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Copula Calibration

Johanna F. Ziegel Tilmann Gneiting

Abstract

We propose notions of calibration for probabilistic forecasts of gen-
eral multivariate quantities. Probabilistic copula calibration is a nat-
ural analogue of probabilistic calibration in the univariate setting. It
can be assessed empirically by checking for the uniformity of the cop-
ula probability integral transform (CopPIT), which is invariant under
coordinate permutations and coordinatewise strictly monotone trans-
formations of the predictive distribution and the outcome. The Cop-
PIT histogram can be interpreted as a generalization and variant of
the multivariate rank histogram, which has been used to check the cal-
ibration of ensemble forecasts. Climatological copula calibration is an
analogue of marginal calibration in the univariate setting. Methods
and tools are illustrated in a simulation study and applied to com-
pare raw numerical model and statistically postprocessed ensemble
forecasts of bivariate wind vectors.

1 Introduction

The past two decades have witnessed major developments in the scientific ap-
proach to forecasting, in that probabilistic forecasts, which take the form of
probability distributions over future quantities and events, have been replac-
ing single-valued point forecasts in a wealth of applications (Gneiting and Katzfuss,
2014). The goal in probabilistic forecasting is to maximize the sharpness of
the predictive probability distributions subject to calibration (Gneiting et al.,
2007). Calibration concerns the statistical compatibility between the predic-
tive distributions and the realizing observations; in a nutshell, the observa-
tions are supposed to be indistinguishable from random numbers drawn from
the predictive distributions.

For probabilistic forecasts of univariate quantities various types of cali-
bration have been established (Gneiting and Ranjan, 2013). In particular,
a forecast is probabilistically calibrated if its probability integral transform
(PIT), i.e., the value of the predictive cumulative distribution function at
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the realizing observation, is uniformly distributed. Accordingly, empirical
checks for the uniformity of histograms of PIT values have formed a cor-
nerstone of density forecast evaluation (Dawid, 1984; Diebold et al., 1998;
Gneiting et al., 2007).

In this paper we introduce notions of calibration for probabilistic forecasts
of multivariate quantities and propose tools for empirical calibration checks
in such settings, as recently called for in hydrologic and meteorological appli-
cations (Schaake et al., 2010; Pinson, 2013; Schefzik et al., 2013). In Section
2 we study a natural multivariate extension of the univariate PIT that is in-
variant under coordinate permutations and coordinatewise strictly monotone
transformations of the predictive distribution and the realizing observation,
namely, the copula probability integral transform (CopPIT). Probabilistic
copula calibration can be assessed empirically by checking the uniformity of
the CopPIT histogram, which can be viewed as a generalization and vari-
ant of the multivariate rank histogram proposed by Gneiting et al. (2008).
Furthermore, we introduce the notion of climatological copula calibration,
which is an analogue of marginal calibration in the univariate setting. The
strengths of these notions and tools include their ease of interpretability and
their applicability to both density and ensemble forecasts.

In Section 3 we employ CopPIT histograms in a simulation study, and
in Section 4 we use them to compare raw numerical model and statistically
postprocessed ensemble forecasts of bivariate wind vectors over Germany.
The paper ends with a discussion in Section 5.

2 Multivariate notions of calibration

We introduce the copula probability integral transform (CopPIT) and the no-
tions of probabilistic copula calibration and climatological copula calibration
within the prediction space setting of Gneiting and Ranjan (2013). Through-
out, we identify a probability measure on Rd with its cumulative distribution
function (CDF).

The Kendall distribution function KH of a probability measure or CDF
H on Rd is defined as

KH(w) = pr{H(X) ≤ w} for w ∈ [0, 1],

where the random vector X has distribution H . It is well known that if d = 1
and H is continuous then KH corresponds to a uniform distribution on [0, 1].
In dimension d > 1, the Kendall distribution depends only on the copula
of the probability measure H and generally it is not uniform (Barbe et al.,
1996). In fact, for any CDF K on [0, 1] with K(w) ≥ w for w ∈ [0, 1] and any
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integer d > 1, there exists a probability measure H on Rd such that KH = K
(Nelsen et al., 2003; Genest et al., 2011).

2.1 Probabilistic and climatological copula calibration

As noted, we work in the prediction space setting introduced by Gneiting and Ranjan
(2013). Specifically, let (Ω,A,Q) be a probability space. Let Y be an Rd-
valued random vector on Ω, and let H be a d-variate CDF-valued random
quantity that is measurable with respect to some sub σ-algebra A0 ⊆ A.
Furthermore, let the random variable V be uniformly distributed on the unit
interval [0, 1] and independent of Y and A0.

The CDF-valued random quantity H provides an A0-measureable predic-
tive probability measure for the Rd-valued outcome Y . It is said to be ideal
relative to A0 if it equals the conditional law of Y given A0, which we denote
by H = L(Y |A0). Thus, an ideal forecast honors the information in the sub
σ-algebra A0 ⊆ A to the full extent possible. For a function f on the real
line, we use the notation f(y−) = limx↑y f(x) to denote the left-hand limit,
if it exists.

Definition 2.1 (CopPIT). In the prediction space setting, the random vari-
able

UH = KH{H(Y )−}+ V [KH{H(Y )} − KH{H(Y )−}] (1)

is the copula probability integral transform (CopPIT) of the CDF-valued
random quantity H .

If T is a deterministic coordinatewise strictly monotone transformation
on Rd, i.e.,

T (x1, . . . , xd) = (T1(x1), . . . , Td(xd))

where the mappings T1, . . . , Td are real-valued and strictly increasing, the
distribution of UH for the probabilistic forecast H and the outcome Y is the
same as that of UH◦T−1 for the probabilistic forecast H ◦T−1 and the outcome
T (Y ). The distribution of UH also is invariant under coordinate permuta-
tions. An interesting open question is for the largest class of transformations
under which this invariance holds, with the class of the locally orientation
preserving functions being a candidate.

Definition 2.2. The forecast H is probabilistically copula calibrated if its
CopPIT is uniformly distributed on the unit interval.

Probabilistic copula calibration can be viewed as a multivariate general-
ization of the notion of probabilistic calibration in the univariate case. In the
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prediction space setting, let F be a univariate CDF-valued random quantity
for the real-valued outcome Y . Gneiting and Ranjan (2013, Definition 2.6)
define F to be probabilistically calibrated if

UF = F (Y−) + V {F (Y )− F (Y−)} (2)

is standard uniformly distributed. If the dimension is d = 1 then equation
(1) is the same as equation (2).

Definition 2.3. The forecast H is climatologically copula calibrated if

Q{H(Y ) ≤ w} = EQ{KH(w)} for w ∈ [0, 1]. (3)

The concept of climatological copula calibration can be interpreted as
marginal calibration of the Kendall distribution, where marginal calibration
refers to the univariate prediction space setting, as follows (Gneiting and Ranjan,
2013, Definition 2.6). If F is a univariate CDF-valued random quantity for
the real-valued outcome Y , then it is marginally calibrated if Q(Y ≤ y) =
EQ{F (y)} for y ∈ R.

The following result justifies the quest for probabilistically and climato-
logically copula calibrated probabilistic forecasts in practical settings.

Theorem 2.1. If the forecast H is ideal with respect to the σ-algebra A0,

then it is both probabilistically and climatologically copula calibrated.

Proof. Suppose that H = L(Y |A0) and let w ∈ [0, 1]. Then

Q{H(Y ) ≤ w} = EQ EQ [1{H(Y ) ≤ w}|A0] = EQ{KH(w)},

whence H is climatologically copula calibrated. Turning to probabilistic
copula calibration, well known results for non-random CDFs and conditional
expectations imply that Q{UH ≤ w} = w.

Suppose that the probabilistic forecasts F1, . . . , Fd for the marginals of
the random vector Y = (Y1, . . . , Yd) are probabilistically calibrated. Then
probabilistic copula calibration can be seen as a property that depends only
on the copula C of the forecast H and the copula of the outcome vector Y ,
as follows. Probabilistic calibration of the marginals implies that the random
vector W = (UF1

, . . . , UFd
) has uniformly distributed marginals. Therefore,

the problem of predicting Y by H can be reduced to predicting W by a
copula C. Then

H = C ◦ (F1, . . . , Fd)

yields a multivariate probabilistic forecast of Y with probabilistically cali-
brated marginals. For a related discussion in the context of ensemble fore-
casts, see Schefzik et al. (2013).
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2.2 Empirical assessment of copula calibration

In the practice of forecast evaluation, one observes a sample

(H1, y1), . . . , (HJ , yJ)

from the joint distribution of the probabilistic forecast and the outcome.
To assess probabilistic copula calibration one can plot a histogram of the

empirical CopPIT values

uj = KHj
{Hj(yj)−}+ vj [KHj

{Hj(yj)} − KHj
{Hj(yj)−}] (4)

for j = 1, . . . , J , where v1, . . . , vJ are independent standard uniformly dis-
tributed random numbers. Based on ideas in Czado et al. (2009), one can
also define a non-randomized version of the CopPIT, but we do not pursue
this here. In most cases of practical interest, the Kendall distribution is
continuous and then we can write

uj = KHj
{Hj(yj)}, (5)

without any need to invoke vj . If d = 1, the CopPIT histogram coin-
cides with the PIT histogram, the key tool in checking the calibration of
univariate probabilistic forecasts (Diebold et al., 1998; Gneiting et al., 2007;
Czado et al., 2009). If the forecasts are probabilistically copula calibrated,
the CopPIT histogram is uniform up to random fluctuations, and deviations
from uniformity can be interpreted diagnostically, as illustrated in Section 3.

For multivariate distributions with an Archimedean copula the Kendall
distribution function KH is available in closed form (McNeil and Nešlehová,
2009), and then we can readily evaluate (4) or (5). For other types of distri-
butions, we approximate KH by the empirical CDF of H(x1), . . . , H(xn) for
some large n, where x1, . . . , xn is a sample from a d-variate population with
CDF H . Another approximation that does not require the potentially costly
evaluation of H uses the empirical Kendall distribution function Kn, i.e., the
empirical CDF of the pseudo-observations

wk =
1

n

n
∑

j=1

1{xj � xk} for k = 1, . . . , n, (6)

where xj = (xj1, . . . , xjd) � xk = (xk1, . . . , xkd) if xjl ≤ xkl for l = 1, . . . , d.
As Barbe et al. (1996) show, the empirical Kendall distribution function Kn

generally converges to KH .
To assess climatological copula calibration one can plot

1

J

J
∑

j=1

1{Hj(yj) ≤ w} vs.
1

J

J
∑

j=1

KHj
(w)

5



for w ∈ [0, 1], which are the empirical analogues of the left- and right-hand
sides of (3). If the forecasts are calibrated the resulting plot ought to be
close to the diagonal.

2.3 Comparison to the multivariate rank histogram

As noted, the CopPIT histogram generalizes the multivariate rank histogram
introduced by Gneiting et al. (2008) in the context of ensemble forecasts.
This refers to the situation in which the probabilistic forecasts H1, . . . , HJ

are empirical measures with a fixed size m.
For ease of exposition, we drop the indices and suppose that the forecast

H places mass 1/m at each of x1, . . . , xm ∈ Rd, while the outcome is y ∈ Rd.
The associated multivariate rank is obtained as follows. Define pre-ranks
ρ0 = 1 +

∑m

i=1
1(xi � y) and

ρk = 1(y � xk) +

m
∑

i=1

1(xi � xk) for k = 1, . . . , m.

The multivariate rank then is the rank of the observation pre-rank ρ0 among
ρ0, ρ1, . . . , ρm, with ties resolved at random. Conditional on H and y we thus
get a multivariate rank with a discrete uniform distribution on the integers

1 +
m
∑

k=1

1(ρk < ρ0), . . . , 1 +
m
∑

k=1

1(ρk ≤ ρ0). (7)

We now link the multivariate rank and the CopPIT. If H is the empirical
measure with mass 1/m at x1, . . . , xm ∈ Rd, its Kendall distribution function
can be expressed in terms of the pseudo-observations at (6), in that

KH(w) =
1

m

m
∑

k=1

1(wk ≤ w) for w ∈ [0, 1].

Since ρ0 = mH(y) + 1 and ρk = mwk + 1(y � xk) for k = 1, . . . , m, we
can express the CopPIT value (4) in terms of the pseudo-ranks. A bit of
algebra shows that conditional on H and y the CopPIT value has a uniform
distribution on the interval
[

1

m

m
∑

k=1

1{ρk − 1(y � xk) < ρ0 − 1},
1

m

m
∑

k=1

1{ρk − 1(y � xk) ≤ ρ0 − 1}

]

.

(8)
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Figure 1: Multivariate rank and CopPIT histograms in the high-dimensional
simulation setting described in the text.

A comparison of (7) and (8) suggests that if the ensemble size m is large the
CopPIT and the multivariate rank histogram tend to look nearly identical.
If m is small this may not be the case, as we illustrate in Section 4.

The multivariate rank histogram has also been used to assess the calibra-
tion of probabilistic forecasts in the form of continuous multivariate distribu-
tions. Schuhen et al. (2012) transform predictive densities for bivariate wind
vectors into ensemble forecasts, by drawing a simple random sample from
each predictive distribution, where the particular choice of the sample size
m = 8 allows for a better comparison with the underlying ensemble forecast.
In such settings we prefer to work with the CopPIT histogram, as it makes
better use of the structure of the predictive distributions and does not induce
additional randomness into the evaluation procedure.

We illustrate this latter aspect in a simulation setting in dimension d =
50, where we choose the sample size m = 8 to compute the multivari-
ate rank histograms. In weather and climate forecasting, ensemble sys-
tems operate with small m and very high d (Gneiting and Raftery, 2005;
Leutbecher and Palmer, 2008), so this scenario is practically relevant. Specif-
ically, letB1 andB2 be independent beta variables with parameters (α1, β1) =
(2, 5) and (α2, β2) = (5, 2). Conditional on (B1, B2) the outcome vector has
a Frank copula with each pairwise Kendall’s τ equal to (B1 + B2)/2. The
forecast copula is either the true Frank copula, a Frank copula with each
pairwise τ equal to 0.8(B1 + B2)/2, or a Joe copula with each pairwise τ
equal to (B1 + B2)/2, as described by Nelsen (2006). The 50 marginals are
all standard normal and correctly predicted.
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Figure 2: Illustration of quadrants for directional CopPITs

Figure 1 shows multivariate rank and CopPIT histograms in this setting,
based on a sample of 4, 000 forecast–observation pairs. The rank histograms
have difficulties in detecting the deficient probabilistic forecasts due to the
aforementioned discretization effect. In contrast, the CopPIT histograms for
the forecasts with the misspecified copulas are non-uniform, as desired.

2.4 Directional copula calibration

The CopPIT is a natural multivariate generalization of the PIT in the uni-
variate setting. We now discuss a further generalization that allows for di-
rectional approaches. In doing so, we refer to the probabilistic forecast for
the Rd-valued outcome Y either by H or µ, with H denoting a CDF and µ
the associated probability measure.

Let e1, . . . , ed be an orthonormal basis of Rd and let E be the closed convex
cone spanned by this basis. We define the E-CDF of the probability measure
µ as

HE : Rd → [0, 1], x 7→ µ(x+ E).

Any function HE characterizes the probability measure µ. The usual CDF
is obtained by choosing ej = (e1j , . . . , edj) with eij = −1(i = j), whereas
the survival function of µ is HE with eij = 1(i = j). The CopPIT depends
on the particular CDF chosen, and distinct choices of E may reveal distinct
facets of calibration or the lack thereof. In principle, one could envision a
procedure in the style of a projection pursuit algorithm (Huber, 1985) that
finds those E where the deviation of the CopPIT histogram from uniformity
is the most pronounced. In the case of density forecasts a related idea was
considered by Ishida (2005).

Certain choices of the cone E might be particularly useful. We illustrate
this for d = 2, but the idea generalizes to higher dimensions. Let SW be the
convex cone spanned by (−1, 0) and (0,−1), i.e., the south-west quadrant.
Analogously we define the quadrants SE, NE, and NW, as illustrated in Fig-
ure 2. If the mariginals are probabilistically calibrated, probabilistic copula
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calibration with respect to HSW, which is the classical multivariate CDF,
only depends on the forecast copula. This argument remain valid for HSE,
HNE, and HNW, with the latter being the multivariate survival function.

Similarly, we can assess directional climatological copula calibration by
plotting

1

J

J
∑

j=1

1{HE
j (yj) ≤ w} vs.

1

J

J
∑

j=1

KHE
j
(w)

for w ∈ [0, 1] and suitable choices of the cone E .

3 Simulation study

We consider the following simulation setting in dimension d = 2. Let B1

and B2 be independent beta variables with parameters (α1, β1) = (2, 5) and
(α2, β2) = (5, 2), respectively. Conditional on (B1, B2) the outcome vector
Y = (Y1, Y2) has normal margins and a Gumbel copula with Kendall’s τ
equal to (B1 + B2)/2, as described by Nelsen (2006). The margin Y1 has
mean µ1 = 2 − B1 and unit variance; the margin Y2 has mean zero and
variance σ2

2
= 1/B2.

We assess eight probabilistic forecasters with various types of forecast
deficiencies. All forecasters have access to (B1, B2) and specify a Gumbel
copula with Kendall’s τ equal to τ̂ and normal marginals, where the first
margin F1 has mean µ̂1 and unit variance, and the second margin F2 has
mean zero and variance σ̂2

2
, with details provided in Table 1. We name each

forecaster with a sequence of three letters, where T stands for true and F
for false. For example, the forecaster TTF specifies the first and the second
marginal distributions correctly, but misspecifies the copula. The forecaster
TTT is ideal with respect to the σ-algebra generated by (B1, B2) in the sense
defined in Section 2.1 and does not show any forecast deficiencies.

Figure 3 shows CopPIT histograms for the eight forecasters based on a
sample of 4, 000 forecast–observation pairs. It is interesting to observe that
the standard CopPIT histogram detects misspecified marginals as well as mis-
specified copulas. Similar to the interpretation of univariate PIT histograms
(Gneiting et al., 2007), biases yield skewed histograms, underdispersed fore-
casts induce a U-shape, and overdispersed forecasts an inverse U-shape.

Figure 4 shows univariate PIT histograms along with directional CopPIT
histograms based on another sample of 4, 000 forecast–observation pairs. The
joint consideration of the histograms can diagnose specific forecast deficien-
cies. As a rule of thumb, the CopPIT histograms mimic features seen in
the univariate PIT histograms if the copula is well specified. In contrast, if
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Table 1: Parameters of forecast distributions in the simulation study

Forecast First Margin F1 Second Margin F2 Copula C
T correct correct correct

µ1 = 2− B1 σ2

2
= 1/B2 τ = (B1 +B2)/2

F biased underdispersed misspecified
µ̂1 = 0.8(2− B1) σ̂2

2
= 0.8/B2 τ̂ = 0.6(B1 +B2)/2

F
1
b
ia
se
d

F
1
co
rr
ec
t

F2 correct F2 underdispersed

C correct

F
1
b
iased

F
1
correct

F2 correct F2 underdispersed

C misspecified

Figure 3: CopPIT histograms for the forecasters in the simulation study
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Figure 4: Univariate PIT and directional CopPIT histograms for the fore-
casters in the simulation study
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Figure 5: Directional climatological calibration plots for the forecasters in
the simulation study
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the copula is ill specified, the CopPIT histograms show deviations from uni-
formity in shapes that are not necessarily reflected by the PIT histograms.
Finally, Figure 5 shows directional climatological copula calibration plots.
While misspecifications of the probabilistic forecasts are readily discernible,
the climatological copula calibration plots appear to be more difficult to in-
terpret diagnostically than the CopPIT histograms.

4 Case study: Probabilistic forecasts of wind

vectors over the Pacific Northwest

In a recent change of paradigms, meteorologists have adopted probabilistic
weather forecasting in the form of ensemble forecasts. An ensemble fore-
cast is a collection of numerical weather prediction (NWP) model runs that
are based on distinct initial conditions and/or model physics parameters
(Gneiting and Raftery, 2005; Leutbecher and Palmer, 2008). Despite their
undisputed success, ensemble forecasts tend to be biased and underdispersed,
in the sense of the spread among the ensemble members being too small to be
realistic. Therefore, methods for the statistical postprocessing of ensemble
forecasts have been developed, such as the ensemble model output statistics
(EMOS) approach of Gneiting et al. (2005), which generates Gaussian pre-
dictive distributions for univariate variables. In a more recent development,
Schuhen et al. (2012) developed a bivariate EMOS method that generates
bivariate Gaussian predictive distributions for wind vectors.

Here, we take up their work on probabilistic forecasts of surface wind
vectors over the North American Pacific Northwest based on the Univer-
sity of Washington Mesoscale Ensemble (Eckel and Mass, 2005), which has
m = 8 members. The test data comprise calendar year 2008 with a total of
19,282 forecast–observations pairs at a prediction horizon of 48 hours. We as-
sess and compare the raw ensemble forecast, the statistically postprocessed
regional bivariate EMOS forecast developed by Schuhen et al. (2012), and
an Independent EMOS forecast with the same bivariate Gaussian predictive
distribution, except that the correlation coefficient is misspecified at zero.

Figure 6 shows univariate PIT histograms, the multivariate rank his-
togram, the CopPIT histogram, and the climatological copula calibration
plot for the raw ensemble, Independent EMOS, and EMOS forecasts. The
raw ensemble forecast shows U-shaped PIT, multivariate rank and CopPIT
histograms, which attest to its underdispersion, and the climatological cop-
ula calibration plot points at severe forecast deficiencies. The univariate PIT
histograms for the Independent EMOS and EMOS forecasts are identical and
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Raw
ensemble
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EMOS
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U PIT V PIT Rank CopPIT Clim. Cal.

Figure 6: Univariate PIT histograms, multivariate rank histogram, CopPIT
histogram and climatological CopPIT calibration plot for the raw ensemble,
Independent EMOS, and EMOS forecasts of wind vectors. Following common
practice, we label the wind vector components as u and v.

diagnose slight overdispersion. However, the bivariate rank and CopPIT his-
tograms for the EMOS forecast are more uniform than for the Independent
EMOS forecast, as the Independent EMOS technique fails to take depen-
dencies between the wind vector components into account, with the CopPIT
histogram providing a much clearer diagnosis than the multivariate rank his-
togram.

5 Discussion

In this paper, we introduced the copula probability integral transform (Cop-
PIT), and we proposed CopPIT histograms and climatological copula cal-
ibration diagrams as diagnostic tools in the evaluation and comparison of
probabilistic forecasts of multivariate quantities. These tools apply to non-
parametric, semi-parametric and parametric approaches and thus can be
employed to diagnose strengths and deficiencies of multivariate stochastic
models in nearly any setting, be it predictive or not.

Extant methods for calibration checks for probabilistic forecasts of mul-
tivariate quantities apply either to ensemble forecasts only, such as the min-
imum spanning tree rank histogram and the multivariate rank histogram
(Smith and Hansen, 2004; Wilks, 2004; Gneiting et al., 2008), or they apply
to density forecasts only, such as the methods of Diebold et al. (1999), Ishida
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(2005), and González-Rivera and Yoldas (2012) that rely on the univariate
PIT and the Rosenblatt transform (Rosenblatt, 1952; Rüschendorf, 2009) in
one way or another. By way of contrast, CopPIT histograms and climatolog-
ical copula calibration diagrams apply to all types of probabilistic forecasts,
including both, ensemble forecasts and density forecasts.

In our case study, we assessed probabilistic forecasts of raw ensemble and
statistically postprocessed density forecasts of bivariate wind vectors. How-
ever, our methods also apply in higher dimensions and then it may be useful
to plot CopPIT histograms and climatological copula calibration diagrams
for a range of subvectors of the outcome, too.

As noted, probabilistic forecasting strives to maximize the sharpness of
the predictive probability distributions subject to calibration (Gneiting et al.,
2007), and the methods proposed here serve to evaluate calibration only. If
probabilistic forecasters are to be ranked considering both calibration and
sharpness, proper scoring rules can be employed (Gneiting and Raftery, 2007;
Gneiting et al., 2008), with recent theoretical advances having been made by
Ehm (2011). Diks et al. (2010) and Röpnack et al. (2013) advocate the use
of the logarithmic score to compare probabilistic forecasts of multivariate
quantities. The event based approach of Pinson and Girard (2012) reduces
a high-dimensional quantity to a binary event — essentially, the ultimate
dimension reduction — and applies proper scoring rules to assess the in-
duced probability forecasts for dichotomous events. While these techniques
aim to rank probabilistic forecasters, CopPIT histograms and climatological
copula calibration diagrams are diagnostic tools that strive to inform model
development and spur model improvement.
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