D. Pailin^{5,1}, A. Paima^{12,13}, J.D. Paime^{12,5}, Y.B. Pan^{14,6}, E. Panagiotopoulou¹⁰, J.G. Panduro Vazquez¹⁰, P. Pan^{14,6},
N. Panikashvili⁸⁷, S. Panitkin²⁵, D. Pantea^{26a}, A. Papadelis^{146a}, Th.D. Papadopoulou¹⁰, A. Paramonov⁶,
D. Paredes Hernandez³⁴, W. Park^{25,ad}, M.A. Parker²⁸, F. Parodi^{50a,50b}, J.A. Parsons³⁵, U. Parzefall⁴⁸, S. Pashapour⁵⁴,
E. Pasqualucci^{132a}, S. Passaggio^{50a}, A. Passeri^{134a}, F. Pastore^{134a,134b,*}, Fr. Pastore⁷⁶, G. Pásztor^{49,ae}, S. Pataraia¹⁷⁵,
N. Patel¹⁵⁰, J.R. Pater⁸², S. Patricelli^{102a,102b}, T. Pauly³⁰, S. Pedraza Lopez¹⁶⁷, M.I. Pedraza Morales¹⁷³,
S.V. Peleganchuk¹⁰⁷, D. Pelikan¹⁶⁶, H. Peng^{33b}, B. Penning³¹, A. Penson³⁵, J. Penwell⁶⁰, M. Perantoni^{24a},
K. Pareg³⁵ af T. Pareg Cardiar ^{159a}, M.T. Páreg Cardía ^{159a}, M.T. Páreg Cardía ^{159a}, M.T. Páreg Cardía ^{159a}, M.T. Páreg Cardía ^{159a}, M.T. Pareg⁵, Pareg Paraba⁵⁵, Paraba⁵⁵, Pareg Par K. Perez^{35,af}, T. Perez Cavalcanti⁴², E. Perez Codina^{159a}, M.T. Pérez García-Estañ¹⁶⁷, V. Perez Reale³⁵, L. Perini^{89a,89b}, H. Pernegger³⁰, R. Perrino^{72a}, P. Perrodo⁵, V.D. Peshekhonov⁶⁴, K. Peters³⁰, B.A. Petersen³⁰, J. Petersen³⁰, T.C. Petersen³⁶, E. Petit⁵, A. Petridis¹⁵⁴, C. Petridou¹⁵⁴, E. Petrolo^{132a}, F. Petrucci^{134a,134b}, D. Petschull⁴², M. Petteni¹⁴², R. Pezoa^{32b}, A. Phan⁸⁶, P.W. Phillips¹²⁹, G. Piacquadio³⁰, A. Picazio⁴⁹, E. Piccaro⁷⁵, M. Piccinini^{20a,20b}, S.M. Piec⁴², R. Piegaia²⁷, D.T. Pignotti¹⁰⁹, J.E. Pilcher³¹, A.D. Pilkington⁸², J. Pina^{124a,c},
M. Pinamonti^{164a,164c}, A. Pinder¹¹⁸, J.L. Pinfold³, A. Pingel³⁶, B. Pinto^{124a}, C. Pizio^{89a,89b}, M.-A. Pleier²⁵,
E. Plotnikova⁶⁴, A. Poblaguev²⁵, S. Poddar^{58a}, F. Podlyski³⁴, L. Poggioli¹¹⁵, D. Pohl²¹, M. Pohl⁴⁹, G. Polesello^{119a},

A. Policicchio^{37a,37b}, R. Polifka¹⁵⁸, A. Polini^{20a}, J. Poll⁷⁵, V. Polychronakos²⁵, D. Pomeroy²³, K. Pommès³⁰, L. Pontecorvo^{132a}, B.G. Pope⁸⁸, G.A. Popeneciu^{26a}, D.S. Popovic^{13a}, A. Poppleton³⁰, X. Portell Bueso³⁰, G.E. Pospelov⁹⁹, S. Pospisil¹²⁶, I.N. Potrap⁹⁹, C.J. Potter¹⁴⁹, C.T. Potter¹¹⁴, G. Poulard³⁰, J. Poveda⁶⁰, V. Pozdnyakov⁶⁴, R. Prabhu⁷⁷, P. Pralavorio⁸³, A. Pranko¹⁵, S. Prasad³⁰, R. Pravahan²⁵, S. Prell⁶³, K. Pretzl¹⁷, D. Price⁶⁰, J. Price⁷³, L.E. Price⁶, D. Prieur¹²³, M. Primavera^{72a}, K. Prokofiev¹⁰⁸, F. Prokoshin^{32b}, S. Protopopescu²⁵, J. Proudfoot⁶, X. Prudent⁴⁴, M. Przybycien³⁸, H. Przysiezniak⁵, S. Psoroulas²¹, E. Ptacek¹¹⁴, E. Pueschel⁸⁴, D. Puldon¹⁴⁸, J. Purdham⁸⁷, M. Purohit^{25,ad}, P. Puzo¹¹⁵, Y. Pylypchenko⁶², J. Qian⁸⁷, A. Quadt⁵⁴, D.R. Quarrie¹⁵, W.B. Quayle¹⁷³, M. Raas¹⁰⁴, V. Radeka²⁵, V. Radescu⁴², P. Radloff¹¹⁴, F. Ragusa^{89a,89b}, G. Rahal¹⁷⁸, W.B. Quayle ¹⁰, M. Raas¹⁰, V. Radeka¹⁰, V. Radescu¹⁰, F. Radioli¹⁰, F. Ragisa^{10,10}, G. Raha¹⁰,
A.M. Rahimi¹⁰⁹, D. Rahm²⁵, S. Rajagopalan²⁵, M. Rammensee⁴⁸, M. Rammes¹⁴¹, A.S. Randle-Conde⁴⁰,
K. Randrianarivony²⁹, K. Rao¹⁶³, F. Rauscher⁹⁸, T.C. Rave⁴⁸, M. Raymond³⁰, A.L. Read¹¹⁷, D.M. Rebuzzi^{119a,119b},
A. Redelbach¹⁷⁴, G. Redlinger²⁵, R. Reece¹²⁰, K. Reeves⁴¹, A. Reinsch¹¹⁴, I. Reisinger⁴³, C. Rembser³⁰, Z.L. Ren¹⁵¹,
A. Renaud¹¹⁵, M. Rescigno^{132a}, S. Resconi^{89a}, B. Resende¹³⁶, P. Reznicek⁹⁸, R. Rezvani¹⁵⁸, R. Richter⁹⁹,
E. Richter-Was^{5,ag}, M. Ridel⁷⁸, M. Rijssenbeek¹⁴⁸, A. Rimoldi^{119a,119b}, L. Rinaldi^{20a}, R.R. Rios⁴⁰, E. Ritsch⁶¹,
L. Rinaldi^{20a}, R.R. Rios⁴⁰, E. Ritsch⁶¹, I. Riu¹², G. Rivoltella^{89a,89b}, F. Rizatdinova¹¹², E. Rizvi⁷⁵, S.H. Robertson^{85,l}, A. Robichaud-Veronneau¹¹⁸, D. Robinson²⁸, J.E.M. Robinson⁸², A. Robson⁵³, J.G. Rocha de Lima¹⁰⁶, C. Roda^{122a,122b}, D. Roda Dos Santos³⁰, A. Roe⁵⁴, S. Roe³⁰, O. Røhne¹¹⁷, S. Rolli¹⁶¹, A. Romaniouk⁹⁶, M. Romano^{20a,20b}, G. Romeo²⁷, E. Romero Adam¹⁶⁷, N. Rompotis¹³⁸, L. Roos⁷⁸, E. Ros¹⁶⁷, S. Rosati^{132a}, K. Rosbach⁴⁹, A. Rose¹⁴⁹, M. Rose⁷⁶, G.A. Rosenbaum¹⁵⁸, P.L. Rosendahl¹⁴, O. Rosenthal¹⁴¹, L. Rosselet⁴⁹, V. Rossetti¹², E. Rossi^{132a,132b}, L.P. Rossi^{50a}, M. Rotaru^{26a}, I. Roth¹⁷², J. Rothberg¹³⁸, D. Rousseau¹¹⁵, C.R. Royon¹³⁶, A. Rozanov⁸³, Y. Rozen¹⁵², X. Ruan^{33a,ah}, F. Rubbo¹², I. Rubinskiy⁴², N. Ruckstuhl¹⁰⁵, V.I. Rud⁹⁷, C. Rudolph⁴⁴, F. Rühr⁷, A. Ruiz-Martinez⁶³, L. Rumyantsev⁶⁴, Z. Rurikova⁴⁸, N.A. Rusakovich⁶⁴, A. Ruschke⁹⁸, J.P. Rutherfoord⁷, N. Ruthmann⁴⁸, P. Ruzicka¹²⁵, Y.F. Ryabov¹²¹, M. Rybar¹²⁷, G. Rybkin¹¹⁵, N.C. Ryder¹¹⁸, A.F. Saavedra¹⁵⁰, I. Sadeh¹⁵³, H.F-W. Sadrozinski¹³⁷, R. Sadykov⁶⁴, F. Safai Tehrani^{132a}, H. Sakamoto¹⁵⁵, G. Salamanna⁷⁵, A. Salamon^{133a}, M. Saleem¹¹¹, D. Salek³⁰, D. Salihagic⁹⁹, A. Salnikov¹⁴³, J. Salt¹⁶⁷, B.M. Salvachua Ferrando⁶, D. Salvatore^{37a,37b}, F. Salvatore¹⁴⁹, A. Salvucci¹⁰⁴, A. Salvatore³⁰, D. Sanvachita Ferrando', D. Salvatore⁴⁰, F. Salvatore⁴⁰, A. Salvatore⁴¹, A. Salvatore⁴¹, A. Salvatore⁴¹, A. Salvatore⁴¹, V. Sanchez Martinez¹⁶⁷, H. Sandaker¹⁴, H.G. Sander⁸¹, M.P. Sanders⁹⁸, M. Sandhoff¹⁷⁵, T. Sandoval²⁸, C. Sandoval¹⁶², R. Sandstroem⁹⁹, D.P.C. Sankey¹²⁹, A. Sansoni⁴⁷, C. Santamarina Rios⁸⁵, C. Santoni³⁴, R. Santonico^{133a,133b}, H. Santos^{124a}, I. Santoyo Castillo¹⁴⁹, J.G. Saraiva^{124a}, T. Sarangi¹⁷³, E. Sarkisyan-Grinbaum⁸, B. Sarrazin²¹, F. Sarri^{122a,122b}, G. Sartisohn¹⁷⁵, O. Sasaki⁶⁵ Y. Sasaki¹⁵⁵, N. Sasao⁶⁷, I. Satsounkevitch⁹⁰, G. Sauvage^{5,*}, E. Sauvan⁵, J.B. Sauvan¹¹⁵, P. Savard^{158, f}, V. Savinov¹²³, D.O. Savu³⁰, L. Sawyer^{25,n}, D.H. Saxon⁵³, J. Saxon¹²⁰, C. Sbarra^{20a}, A. Sbrizzi^{20a,20b}, D.A. Scannicchio¹⁶³, M. Scarcella¹⁵⁰, J. Schaarschmidt¹¹⁵, P. Schacht⁹⁹, D. Schaefer¹²⁰, U. Schäfer⁸¹, A. Schaelicke⁴⁶, S. Schaepe²¹, S. Schaetzel^{58b}, A.C. Schaffer¹¹⁵, D. Schaile⁹⁸, R.D. Schamberger¹⁴⁸, V. Scharf^{58a}, V.A. Schegelsky¹²¹, D. Scheirich⁸⁷, M. Schernau¹⁶³, M.I. Scherzer³⁵, C. Schiavi^{50a,50b}, J. Schieck⁹⁸, M. Schioppa^{37a,37b}, S. Schlenker³⁰, E. Schmidt⁴⁸, K. Schmieden²¹, C. Schmitt⁸¹, S. Schmitt^{58b}, B. Schneider¹⁷, Y.J. Schnellbach⁷³, U. Schnoor⁴⁴, L. Schoeffel¹³⁶, A. Schoening^{58b}, A.L.S. Schorlemmer⁵⁴, M. Schott³⁰, D. Schouten^{159a}, J. Schovancova¹²⁵, M. Schram⁸⁵, C. Schroeder⁸¹, N. Schroer^{58c}, M.J. Schultens²¹, J. Schultes¹⁷⁵, H.-C. Schultz-Coulon^{58a}, H. Schulz¹⁶, M. Schumacher⁴⁸, B.A. Schumm¹³⁷, Ph. Schuen¹³⁶, A. Schwartzman¹⁴³, Ph. Schwegler⁹⁹, Ph. Schwemling⁷⁸, R. Schwienhorst⁸⁸, J. Schwindling¹³⁶, T. Schwindt²¹, M. Schwoerer⁵, F.G. Sciacca¹⁷, E. Scifo¹¹⁵, G. Sciolla²³, W.G. Scott¹²⁹, J. Searcy¹¹⁴, G. Sedov⁴², E. Sedykh¹²¹, S.C. Seidel¹⁰³, A. Seiden¹³⁷, F. Seifert⁴⁴, J.M. Seixas^{24a}, G. Sekhniaidze^{102a}, S.J. Sekula⁴⁰, K.E. Selbach⁴⁶, D.M. Seliverstov¹²¹, B. Sellden^{146a}, G. Sellers⁷³, M. Seman^{144b}, N. Semprini-Cesari^{20a,20b}, C. Serfon³⁰, L. Serin¹¹⁵, L. Serkin⁵⁴, T. Serre⁸³, R. Seuster^{159a}, H. Severini¹¹¹, A. Sfyrla³⁰, E. Shabalina⁵⁴, M. Shamim¹¹⁴, L.Y. Shan^{33a}, J.T. Shank²², Q.T. Shao⁸⁶, M. Shapiro¹⁵, P.B. Shatalov⁹⁵, K. Shaw^{164a,164c}, D. Sherman¹⁷⁶, P. Sherwood⁷⁷, S. Shimizu¹⁰¹, M. Shimojima¹⁰⁰, T. Shin⁵⁶, M. Shiyakova⁶⁴, A. Shmeleva⁹⁴, M.J. Shochet³¹,
D. Short¹¹⁸, S. Shrestha⁶³, E. Shulga⁹⁶, M.A. Shupe⁷, P. Sicho¹²⁵, A. Sidoti^{132a}, F. Siegert⁴⁸, Dj. Sijacki^{13a},
O. Silbert¹⁷², J. Silva^{124a}, Y. Silver¹⁵³, D. Silverstein¹⁴³, S.B. Silverstein^{146a}, V. Simak¹²⁶, O. Simard¹³⁶, Lj. Simic^{13a}, O. Silbert¹¹², J. Silva^{124a}, Y. Silve¹⁵⁵, D. Silverstein¹⁴⁵, S.B. Silverstein^{146a}, V. Simak¹²⁶, O. Simard¹⁵⁵, Lj. Simic¹⁵⁵,
S. Simion¹¹⁵, E. Simioni⁸¹, B. Simmons⁷⁷, R. Simoniello^{89a,89b}, M. Simonyan³⁶, P. Sinervo¹⁵⁸, N.B. Sinev¹¹⁴,
V. Sipica¹⁴¹, G. Siragusa¹⁷⁴, A. Sircar²⁵, A.N. Sisakyan^{64,*}, S.Yu. Sivoklokov⁹⁷, J. Sjölin^{146a,146b}, T.B. Sjursen¹⁴,
L.A. Skinnari¹⁵, H.P. Skottowe⁵⁷, K. Skovpen¹⁰⁷, P. Skubic¹¹¹, M. Slater¹⁸, T. Slavicek¹²⁶, K. Sliwa¹⁶¹,
V. Smakhtin¹⁷², B.H. Smart⁴⁶, L. Smestad¹¹⁷, S.Yu. Smirnov⁹⁶, Y. Smirnov⁹⁶, L.N. Smirnova^{97,ai}, O. Smirnova⁷⁹,
B.C. Smith⁵⁷, K.M. Smith⁵³, M. Smizanska⁷¹, K. Smolek¹²⁶, A.A. Snesarev⁹⁴, S.W. Snow⁸², J. Snow¹¹¹, S. Snyder²⁵, R. Sobie^{169,l}, J. Sodomka¹²⁶, A. Soffer¹⁵³, C.A. Solans³⁰, M. Solar¹²⁶, J. Solc¹²⁶, E.Yu. Soldatov⁹⁶, U. Soldevila¹⁶⁷, E. Solfaroli Camillocci^{132a,132b}, A.A. Solodkov¹²⁸, O.V. Solovyanov¹²⁸, V. Solovyev¹²¹, N. Soni¹, A. Sood¹⁵, V. Sopko¹²⁶, B. Sopko¹²⁶, M. Sosebee⁸, R. Soualah^{164a,164c}, P. Soueid⁹³, A. Soukharev¹⁰⁷, D. South⁴², V. Sopko¹²⁵, B. Sopko¹²⁵, M. Sosebee^c, R. Souaian^{1043/1045}, P. Soueid⁵⁵, A. Soukharev¹⁰⁵, D. South¹²,
S. Spagnolo^{72a,72b}, F. Spanò⁷⁶, R. Spighi^{20a}, G. Spigo³⁰, R. Spiwoks³⁰, M. Spousta^{127,aj}, T. Spreitzer¹⁵⁸, B. Spurlock⁸,
R.D. St. Denis⁵³, J. Stahlman¹²⁰, R. Stamen^{58a}, E. Stanecka³⁹, R.W. Stanek⁶, C. Stanescu^{134a}, M. Stanescu-Bellu⁴²,
M.M. Stanitzki⁴², S. Stapnes¹¹⁷, E.A. Starchenko¹²⁸, J. Stark⁵⁵, P. Staroba¹²⁵, P. Starovoitov⁴², R. Staszewski³⁹,
A. Staude⁹⁸, P. Stavina^{144a,*}, G. Steele⁵³, P. Steinbach⁴⁴, P. Steinberg²⁵, I. Stekl¹²⁶, B. Stelzer¹⁴², H.J. Stelzer⁸⁸,

O. Stelzer-Chilton^{159a}, H. Stenzel⁵², S. Stern⁹⁹, G.A. Stewart³⁰, J.A. Stillings²¹, M.C. Stockton⁸⁵, M. Stoebe⁸⁵, K. Stoerig⁴⁸, G. Stoicea^{26a}, S. Stonjek⁹⁹, P. Strachota¹²⁷, A.R. Stradling⁸, A. Straessner⁴⁴, J. Strandberg¹⁴⁷, S. Strandberg^{146a,146b}, A. Strandlie¹¹⁷, M. Strang¹⁰⁹, E. Strauss¹⁴³, M. Strauss¹¹¹, P. Strizenec^{144b}, R. Ströhmer¹⁷⁴, D.M. Strom¹¹⁴, J.A. Strong^{76,*}, R. Stroynowski⁴⁰, B. Stugu¹⁴, I. Stumer^{25,*}, J. Stupak¹⁴⁸, P. Sturm¹⁷⁵, N.A. Styles⁴², D.A. Soh^{151,v}, D. Su¹⁴³, HS. Subramania³, R. Subramaniam²⁵, A. Succurro¹², Y. Sugaya¹¹⁶, C. Suhr¹⁰⁶, M. Suk¹²⁷, V.V. Sulin⁹⁴, S. Sultansoy^{4d}, T. Sumida⁶⁷, X. Sun⁵⁵, J.E. Sundermann⁴⁸, K. Suruliz¹³⁹, G. Susinno^{37a,37b}, M.R. Sutton¹⁴⁹, Y. Suzuki⁶⁵, Y. Suzuki⁶⁶, M. Svatos¹²⁵, S. Swedish¹⁶⁸, I. Sykora^{144a}, T. Sykora¹²⁷, J. Sánchez¹⁶⁷, M.R. Sutton¹⁴⁹, Y. Suzuki⁰⁰, Y. Suzuki⁰⁰, M. Svatos¹²⁰, S. Swedish¹⁰⁰, I. Sykora¹¹¹, I. Sykora¹¹¹, J. Sancnez¹¹¹, D. Ta¹⁰⁵, K. Tackmann⁴², A. Taffard¹⁶³, R. Tafirout^{159a}, N. Taiblum¹⁵³, Y. Takahashi¹⁰¹, H. Takai²⁵, R. Takashima⁶⁸, H. Takeda⁶⁶, T. Takeshita¹⁴⁰, Y. Takubo⁶⁵, M. Talby⁸³, A. Talyshev^{107,h}, M.C. Tamsett²⁵, K.G. Tan⁸⁶, J. Tanaka¹⁵⁵, R. Tanaka¹¹⁵, S. Tanaka¹³¹, S. Tanaka⁶⁵, A.J. Tanasijczuk¹⁴², K. Tani⁶⁶, N. Tannoury⁸³, S. Tapprogge⁸¹, D. Tardif¹⁵⁸, S. Tarem¹⁵², F. Tarrade²⁹, G.F. Tartarelli^{89a}, P. Tas¹²⁷, M. Tasevsky¹²⁵, E. Tassi^{37a,37b}, Y. Tayalati^{135d}, C. Taylor⁷⁷, F.E. Taylor⁹², G.N. Taylor⁸⁶, W. Taylor^{159b}, M. Teinturier¹¹⁵, F.A. Teischinger³⁰, M. Teixeira Dias Castanheira⁷⁵, D. Tartarelli⁷⁶, M. Taylor⁸⁶, M. Taylor^{159b}, M. Teinturier¹¹⁵, F.A. Teischinger³⁰, M. Teixeira Dias Castanheira⁷⁵, D. Tartarelli⁷⁶, M. Taylor⁸⁶, M. Taylor^{159b}, M. Teinturier¹¹⁵, F.A. Teischinger³⁰, M. Teixeira Dias Castanheira⁷⁵, D. Tartarelli⁸⁷, Tarrade⁸⁷, M. Taylor⁸⁸, M. Taylor^{159b}, M. Teinturier¹¹⁵, F.A. Teischinger³⁰, M. Teixeira Dias Castanheira⁷⁵, D. Tartarelli⁸⁹, M. Taylor^{159b}, M. Teinturier¹⁵¹, S. Tarrade⁶⁵, K. Tarrach⁸¹, J. Tarrach⁸⁴, M. Taylor⁸⁴, M. Taylor⁸⁴, M. Taylor⁸⁴, M. Taylor⁸⁵, M. Taylor⁸⁶, M. Taylor⁸⁴, M. Taylor⁸⁵, M. Taylor⁸⁴, M. Taylor⁸⁵, M. Taylor⁸⁶, M. Tay P. Teixeira-Dias⁷⁶, K.K. Temming⁴⁸, H. Ten Kate³⁰, P.K. Teng¹⁵¹, S. Terada⁶⁵, K. Terashi¹⁵⁵, J. Terron⁸⁰, M. Testa⁴⁷, R.J. Teuscher^{158,l}, J. Therhaag²¹, T. Theveneaux-Pelzer⁷⁸, S. Thoma⁴⁸, J.P. Thomas¹⁸, E.N. Thompson³⁵, P.D. Thompson¹⁸, P.D. Thompson¹⁵⁸, A.S. Thompson⁵³, L.A. Thomsen³⁶, E. Thomson¹²⁰, M. Thomson²⁸ W.M. Thong⁸⁶, R.P. Thun⁸⁷, F. Tian³⁵, M.J. Tibbetts¹⁵, T. Tic¹²⁵, V.O. Tikhomirov⁹⁴, Y.A. Tikhonov^{107,h}, S. Timoshenko⁹⁶, E. Tiouchichine⁸³, P. Tipton¹⁷⁶, S. Tisserant⁸³, T. Todorov⁵, S. Todorova-Nova¹⁶¹, B. Toggerson¹⁶³, J. Tojo⁶⁹, S. Tokár^{144a}, K. Tokushuku⁶⁵, K. Tollefson⁸⁸, M. Tomoto¹⁰¹, L. Tompkins³¹, K. Toms¹⁰³, A. Tonoyan¹⁴, C. Topfel¹⁷, N.D. Topilin⁶⁴, E. Torrence¹¹⁴, H. Torres⁷⁸, E. Torró Pastor¹⁶⁷, J. Toth^{83,ae}, F. Touchard⁸³, D.R. Tovey¹³⁹, T. Trefzger¹⁷⁴, L. Tremblet³⁰, A. Tricoli³⁰, I.M. Trigger^{159a}, S. Trincaz-Duvoid⁷⁸, M.F. Tripiana⁷⁰, N. Triplett²⁵, W. Trischuk¹⁵⁸, B. Trocmé⁵⁵, C. Troncon^{89a}, M. Trottier-McDonald¹⁴², P. True⁸⁸, M. Trzebinski³⁹, A. Trzupek³⁹, C. Tsarouchas³⁰, J.C-L. Tseng¹¹⁸, M. Tsiakiris¹⁰⁵, P.V. Tsiareshka⁹⁰, D. Tsionou^{5,ak}, G. Tsipolitis¹⁰, S. Tsiskaridze¹², V. Tsiskaridze⁴⁸, E.G. Tskhadadze^{51a}, I.I. Tsukerman⁹⁵, V. Tsulaia¹⁵, J.-W. Tsung²¹, S. Tsuno⁶⁵, S. Isiskaridze¹², V. Isiskaridze³², E.G. Isknadadze³¹⁴, I.I. Isukerman³⁵, V. Isulai^{13,5}, J.-W. Isung²⁴, S. Isuno³⁵, D. Tsybychev¹⁴⁸, A. Tua¹³⁹, A. Tudorache^{26a}, V. Tudorache^{26a}, J.M. Tuggle³¹, M. Turala³⁹, D. Turecek¹²⁶, I. Turk Cakir^{4e}, R. Turra^{89a,89b}, P.M. Tuts³⁵, A. Tykhonov⁷⁴, M. Tylmad^{146a,146b}, M. Tyndel¹²⁹, G. Tzanakos⁹, K. Uchida²¹, I. Ueda¹⁵⁵, R. Ueno²⁹, M. Ughetto⁸³, M. Ugland¹⁴, M. Uhlenbrock²¹, F. Ukegawa¹⁶⁰, G. Unal³⁰, A. Undrus²⁵, G. Unel¹⁶³, Y. Unno⁶⁵, D. Urbaniec³⁵, P. Urquijo²¹, G. Usai⁸, L. Vacavant⁸³, V. Vacek¹²⁶, B. Vachon⁸⁵, S. Valsen¹⁵, S. Valentinetti^{20a,20b}, A. Valero¹⁶⁷, L. Valery³⁴, S. Valkar¹²⁷, E. Valladolid Gallego¹⁶⁷, S. Vallecorsa¹⁵², J.A. Valls Ferrer¹⁶⁷, R. Van Berg¹²⁰, P.C. Van Der Deijl¹⁰⁵, R. van der Geer¹⁰⁵, H. van der Graaf¹⁰⁵,
B. Van Der Dei¹¹⁰⁵, D. eren der Ster³⁰, N. van Fildi¹³⁰, D. eren Graaf¹⁴², R. Van Der Leeuw¹⁰⁵, E. van der Poel¹⁰⁵, D. van der Ster³⁰, N. van Eldik³⁰, P. van Gemmeren⁶, J. Van Nieuwkoop¹⁴², I. van Vulpen¹⁰⁵, M. Vanadia⁹⁹, W. Vandelli³⁰, A. Vaniachine⁶, P. Vankov⁴², F. Vannucci⁷⁸, R. Vari^{132a}, E.W. Varnes⁷, T. Varol⁸⁴, D. Varouchas¹⁵, A. Vartapetian⁸, K.E. Varvell¹⁵⁰, V.I. Vassilakopoulos⁵⁶, F. Vazeille³⁴, T. Vazquez Schroeder⁵⁴, G. Vegni^{89a,89b}, J.J. Veillet¹¹⁵, F. Veloso^{124a}, R. Veness³⁰, S. Veneziano^{132a}, A. Ventura^{72a,72b}, D. Venturi⁴⁸, M. Venturi⁴⁸, N. Venturi¹⁵⁸, V. Vercesi^{119a}, M. Verducci¹³⁸, W. Verkerke¹⁰⁵, J.C. Vermeulen¹⁰⁵, A. Vest⁴⁴, M.C. Vetterli^{142, f}, I. Vichou¹⁶⁵, T. Vickey^{145b, al}, O.E. Vickey Boeriu^{145b}, G.H.A. Viehhauser¹¹⁸, S. Viel¹⁶⁸, M. Villa^{20a,20b}, M. Villaplana Perez¹⁶⁷, E. Vilucchi⁴⁷, M.G. Vincter²⁹, E. Vinek³⁰, V.B. Vinogradov⁶⁴, M. Virchaux^{136,*}, J. Virzi¹⁵, O. Vitells¹⁷², M. Viti⁴², I. Vivarelli⁴⁸, F. Vives Vaque³, S. Vlachos¹⁰, D. Vladoiu⁹⁸, M. Vlasak¹²⁶, A. Vogel²¹, P. Vokac¹²⁶, G. Volpi⁴⁷, M. Volpi⁸⁶, G. Volpini^{89a}, H. von der Schmitt⁹⁹, M. Vlašak , A. Vogel , F. Vokac , G. Volpi , M. Volpi , G. Volpin , H. Volpin , H. Voli del Schnitt ,
H. von Radziewski⁴⁸, E. von Toerne²¹, V. Vorobel¹²⁷, V. Vorwerk¹², M. Vos¹⁶⁷, R. Voss³⁰, J.H. Vossebeld⁷³,
N. Vranjes¹³⁶, M. Vranjes Milosavljevic¹⁰⁵, V. Vrba¹²⁵, M. Vreeswijk¹⁰⁵, T. Vu Anh⁴⁸, R. Vuillermet³⁰, I. Vukotic³¹,
W. Wagner¹⁷⁵, P. Wagner²¹, H. Wahlen¹⁷⁵, S. Wahrmund⁴⁴, J. Wakabayashi¹⁰¹, S. Walch⁸⁷, J. Walder⁷¹, R. Walker⁹⁸,
W. Walkowiak¹⁴¹, R. Wall¹⁷⁶, P. Waller⁷³, B. Walsh¹⁷⁶, C. Wang⁴⁵, H. Wang¹⁷³, H. Wang⁴⁰, J. Wang¹⁵¹, J. Wang^{33a}, R. Wang¹⁰³, S.M. Wang¹⁵¹, T. Wang²¹, A. Warburton⁸⁵, C.P. Ward²⁸, D.R. Wardrope⁷⁷, M. Warsinsky⁴⁸, A. Washbrook⁴⁶, C. Wasicki⁴², I. Watanabe⁶⁶, P.M. Watkins¹⁸, A.T. Watson¹⁸, I.J. Watson¹⁵⁰, M.F. Watson¹⁸, G. Watts¹³⁸, S. Watts⁸², A.T. Waugh¹⁵⁰, B.M. Waugh⁷⁷, M.S. Weber¹⁷, J.S. Webster³¹, A.R. Weidberg¹¹⁸, P. Weigell⁹⁹, J. Weingarten⁵⁴, C. Weiser⁴⁸, P.S. Wells³⁰, T. Wenaus²⁵, D. Wendland¹⁶, Z. Weng^{151,v}, T. Wengler³⁰, S. Wenig³⁰, N. Wermes²¹, M. Werner⁴⁸, P. Werner³⁰, M. Werth¹⁶³, M. Wessels^{58a}, J. Wetter¹⁶¹, C. Weydert⁵⁵, K. Whalen²⁹, A. White⁸, M.J. White⁸⁶, S. White^{122a,122b}, S.R. Whitehead¹¹⁸, D. Whiteson¹⁶³, D. Whittington⁶⁰, D. Wicke¹⁷⁵, F.J. Wickens¹²⁹, W. Wiedenmann¹⁷³, M. Wielers¹²⁹, P. Wienemann²¹, C. Wiglesworth⁷⁵, L.A.M. Wiik-Fuchs²¹, P.A. Wijeratne⁷⁷, A. Wildauer⁹⁹, M.A. Wildt^{42,s}, I. Wilhelm¹²⁷, H.G. Wilkens³⁰, J.Z. Will⁹⁸, E. Williams³⁵, H.H. Williams¹²⁰, S. Williams²⁸, W. Willis³⁵, S. Willocq⁸⁴, J.A. Wilson¹⁸, M.G. Wilson¹⁴³, A. Wilson⁸⁷, I. Wingerter-Seez⁵, S. Winkelmann⁴⁸, F. Winklmeier³⁰, M. Wittgen¹⁴³, S.J. Wollstadt⁸¹, M.W. Wolter³⁹, K. Wilson⁷, I. Wilgerter-Seez, S. Wilkelmann⁷, F. Wilkelmen⁸, M. Wiltgell⁷, S.J. Wolstadt⁷, M. W. Wolter⁷,
H. Wolters^{124a,i}, W.C. Wong⁴¹, G. Wooden⁸⁷, B.K. Wosiek³⁹, J. Wotschack³⁰, M.J. Woudstra⁸², K.W. Wozniak³⁹,
K. Wraight⁵³, M. Wright⁵³, B. Wrona⁷³, S.L. Wu¹⁷³, X. Wu⁴⁹, Y. Wu^{33b,am}, E. Wulf³⁵, B.M. Wynne⁴⁶, S. Xella³⁶,
M. Xiao¹³⁶, S. Xie⁴⁸, C. Xu^{33b,z}, D. Xu^{33a}, L. Xu^{33b}, B. Yabsley¹⁵⁰, S. Yacoob^{145a,an}, M. Yamada⁶⁵, H. Yamaguchi¹⁵⁵,
A. Yamamoto⁶⁵, K. Yamamoto⁶³, S. Yamamoto¹⁵⁵, T. Yamamura¹⁵⁵, T. Yamanaka¹⁵⁵, K. Yamauchi¹⁰¹,
T. Yamazaki¹⁵⁵, Y. Yamazaki⁶⁶, Z. Yan²², H. Yang^{33e}, H. Yang¹⁷³, U.K. Yang⁸², Y. Yang¹⁰⁹, Z. Yang^{146a,146b}, S. Yanush⁹¹, L. Yao^{33a}, Y. Yasu⁶⁵, E. Yatsenko⁴², J. Ye⁴⁰, S. Ye²⁵, A.L. Yen⁵⁷, M. Yilmaz^{4c}, R. Yoosoofmiya¹²³,

S. Yanush⁵¹, L. Yao^{35a}, Y. Yasu⁵⁵, E. Yatsenko⁴², J. Ye⁴⁶, S. Ye⁴⁵, A.L. Yen⁵⁷, M. Yilmaz^{4C}, R. Yoosoofmiya¹²⁵, K. Yorita¹⁷¹, R. Yoshida⁶, K. Yoshihara¹⁵⁵, C. Young¹⁴³, C.J. Young¹¹⁸, S. Youssef²², D. Yu²⁵, D.R. Yu¹⁵, J. Yu⁸, J. Yu¹¹², L. Yuan⁶⁶, A. Yurkewicz¹⁰⁶, B. Zabinski³⁹, R. Zaidan⁶², A.M. Zaitsev¹²⁸, L. Zanello^{132a,132b}, D. Zanzi⁹⁹, A. Zaytsev²⁵, C. Zeitnitz¹⁷⁵, M. Zeman¹²⁶, A. Zemla³⁹, O. Zenin¹²⁸, T. Ženiš^{144a}, Z. Zinonos^{122a,122b}, D. Zerwas¹¹⁵, G. Zevi della Porta⁵⁷, D. Zhang⁸⁷, H. Zhang⁸⁸, J. Zhang⁶, X. Zhang^{33d}, Z. Zhang¹¹⁵, L. Zhao¹⁰⁸, Z. Zhao^{33b}, A. Zhemchugov⁶⁴, J. Zhong¹¹⁸, B. Zhou⁸⁷, N. Zhou¹⁶³, Y. Zhou¹⁵¹, C.G. Zhu^{33d}, H. Zhu⁴², J. Zhu⁸⁷, Y. Zhu^{33b}, X. Zhuang⁹⁸, V. Zhuravlov⁹⁹, A. Zibell⁹⁸, D. Zieminska⁶⁰, N.I. Zimin⁶⁴, R. Zimmermann²¹, S. Zimmermann²¹,

- S. Zimmermann⁴⁸, M. Ziolkowski¹⁴¹, R. Zitoun⁵, L. Živković³⁵, V.V. Zmouchko^{128,*}, G. Zobernig¹⁷³, A. Zoccoli^{20a,20b}, M. zur Nedden¹⁶, V. Zutshi¹⁰⁶, L. Zwalinski³⁰.

¹ School of Chemistry and Physics, University of Adelaide, Adelaide, Australia

- ² Physics Department, SUNY Albany, Albany NY, United States of America
- ³ Department of Physics, University of Alberta, Edmonton AB, Canada
- ⁴ ^(a) Department of Physics, Ankara University, Ankara; ^(b) Department of Physics, Dumlupinar University, Kutahya;

^(c) Department of Physics, Gazi University, Ankara; ^(d) Division of Physics, TOBB University of Economics and

Technology, Ankara; ^(e) Turkish Atomic Energy Authority, Ankara, Turkey

⁵ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France

- ⁶ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
- ⁷ Department of Physics, University of Arizona, Tucson AZ, United States of America
- ⁸ Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
- ⁹ Physics Department, University of Athens, Athens, Greece
- ¹⁰ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹¹ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹² Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain

¹³ (a) Institute of Physics, University of Belgrade, Belgrade; ^(b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

- ¹⁴ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁵ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
- ¹⁶ Department of Physics, Humboldt University, Berlin, Germany
- ¹⁷ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁸ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ¹⁹ (a) Department of Physics, Bogazici University, Istanbul; ^(b) Division of Physics, Dogus University, Istanbul; ^(c) Department of Physics Engineering, Gaziantep University, Gaziantep; ^(d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
- ²⁰ (a) INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
- ²¹ Physikalisches Institut, University of Bonn, Bonn, Germany
- ²² Department of Physics, Boston University, Boston MA, United States of America
- ²³ Department of Physics, Brandeis University, Waltham MA, United States of America
- ²⁴ (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ^(b) Federal University of Juiz de Fora

(UFJF), Juiz de Fora; ^(c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ^(d) Instituto de Fisica,

Universidade de Sao Paulo, Sao Paulo, Brazil

- ²⁵ Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
- ²⁶ (a) National Institute of Physics and Nuclear Engineering, Bucharest; ^(b) University Politehnica Bucharest,
- Bucharest; ^(c) West University in Timisoara, Timisoara, Romania
- ²⁷ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- ²⁸ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ²⁹ Department of Physics, Carleton University, Ottawa ON, Canada
- ³⁰ CERN, Geneva, Switzerland
- ³¹ Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

³² ^(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ^(b) Departamento de Física,

Universidad Técnica Federico Santa María, Valparaíso, Chile

³³ (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ^(b) Department of Modern Physics, University of Science and Technology of China, Anhui; ^(c) Department of Physics, Nanjing University, Jiangsu; ^(d) School of Physics, Shandong University, Shandong; ^(e) Physics Department, Shanghai Jiao Tong University, Shanghai,

China

- ³⁴ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
- ³⁵ Nevis Laboratory, Columbia University, Irvington NY, United States of America
- ³⁶ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
- ³⁷ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
- ³⁸ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
- ³⁹ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
- ⁴⁰ Physics Department, Southern Methodist University, Dallas TX, United States of America
- ⁴¹ Physics Department, University of Texas at Dallas, Richardson TX, United States of America
- ⁴² DESY, Hamburg and Zeuthen, Germany
- ⁴³ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
- ⁴⁴ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
- ⁴⁵ Department of Physics, Duke University, Durham NC, United States of America
- ⁴⁶ SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- ⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy
- ⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
- ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland
- ⁵⁰ (a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy
- ⁵¹ ^(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ^(b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
- ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
- ⁵³ SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
- ⁵⁵ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
- Fance
- ⁵⁶ Department of Physics, Hampton University, Hampton VA, United States of America
- ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
- ⁵⁸ (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ^(b) Physikalisches Institut,
- Ruprecht-Karls-Universität Heidelberg, Heidelberg; ^(c) ZITI Institut für technische Informatik,
- Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
- ⁵⁹ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
- ⁶⁰ Department of Physics, Indiana University, Bloomington IN, United States of America
- ⁶¹ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
- ⁶² University of Iowa, Iowa City IA, United States of America
- ⁶³ Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
- ⁶⁴ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
- ⁶⁵ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
- ⁶⁶ Graduate School of Science, Kobe University, Kobe, Japan
- ⁶⁷ Faculty of Science, Kyoto University, Kyoto, Japan
- ⁶⁸ Kyoto University of Education, Kyoto, Japan
- ⁶⁹ Department of Physics, Kyushu University, Fukuoka, Japan
- ⁷⁰ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
- ⁷¹ Physics Department, Lancaster University, Lancaster, United Kingdom
- ⁷² ^(a) INFN Sezione di Lecce; ^(b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
- ⁷³ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
- ⁷⁴ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
- ⁷⁵ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
- ⁷⁶ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
- ⁷⁷ Department of Physics and Astronomy, University College London, London, United Kingdom
- ⁷⁸ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3,
- Paris, France
- ⁷⁹ Fysiska institutionen, Lunds universitet, Lund, Sweden
- ⁸⁰ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
- ⁸¹ Institut für Physik, Universität Mainz, Mainz, Germany
- ⁸² School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

- ⁸³ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
- ⁸⁴ Department of Physics, University of Massachusetts, Amherst MA, United States of America
- ⁸⁵ Department of Physics, McGill University, Montreal QC, Canada
- ⁸⁶ School of Physics, University of Melbourne, Victoria, Australia
- ⁸⁷ Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
- ⁸⁸ Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
- ⁸⁹ (a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy
- ⁹⁰ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
- ⁹¹ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
- ⁹² Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
- ⁹³ Group of Particle Physics, University of Montreal, Montreal QC, Canada
- ⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
- ⁹⁵ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
- 96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
- ⁹⁷ D.V.Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
- 98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
- 99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
- ¹⁰⁰ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ¹⁰¹ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
- ¹⁰² (a) INFN Sezione di Napoli; ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
- ¹⁰³ Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
- ¹⁰⁴ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
- ¹⁰⁵ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
- ¹⁰⁶ Department of Physics, Northern Illinois University, DeKalb IL, United States of America
- ¹⁰⁷ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
- ¹⁰⁸ Department of Physics, New York University, New York NY, United States of America
- ¹⁰⁹ Ohio State University, Columbus OH, United States of America
- ¹¹⁰ Faculty of Science, Okayama University, Okayama, Japan
- ¹¹¹ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
- ¹¹² Department of Physics, Oklahoma State University, Stillwater OK, United States of America
- ¹¹³ Palacký University, RCPTM, Olomouc, Czech Republic
- ¹¹⁴ Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
- ¹¹⁵ LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
- ¹¹⁶ Graduate School of Science, Osaka University, Osaka, Japan
- ¹¹⁷ Department of Physics, University of Oslo, Oslo, Norway
- ¹¹⁸ Department of Physics, Oxford University, Oxford, United Kingdom
- ¹¹⁹ (a) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
- ¹²⁰ Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
- ¹²¹ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ¹²² ^(a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
- ¹²³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
- ¹²⁴ (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal; ^(b) Departamento
- de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
- ¹²⁵ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- ¹²⁶ Czech Technical University in Prague, Praha, Czech Republic
- ¹²⁷ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
- ¹²⁸ State Research Center Institute for High Energy Physics, Protvino, Russia
- ¹²⁹ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ¹³⁰ Physics Department, University of Regina, Regina SK, Canada
- ¹³¹ Ritsumeikan University, Kusatsu, Shiga, Japan
- ¹³² ^(a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
- ¹³³ ^(a) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- ¹³⁴ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
- ¹³⁵ ^(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies Université Hassan II, Casablanca; ^(b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ^(c) Faculté des Sciences

Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ^(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ^(e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

¹³⁶ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

¹³⁷ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

- ¹³⁸ Department of Physics, University of Washington, Seattle WA, United States of America
- ¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- ¹⁴⁰ Department of Physics, Shinshu University, Nagano, Japan
- ¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany
- ¹⁴² Department of Physics, Simon Fraser University, Burnaby BC, Canada
- ¹⁴³ SLAC National Accelerator Laboratory, Stanford CA, United States of America
- ¹⁴⁴ ^(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; ^(b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

¹⁴⁵ ^(a) Department of Physics, University of Johannesburg, Johannesburg; ^(b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

- ¹⁴⁶ (a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden
- ¹⁴⁷ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- ¹⁴⁸ Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
- ¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan
- 152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
- ¹⁵³ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁵ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁸ Department of Physics, University of Toronto, Toronto ON, Canada
- ¹⁵⁹ (a) TRIUMF, Vancouver BC; ^(b) Department of Physics and Astronomy, York University, Toronto ON, Canada
- ¹⁶⁰ Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- ¹⁶¹ Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
- ¹⁶² Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶³ Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

¹⁶⁴ ^(a) INFN Gruppo Collegato di Udine; ^(b) ICTP, Trieste; ^(c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

- ¹⁶⁵ Department of Physics, University of Illinois, Urbana IL, United States of America
- ¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- ¹⁶⁷ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and

Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

- ¹⁶⁸ Department of Physics, University of British Columbia, Vancouver BC, Canada
- ¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
- ¹⁷⁰ Department of Physics, University of Warwick, Coventry, United Kingdom
- ¹⁷¹ Waseda University, Tokyo, Japan
- ¹⁷² Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- 173 Department of Physics, University of Wisconsin, Madison WI, United States of America
- ¹⁷⁴ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷⁵ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁶ Department of Physics, Yale University, New Haven CT, United States of America
- ¹⁷⁷ Yerevan Physics Institute, Yerevan, Armenia

¹⁷⁸ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

- a Also at Department of Physics, King's College London, London, United Kingdom
- ^b Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal

- ^c Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
- ^d Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ^e Also at Department of Physics, University of Johannesburg, Johannesburg, South Africa
- ^f Also at TRIUMF, Vancouver BC, Canada
- ^g Also at Department of Physics, California State University, Fresno CA, United States of America
- ^h Also at Novosibirsk State University, Novosibirsk, Russia
- ⁱ Also at Department of Physics, University of Coimbra, Coimbra, Portugal
- ^j Also at Department of Physics, UASLP, San Luis Potosi, Mexico
- k Also at Università di Napoli Parthenope, Napoli, Italy
- ^{*l*} Also at Institute of Particle Physics (IPP), Canada
- ^m Also at Department of Physics, Middle East Technical University, Ankara, Turkey
- n Also at Louisiana Tech University, Ruston LA, United States of America

^o Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

- ^p Also at Department of Physics and Astronomy, University College London, London, United Kingdom
- ^q Also at Department of Physics, University of Cape Town, Cape Town, South Africa
- ^r Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ^s Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
- ^t Also at Manhattan College, New York NY, United States of America
- ^u Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
- v Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
- w Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
- ^x Also at School of Physics, Shandong University, Shandong, China
- y Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
- ^z Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à
- l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
- ^{aa} Also at Section de Physique, Université de Genève, Geneva, Switzerland
- ab Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
- ^{ac} Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
- ^{ad} Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
- ^{ae} Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
- ^{af} Also at California Institute of Technology, Pasadena CA, United States of America
- ag Also at Institute of Physics, Jagiellonian University, Krakow, Poland
- ^{ah} Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
- ^{ai} Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
- ^{*aj*} Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America
- ^{ak} Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- ^{al} Also at Department of Physics, Oxford University, Oxford, United Kingdom
- ^{am} Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
- ^{an} Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

* Deceased