Image Space Adaptive Rendering

Rousselle, Fabrice (2014). Image Space Adaptive Rendering. (Dissertation, University of Bern, Faculty of Science)

[img]
Preview
Text
PhD dissertation Fabrice Rousselle.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (117MB) | Preview

In this thesis, we develop an adaptive framework for Monte Carlo rendering, and more specifically for Monte Carlo Path Tracing (MCPT) and its derivatives. MCPT is attractive because it can handle a wide variety of light transport effects, such as depth of field, motion blur, indirect illumination, participating media, and others, in an elegant and unified framework. However, MCPT is a sampling-based approach, and is only guaranteed to converge in the limit, as the sampling rate grows to infinity. At finite sampling rates, MCPT renderings are often plagued by noise artifacts that can be visually distracting. The adaptive framework developed in this thesis leverages two core strategies to address noise artifacts in renderings: adaptive sampling and adaptive reconstruction. Adaptive sampling consists in increasing the sampling rate on a per pixel basis, to ensure that each pixel value is below a predefined error threshold. Adaptive reconstruction leverages the available samples on a per pixel basis, in an attempt to have an optimal trade-off between minimizing the residual noise artifacts and preserving the edges in the image. In our framework, we greedily minimize the relative Mean Squared Error (rMSE) of the rendering by iterating over sampling and reconstruction steps. Given an initial set of samples, the reconstruction step aims at producing the rendering with the lowest rMSE on a per pixel basis, and the next sampling step then further reduces the rMSE by distributing additional samples according to the magnitude of the residual rMSE of the reconstruction. This iterative approach tightly couples the adaptive sampling and adaptive reconstruction strategies, by ensuring that we only sample densely regions of the image where adaptive reconstruction cannot properly resolve the noise. In a first implementation of our framework, we demonstrate the usefulness of our greedy error minimization using a simple reconstruction scheme leveraging a filterbank of isotropic Gaussian filters. In a second implementation, we integrate a powerful edge aware filter that can adapt to the anisotropy of the image. Finally, in a third implementation, we leverage auxiliary feature buffers that encode scene information (such as surface normals, position, or texture), to improve the robustness of the reconstruction in the presence of strong noise.

Item Type: Thesis (Dissertation)
Division/Institute: 08 Faculty of Science > Institute of Computer Science (INF) > Computer Graphics Group (CGG)
08 Faculty of Science > Institute of Computer Science (INF)
UniBE Contributor: Rousselle, Fabrice
Subjects: 000 Computer science, knowledge & systems
Language: English
Submitter: Matthias Zwicker
Date Deposited: 05 Mar 2015 14:52
Last Modified: 06 Mar 2015 07:28
BORIS DOI: 10.7892/boris.63323
URI: http://boris.unibe.ch/id/eprint/63323

Actions (login required)

Edit item Edit item
Provide Feedback