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using a multimode vibronic coupling approach
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(Received 11 December 2014; accepted 10 February 2015; published online 26 February 2015)

The S2 ← S0 vibronic spectrum of the ortho-cyanophenol dimer (oCP)2 is analyzed in a joint
experimental and theoretical investigation. Vibronic excitation energies up to 750 cm−1 are covered,
which extends our previous analysis of the quenching of the excitonic splitting in this and related
species [Kopec et al., J. Chem. Phys. 137, 184312 (2012)]. As we demonstrate, this necessitates an
extension of the coupling model. Accordingly, we compute the potential energy surfaces of the ortho-
cyanophenol dimer (oCP)2 along all relevant normal modes using the approximate second-order
coupled cluster method RI-CC2 and extract the corresponding coupling constants using the linear
and quadratic vibronic coupling scheme. These serve as the basis to calculate the vibronic spectrum.
The theoretical results are found to be in good agreement with the experimental highly resolved
resonant two-photon ionization spectrum. This allows to interpret key features of the excitonic and
vibronic interactions in terms of nodal patterns of the underlying vibronic wave functions. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4913363]

I. INTRODUCTION

Hydrogen-bonded molecular dimers represent a rele-
vant class of excitonically coupled aggregates which are
important constituents of very different systems such as
conjugated polymers, molecular crystals, and photobiological
complexes.1–5 These dimers offer the advantage of being
representative for larger systems but are still small enough
to allow detailed experimental and theoretical investigations.
These help to unravel the underlying microscopic mechanisms
responsible for their properties of interest. In one of our
groups, efforts have been undertaken for more than a
decade to exploit this feature and study the excitonic
energy splittings and vibrational excitations accompanying
the S2/S1 ← S0 electronic transition in such systems using
resonant-two photon-ionization (R2PI) spectra. The examples
chosen were typically doubly H-bonded aromatic and
heteroaromatic species, most notably the 2-aminopyridine
(2AP)2, ortho-cyanophenol (oCP)2, 2-pyridone (2PY)2, and
related molecular dimers.6–11 The systems all show similar
excitonic splitting schemes, with a (mostly) forbidden S1 ← S0
transition, that becomes slightly allowed upon asymmetric
isotopic substitution.

More recently, we have focussed on the interplay between
excitonic and vibronic couplings and have shown this to have
a drastic impact on the magnitude of the excitonic energy
splittings, reducing them by a factor of 10-40 compared to the
purely electronic (Davydov) splittings.7,12,13 This “quenching
of the excitonic splitting” has been obtained based on a
combination of model Hamiltonians well-known in excitonic
coupling theory14–16 and modern ab initio calculations for
all the relevant vibronic coupling constants entering the

description. Very satisfactory agreement with the observed
S1/S2 energy splittings could be obtained,6,7,12 thus reconciling
the large discrepancy between ab initio theory and experiment
that existed before.8 We have adopted and compared two
different approaches using Förster perturbation theory and
an effective mode ansatz that yielded a complementary
description of the phenomenon.12,13 We furthermore analysed
the quenching in terms of a nonadiabatic tunneling splitting
on the lower adiabatic potential energy surface (PES). This
interpretation has been adopted by other groups.17,18

In the present work, we augment the range and scope
of the analysis presented in Refs. 7 and 12. While earlier
mostly the origins of the S1 ← S0 and/or S2 ← S0 electronic
transition have been considered, we now address the spectral
energy range up to typically 300-700 cm−1 excitation energy
and elucidate the importance of the vibronic couplings from
a more general perspective. Not surprisingly, this more
extended scope of investigation necessitates more advanced
theoretical approaches. Whereas earlier the traditional Fulton-
Gouterman (FG) Hamiltonian14,15 and Förster perturbation
theory16 have been used and found appropriate, these turn
out to be not sufficiently accurate for our present purposes,
see below. Therefore, we rely instead on the more general
so-called linear vibronic coupling (LVC) approach19 which
has proven successful in a wide range of applications that
are not primarily related to excitonic coupling systems.20,21

As prominent examples, we mention the successful analysis
of complex spectral structures in the photoelectron and
absorption spectra of systems ranging from triatomics such as
NO2 (Ref. 22) and SO2 (Ref. 23) to the benzene cation and its
fluoro derivatives.24,25 From the systematic point of view, the
phenomenon of vibronic intensity borrowing could be treated

0021-9606/2015/142(8)/084308/16/$30.00 142, 084308-1 © 2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.92.9.56 On: Fri, 27 Mar 2015 10:25:39

http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4913363&domain=pdf&date_stamp=2015-02-26


084308-2 Kopec et al. J. Chem. Phys. 142, 084308 (2015)

FIG. 1. Optimized ground state geometry of (oCP)2 (RI-CC2/aug-cc-pVTZ)
with atom labels.

on an equal footing with strong non-Born-Oppenheimer
effects.19–21 All these aspects will be seen to play a role also for
the present investigation. Although the basic methodological
ingredients like Taylor series expansion and diabatic electronic
states are similar, in the FG approach and in the LVC approach,
the latter naturally allows to relax certain constraints between
coupling constants which exist within the FG formalism.
Moreover, and more importantly, it offers a natural framework
for including also the intermonomer vibrational modes in
the description. These are often important and have already
been introduced in a more ad hoc7 or a specialized26,27

manner. The LVC approach is used here for the dimer as a
whole, and thus the intermonomer modes enter the description
naturally.

As a representative example, we focus on the ortho-
cyanophenol dimer (oCP)2, see Fig. 1. The monomers are
bound by two antiparallel O–H· · ·N hydrogen bonds to form
a centrosymmetric (C2h) dimer. Since the oCP chromophore
has a planar geometry in the ground and excited states of
both the monomer and dimer, this simplifies the theoretical
investigations of the vibronic spectrum. In the energy range
from 32 850 to 33 600 cm−1, the spectrum is dominated by
the presence of the S1 (Ag) and S2 (Bu) excited electronic
states. Only the S2 ← S0 transition is dipole-allowed while the
S1 ← S0 transition is forbidden by dipole selection rules in
C2h. We compare our theoretical results for this energy range
to the experimental R2PI spectrum that has been measured in
one of our groups. The (oCP)2 system has been investigated
previously by Zehnacker-Rentien et al.28 They performed
quantum chemical calculations at the density functional level
with the B3LYP functional using the cc-pVTZ basis and
discussed fluorescence excitation and dispersed fluorescence
as well as ground state IR spectra. Our previous comparison
of experimental and calculated, quenched excitonic splittings
for (oCP)2 showed a good agreement within ≈20%.12

This contribution is organized as follows: Sec. II
starts with a short summary of the Fulton-Gouterman
model, followed by an introduction to the general vibronic
coupling treatment and an overview of the dynamical
methods employed for this work. In Sec. III, we outline
the computational details of the quantum chemical as well
as dynamical calculations and describe the experimental
techniques employed. Results for the optimized geometries,
coupling constants, and spectra are presented in Sec. IV. The
conclusions are given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Fulton-Gouterman model

Vibronic coupling in molecular homodimers is often
described by a model Hamiltonian originally introduced by
Witkowski and Moffitt29 and subsequently elaborated (and
simplified) by Fulton and Gouterman.14,15 Following frequent
use in the literature, we refer to this Hamiltonian as FG
model below. Here, the nuclear vibrational motion is given
by identical harmonic oscillators in each monomer A,B with
frequency ω, normal mode coordinates QA and QB, and linear
coupling l occurring upon electronic excitation. The coupling
parameters for both monomers are equal, since the monomers
are taken to be identical. The electronic excitonic coupling
VAB is assumed to be independent of the nuclear coordinate.
The corresponding Hamiltonian for the simplified case of a
single pair of modes is given by14,15,30

HFG = *
,
Eexc +

P2
A

2µ
+

µω2

2
Q2

A +
P2
B

2µ
+

µω2

2
Q2

B
+
-

1

+ *
,

lQA VAB

VAB lQB

+
-
, (1)

where 1 is the unit matrix and Eexc is the vertical excitation
energy in the monomer.

Transformation to a delocalized electronic and vibrational
basis, where the latter is denoted by Q± =

√
µω/2~(QA ±QB),

and introducing the reduced linear coupling parameter
b = l

√
~/2µω yields

Hdeloc =
1
√

2
*
,

1 1
1 −1

+
-
HFG

1
√

2
*
,

1 1
1 −1

+
-

(2)

=

(
Eexc +

~ω

2
�
P2
+ +Q2

+ + P2
− +Q2

−
�)

1

+ *
,

VAB + bQ+ bQ−
bQ− −VAB + bQ+

+
-
. (3)

Due to the simple approximations embodied in the FG model,
the coupling constants for both Q+ and Q− are identical.
Furthermore, the FG model in its original sense only accounts
for intramonomer modes. For a more detailed description,
we refer to the original publications14,15 or to our recent
work.7,12,13

B. General vibronic coupling model

1. Hamiltonian

In the present work, we study the structure of the vibronic
spectrum of (oCP)2 in the framework of a multimode vibronic
coupling model as described, for example, in Ref. 19. Like in
Eqs. (1) and (3), the Hamiltonian relies on a diabatic electronic
basis where the nuclear kinetic energy operator TN is diagonal
and the coupling matrix W arises from the potential energy
part

H = TN1 +W(Q). (4)

The elements of W in Eq. (4) are given in terms of
dimensionless normal coordinates Q and are expanded in a
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Taylor series around a chosen reference geometry Q0 = 0
which is taken as the ground state equilibrium geometry of the
dimer. Truncation of the expansion after the first and second
order terms leads to the linear and quadratic vibronic coupling
models (LVC and QVC, respectively).19

The LVC Hamiltonian reads19

W(1)(Qg ,Qu) = V0(Qg ,Qu)1

+
*.
,

E1 +


i
k (1)
i Qg i


j
λ jQu j

j
λ jQu j E2 +


i
k (2)
i Qg i

+/
-
, (5)

with the ground state potentials V0(Qg , Qu) = 
i, j
~ωg i

2 Q2
g i

+
~ωu j

2 Q2
u j.

Only symmetry selection rules are used to provide
restrictions on the coupling constants and on the vibrational
modes which are relevant to the diagonal and off-diagonal
elements of the coupling matrix.19 For W(1), they read

Γ1 ⊗ ΓQ ⊗ Γ2 ⊃ ΓAg . (6)

Equation (6) states that a vibrational mode with symmetry
ΓQ can couple electronic states with symmetries Γ1 and Γ2
only if their direct product comprises the totally symmetric
irreducible representation ΓAg of the point group of the
molecule. Therefore, the totally symmetric modes g always
lead to intrastate couplings with elements in the diagonal
of the coupling matrix W whereas the off-diagonal elements
(index u, interstate couplings) depend on the symmetry of the
system in question. The corresponding modes are referred to
as coupling modes and are normally different (for Γ1 , Γ2)
from the totally symmetric modes appearing in the diagonal of
W. The coupling modes cause a repulsion of the PES, and for
large interstate coupling constants this leads to a double-well
shape of the lower electronic surface along the respective
(non-totally symmetric) normal mode coordinate. The totally
symmetric modes, called tuning modes, modulate the energy
separation between the coupled electronic states.19

For brevity, the extension to quadratic coupling terms is
only given for a single coupling mode Qu and a single tuning
mode Qg ,

W(Qg ,Qu) = V0(Qg ,Qu)1 + *.
,

E1 + k (1)Qg +
1
2γ

(1)
g Q2

g +
1
2γ

(1)
u Q2

u λQu +
1
2 µguQgQu

λQu +
1
2 µguQgQu E2 + k (2)Qg +

1
2γ

(2)
g Q2

g +
1
2γ

(2)
u Q2

u

+/
-
, (7)

with γg and γu as quadratic coupling constants and µgu as the
mixed quadratic coupling.

2. Vibronic eigenfunctions

Vibronic eigenfunctions for interacting PESs involve
products of an electronic and a vibrational factor (it is only
due to integration over the electronic coordinates that the
Hamiltonian of Eq. (4) appears as a matrix in electronic
function space and the eigenfunctions as vectors in the same
space). Without that integration, the vibronic eigenfunctions
for two coupled states generally appear as

Ψ(r,Q) = φ1(r)χ1(Q) + φ2(r)χ2(Q). (8)

In the presence of a symmetry and for two vibrational modes
as in Eq. (7), this expression reads more explicitly,

ΨAg (r,Qg ,Qu) = φAg (r)χg(Qg ,Qu) + φBu(r)χu(Qg ,Qu), (9)

ΨBu(r,Qg ,Qu) = φAg (r)χu(Qg ,Qu) + φBu(r)χg(Qg ,Qu).
(10)

For later reference, we have already introduced the symmetry
labels Ag and Bu appropriate to the point group C2h of (oCP)2.
The labels g and u (gerade and ungerade) denote the symmetry
of the vibrational wave function (WF) χ under the sign change
operation of the non-totally symmetric coordinate Qu only,
see Eq. (7). In a power series expansion, this implies that the
χg(Qg ,Qu)/χu(Qg ,Qu) contain only even/odd powers of the
coupling mode coordinate Qu.

3. Adiabatic potential energy surfaces

The adiabatic PESs are generally obtained by diagonal-
ization of the diabatic coupling matrix W(Q) of Eq. (4), i.e.,
taking the nuclear coordinates as parameters. For the specific
case of Eq. (7), we get

V1,2(Qg) = ~ωg

2
Q2

g +
γ(1,2)

2
Q2

g + k (1,2)Qg + E1,2, (11)

V1,2(Qu) = ~ωu

2
Q2

u +
E1 + E2

2
+
γ
(1)
u + γ

(2)
u

4
Q2

u

±


*
,

E2 − E1

2
+
γ
(2)
u − γ

(1)
u

4
Q2

u
+
-

2

+ (λQu)2, (12)

where we have put the other coordinate (Qu or Qg) to zero for
simplicity. Equations (11) and (12) immediately show how
the linear and quadratic coupling constants can be determined
from the adiabatic PES. For the totally symmetric modes, the
intrastate linear coupling constant for the state i is19

ki =
∂Vi(Q)
∂Qg

����Q=0
(i = 1,2). (13)

From the difference of the adiabatic PES, one obtains the
interstate coupling constant

λ =


1
8
∂2(V2 − V1)2

∂Q2
u

����Q=0
. (14)
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For sufficiently large coupling constants λ, the PESs
along the coupling modes show the aforementioned double-
minimum structure. This effect is intensified in the multi-mode
case.19 For ∆ < L, the corresponding stabilization energy
upon symmetry lowering through the coupling modes is given
by

Estab =
(∆ − L)2

2L
, with L =


i

λ2
i

~ωi
and ∆ =

E2 − E1

2
.

(15)

Note that, even in the linear coupling approximation
(γ = µ = 0), the Hamiltonian of Eq. (7) generalizes the
FG-Hamiltonian widely used in the literature to treat
excitonically coupled systems.19,31–34 This is easily seen from
the delocalized FG Hamiltonian of Eq. (3). This transformed
Hamiltonian shows the analogy between the FG and the
general LVC model, where the relation between the coupling
parameters is λ = k (1) = k (2) = b, ωg = ωu.

C. Dynamical calculations

In quantum dynamical calculations, vibronic spectra are
often obtained via wave-packet propagation. The spectral
intensity distribution P(E) is thereby calculated as the Fourier
transform of the autocorrelation function C(t),

P(E) ∝


eiEtC(t)dt, with C(t) = ⟨Ψ(0)|Ψ(t)⟩. (16)

C(t) is also known as the survival amplitude, that is, a
measure for the probability that the wave function at time t is
equal to the initial wave function Ψ(t = 0). The wave-packet
propagation is done using the powerful multiconfigurational
time-dependent Hartree (MCTDH) method developed in the
Heidelberg group.35–37 The basis of this method is the use
of a multiconfigurational wave function that is a weighted
sum over Hartree products of optimized time-dependent basis
functions ϕ for each degree of freedom f ,

Ψ(Q1, . . . ,Q f , t)

=

n1
j1=1

· · ·
n f
j f=1

Aj1· · · j f (t)ϕ(1)
j1
(Q1, t) · · · ϕ( f )

j f
(Q f , t). (17)

The latter are expanded in a primitive basis set. To increase
the computational efficiency, several degrees of freedom
are combined (mode combination) and treated as a single
particle, thus increasing to the so-called MCTDH contraction
effect. Equations of motions for the expansion coefficients and
single-particle functions are derived through the Dirac-Frenkel
variational principle.35–37

III. COMPUTATIONAL AND EXPERIMENTAL METHODS

A. Computational details

In its electronic ground state, the oCP dimer has a planar
equilibrium structure corresponding to the C2h symmetry
group (see also below). Its 78 vibrational degrees of freedom

TABLE I. Number of primitive basis functions (PBFs) as well as of time-
dependent single-particle functions (SPF) used in the MCTDH calculation.
The vibrational modes (degrees of freedom, DOF) combined to particles are
given in the first column. The second column denotes the number of primitive
harmonic oscillator functions for each DOF. The numbers of SPFs are listed
in column three.

Modes PBF basis SPF basis

(ν4, ν5) 20, 28 19
ν7 20 8
(ν9, ν10) 18, 15 12
ν13 13 4
(ν17, ν18) 20, 18 10
ν24 10 2

transform as follows:

ΓQ = 27ag ⊕ 26bu ⊕ 13au ⊕ 12bg . (18)

As a first step in the investigation, geometry optimizations
for the ground and first two excited singlet states were carried
out. This was followed by frequency calculations, where the
harmonic frequencies were obtained numerically.

The adiabatic PESs for the S0, S1, and S2 states were
determined by single-point calculations at normal mode
displacements Qi = ±0.5, ± 1.0, ± 2.0, and ±3.0 for a given
mode. The linear and quadratic vibronic coupling constants
were obtained by least squares fits to the electronic excitation
energies (see below for more details). All electronic structure
calculations of (oCP)2 were performed at the RI-CC2/aug-cc-
pVTZ level, of the oCP monomer at the RI-CC2/cc-pVTZ
level, both employing the TURBOMOLE program package
Version 6.0.38

The vibronic spectra were computed using the MCTDH
program suite.39 The propagation calculations were performed
using a basis of single-particle-functions and a product of
harmonic oscillator functions as initial wave function. The
basis set details used in the subsequent calculation are given in
Table I. The contraction effect caused by the shorter length of
the single-particle vector compared to the number of primitive
basis functions is ≈106. The line spectra for the 2-mode
cases reported in Sec. IV D were obtained using the Lanzcos
algorithm as implemented in the MCTDH package.39 The
corresponding vibronic eigenfunctions for the 2-mode case
are accessible through relaxation calculations using so-called
single-set block-improved relaxation.40 The adiabatic spectra
shown for comparison were generated with the aid of the
POTFIT routine41,42 available in the MCTDH package.

B. Experimental techniques

The experimental setup has been discussed in detail
previously.6,9 The vibrationally cold oCP complexes were
synthesized in a supersonic jet-expansion. The oCP sample
(Aldrich, 99%) was placed in a home-built, magnetically
actuated nozzle and heated to 80 ◦C. Neon was used as a
carrier gas with a backing pressure of 1.2 bars. The skimmed
molecular beam was overlapped spatially and temporally
with an excitation and an ionization laser in the source of a
1 m time-of-flight mass spectrometer. Molecular ions were
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produced according to the R2PI scheme where the complexes
are excited from the vibrationally cold electronic ground state
to the vibrational levels of an electronically excited state that
is accessible by one-photon excitation and are subsequently
ionized by a second laser pulse at 228 nm. The resulting,
singly charged ions were detected using a microchannel plate
detector (MCP).

The output of a Radiant-Dyes NarrowScan dye laser
(Sulforhodamine B), pumped by the 532 nm output of a
Nd:YAG laser was used for excitation (∼50 µJ/pulse, UV-
bandwidth ∼0.09 cm−1). The spectra were calibrated by
measuring the fundamental frequency with a HighFinesse
Angstrom WS6 high precision wavemeter. The 228 nm
ionization laser pulses (200 µJ) were produced by sum-
frequency mixing of the 640 nm output of a dye-laser (DCM),
pumped by the 532 nm output of an Nd:YAG laser, with the
355 nm output of the same pump laser. Nozzle and lasers were
operated at a repetition rate of 20 Hz.

IV. RESULTS AND DISCUSSION

A. Equilibrium geometries and vibrational analysis

The optimized ground state structure and the atom
numbering scheme are shown in Fig. 1. The S1 and S2 excited
electronic states transform as Ag and Bu, respectively, in the
C2h point group. With calculated vertical excitation energies
of 35 693 cm−1 and 36 001 cm−1 (see Table II), they are
separated by only 308 cm−1 and are therefore subject to
vibronic coupling. This gives rise to the LVC scheme adopted
in Eq. (5), the coupling and tuning modes being of bu and ag

symmetry.
A list of bond lengths and angles of the S0 equilibrium

structure, the S1 state structure both at the C2h symmetry-
restricted (first order) saddle point and at its Cs symmetric
equilibrium geometry, and the S2 state at its C2h symmetric
structure is given in the supplementary material (Tables SI
and SII).43

For comparison, the monomer structure parameters are
included to the supplementary material as well (Table SIII).43

It is seen there that upon dimerization, the intramonomeric
hydrogen bond becomes wider, while the intermonomeric
hydrogen bond is formed. The dimerization does not have
an effect on the CH bond lengths, and only a very minor
one on the aromatic CC bond lengths and the angles not
located at the functional groups. Due to the dimeric hydrogen
bonds, the angle at the hydroxy group ] H14–O11–C6 is
widened from the typical 109.2◦ to 114.9◦, while the cyano-
angle ] C1–C12–N13 is widened by 5.5◦ to be almost linear
in the dimer. Therefore, the intramonomeric hydrogen bond
H14–N13 becomes 0.35 Å longer, i.e., it virtually disappears

TABLE II. Vertical and adiabatic S1 and S2 excitation energies of (oCP)2 at
the RI-CC2/aug-cc-pVTZ level (in cm−1).

S1 (Cs) S1 (C2h) S2 (C2h)

vertical - 35 693 36 001
adiabatic 33 846 34 575 35 003

in the dimer. These changes also have small effects on the
neighboring bond lengths and angles.

Tables SI and SII43 also give evidence of the geometrical
changes occurring upon electronic excitation. Upon a
C2h restricted geometry optimization in the S1 state, the
intermolecular hydrogen-bond is shortened by 0.135 Å. The
aromatic bond lengths are all slightly increased, while there
is no effect on the corresponding angles. Only the lengths
and angles at the two functional groups show deviations up
to 0.03 Å and 2.2 Å. The equilibrium structure of the second
excited state is similar to this despite a somewhat shorter (by
≈0.015 Å) hydrogen bond. Full relaxation in the S1 state leads
to the loss of the equivalence of the two monomers resulting
in a Cs symmetric structure. Apart from minor deviations, the
C2h restricted S1 structure is the average of those of the left
and right monomers in the dimeric Cs structure.

A complete list of all dimer normal modes is given in
the supplementary material, Table SIV.43 The numbering of
the modes follows the ground state vibrational frequency in
ascending order, irrespective of symmetries. The same holds
for the monomer modes. For a complete list of a′ monomer
modes, see Ref. 13 (supplementary material).

We show the displacement vectors for a selected set
of in-plane monomer and dimer modes in Figs. 2 and 3.
The comparison of monomer modes (Fig. 2) with dimer
modes (Fig. 3) shows similarities and differences in the
relation between monomer and dimer vibrations. From model
considerations, the dimer modes are expected to be positive
and negative linear combinations of monomer modes, differing
only by a few wavenumbers in energy. This is true, for
example, for the in-plane dimer modes ν17 and ν18 that have
their origin in νmono

7 . This mode-pair also occurs in the 2-
aminopyridine dimer and has been previously discussed in
detail.7 Another pair of dimer modes is ν9 and ν10. Here, ν9 is
a negative combination of νmono

1 , with an energy difference of
41.1 cm−1. However, ν10 clearly shows admixing of a rotational

FIG. 2. Displacement vectors for the lowest-frequency totally symmetric (a′)
o-cyanophenol monomer modes.
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FIG. 3. Displacement vectors for some important low-frequency in-plane
(ag , bu) (o-cyanophenol)2 dimer modes.

motion, since the displacement vectors at the benzyl ring are
significantly smaller than for νmono

1 . The frequency shift of
74.8 cm−1 supports this observation. The deviation between
monomer and dimer modes is most pronounced for modes
that involve a stretching or bending of the hydrogen bond. A
different example for the latter is the mode pair ν31, ν32 (bg ,
au) that represents an out-of-plane CCOH torsional motion
with a frequency of about 740 cm−1. The corresponding a′′

monomeric mode νmono
6 has a frequency of only 447 cm−1.

The intermonomeric modes (ν1 − ν5 and ν7) play a
special role. They have very low frequencies, between 10
and 150 cm−1, and are composed of monomer translations and
rotations. Of these, only the mode pair ν4, ν5 (H-bond shearing
and cogwheel) with frequencies of 80.9 and 82.5 cm−1 and
mode ν7 (H-bond stretch with admixture of rotation, 133 cm−1)
have the proper ag and bu symmetries to enter the LVC
description for the S1 and S2 excited states. We will show later
that these are the most important modes for the analysis of the
vibronic spectrum.

B. Determination and discussion of coupling
parameters of (oCP)2

The monomer coupling parameters were taken from
Ref. 12. There they were obtained by least squares fits to
the excited state PES using the shifted harmonic oscillator
model. Only the S1 state of oCP was considered, since the
energy difference to the second excited state is 1.26 eV and
the Born-Oppenheimer separation is expected to be valid.
The coupling parameters for modes with frequencies up to
800 cm−1 are collected in Table III.

The dimer coupling constants have been obtained by
least squares fits of the QVC model to the ab initio calculated

TABLE III. Coupling parameters of the totally symmetric oCP monomer
vibrational modes (RI-CC2/cc-pVTZ) up to 800 cm−1, obtained by harmonic
least squares fits to the PESs. Parameters are taken from Ref. 13. All modes
included in the calculation of the spectrum are marked with an asterisk.

Mode ωGS (cm−1) b (cm−1) b2/ωGS (cm−1) b2/ω2
GS

1∗ 124.7 92.7 68.9 0.552
4∗ 381.4 −105.5 29.2 0.077
7∗ 459.2 −350.3 267.2 0.582
9∗ 554.3 −47.4 4.0 0.007
11 591.6 151.7 38.9 0.066
13 730.2 268.3 98.6 0.135

adiabatic PESs (see Eqs. (11) and (12)). For the totally
symmetric modes in the framework of linear (quadratic)
couplings, the PESs are shifted harmonic oscillators (including
a frequency change).

Anharmonicity along single-mode coordinates in the
ground state of hydrogen-bonded systems is a well-known
phenomenon and has been the subject of extensive studies.44

As an example, for the (oCP)2 system, Fig. 4(a) shows the
ground state potentials along the totally symmetric normal
mode ν10 including the harmonic ground state potential and
the anharmonic fit to the ab initio single-point energies
calculated along Q10. The harmonic model is clearly not
in good agreement with the ab initio energies. To analyse
the impact of the ground state anharmonicity on the excited
state PESs, we compare the coupling constants resulting from
harmonic fits to the excitation energies with those resulting
from harmonic fits to the PESs. For mode ν10, the first one is
depicted in Fig. 4(b) and is of very satisfactory quality. The
second fit is shown as a dotted line in Fig. 4(c). The solid line
in Fig. 4(c) is obtained by adding the anharmonic fit to the
ground state potential from Fig. 4(a) and the harmonic fit to the
excitation energy from Fig. 4(b). The comparison of the solid
and dotted lines in Fig. 4(c) clearly demonstrates that the fully
harmonic fit does not well reproduce the excited state PES. For
mode ν10, e.g., the values for the linear coupling constant in
the first excited state in the two approaches are 45.3 cm−1 and
91.4 cm−1. This leads to a difference in the Huang-Rhys factor
(also called Poisson parameter in the literature) S = k2/2ω2 of a
factor of 4. Therefore, the vibrational excitation is negligible
in one case and clearly visible in the other. For all modes
considered, the fit to the excitation energy nicely confirms the
quadratic vibronic coupling model. The anharmonic character
of the PES of the S1 and S2 excited states is “inherited” from
the ground state.

Since the experimental spectrum is of high resolution and
also the observed quenched excitonic splitting is rather small,
very small inaccuracies in the coupling constants have a rather
large impact on the quality of the theoretical results. Therefore,
we obtained all coupling constants through least squares fits to
the excitation energies rather than to the PESs to eliminate the
ground state anharmonicity from the fit. The corresponding
coupling constants for the ag modes up to 800 cm−1 are
compiled in Table IV. Therein, the frequency ωGS is the
RI-CC2 harmonic frequency. For both excited states, k is
the linear and γ the quadratic vibronic coupling constant
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FIG. 4. Determination of coupling constants for mode ν10 (ag ). (a) Compar-
ison between anharmonic and harmonic ground state potentials. The energy
at the ground state equilibrium geometry (Q = 0) is set to zero. (b) QVC fit to
the excitation energies. The negative curvatures indicate a frequency lowering
upon excitation. (c) Comparison between different QVC fits to the excited
state PES. The dashed line gives the results when fitting directly to the PES
of the excited state, the solid line results from fitting to the excitation energy
of the central panel. In the latter case, the plotted data are obtained by adding
the anharmonic ground state potential of panel (a).

obtained through least squares fits; the first corresponds to
a shift relative to the ground state potential minimum and
the latter to a frequency change in the electronically excited
state. The sum of the harmonic ground state frequency and the
quadratic coupling constant γ therefore is an approximation
to the excited-state frequency. Additionally, the Huang-Rhys
factor for each mode is given. The modes that are explicitly
treated in the subsequent calculation of the spectra are marked

with an asterisk. Fig. 5 shows the agreement between the ab
initio data and the fit to the excitation energies along these
modes (ν4, ν7, ν13, and ν18). The negative curvatures are due
to a frequency lowering upon excitation (i.e., negative values
of γ).

For the 1D-cuts along the bu coupling modes, a least
squares fit to the squared difference of the interacting surfaces
yields the linear interstate coupling constant λ as well as the
difference in the quadratic coupling constants (see Eq. (12)).
The sum of the quadratic coupling constants is determined
from the sum of the excitation energies. The values obtained
are collected in Table V for modes with frequencies up
to 800 cm−1. Besides the harmonic ground state frequency
ωGS, the linear and the quadratic coupling constants γ for
both excited states (obtained from both the difference and
the sum of the excitation energies) are given, together with
the Huang-Rhys factor for each mode. The modes that are
explicitly considered in the subsequent calculation of the
spectra are marked with an asterisk. Fig. 6 displays the least
squares fit functions to the sum (solid) and difference (dotted)
of the excitation energies along these modes (ν5, ν9, and ν17).
For graphical reasons, the difference is given as a negative
quantity. The negative curvature of the sum of the excitation
energies indicates a frequency lowering. The fits of the model
are seen to be in good agreement with the ab initio data.

Key energetic quantities for the first two excited states
are given in Table II. It lists the vertical excitation energies for
the S1 and S2 excited states and compares them with energies
obtained under C2h-constrained and fully relaxed structural
optimizations. The energy gain due to the geometry relaxation
in the S1 state of 1847 cm−1 (=35 693 cm−1 − 33 846 cm−1) can
be decomposed into the C2h symmetry-constrained structural
relaxation (1118 cm−1 = 35 693 cm−1 − 34 575 cm−1) and
the asymmetric in-plane distortion (729 cm−1 = 34 575 cm−1

− 33 846 cm−1). In earlier work,13 we related these findings
to the FG model and found for the C2h-constrained structural
relaxation 1281 cm−1 and for the asymmetric distortion
a stabilization energy of 1131 cm−1. The deviations are
approximately 15% and 35%, respectively.13 We are now
able to compare with the predictions of the present coupling
model. The structural relaxation can be assigned to the ag

modes in the S1-state, in which the energy gain amounts to
1064 cm−1. The symmetry-lowering through coupling modes
is given by the stabilization energy in the multi-mode case
(see Eq. (15)) and amounts to Estab = 729 cm−1. The results
obtained using the linear vibronic coupling model are in
excellent agreement with the full (i.e., model-independent) ab
initio calculations.

For the quantum dynamical analysis discussed below,
only the most relevant modes are included in the vibronic
Hamiltonian. These are determined by their frequencies
and the size of the Huang-Rhys factor. However, from
our previous work,7,12,13 it is clear that all vibrational
modes contribute to quenching the energy gap between the
excited states. To account for this feature, we introduce
a “prequenched” excitonic splitting as an effective energy
difference between the two coupled surfaces. This is taken
to represent the vibronic quenching by the higher-frequency
modes, not included below, and is in some cases chosen
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TABLE IV. Coupling parameters of the totally symmetric (oCP)2 modes (RI-CC2/aug-cc-pVTZ) up to 800 cm−1,
obtained by least squares fits to the excitation energies. All modes included in the calculation of the spectrum are
marked with an asterisk.

Mode
ωGS

(cm−1)
k (1)

(cm−1)
k (2)

(cm−1)
γ(1)

(cm−1)
γ(2)

(cm−1)
(
k (1))2

/2ω2
GS

(
k (2))2

/2ω2
GS

4∗ 80.9 −67.4 −50.0 −33.8 −32.5 0.347 0.191
7∗ 133.8 127.4 85.2 −20.2 −16.2 0.453 0.203
10∗ 199.5 91.4 87.6 −25.9 −27.0 0.105 0.096
13∗ 381.1 −170.7 −152.4 −21.8 −22.6 0.100 0.080
18∗ 468.2 371.4 362.6 −26.7 −27.4 0.315 0.300
24∗ 570.1 153.9 148.7 −31.6 −34.8 0.036 0.034
25 594.4 107.0 104.7 −9.3 −10.3 0.016 0.016
30 729.8 −267.0 −270.1 −33.9 −35.8 0.067 0.068

phenomenologically such that the computed, quenched
excitonic splitting, obtained as the difference between the first
lines in the calculated S1 and S2 spectra, well approximates the
experimentally observed splitting. The prequenching only has
a minor impact on the shape of the spectrum but leads to an
enormous difference in the final quenched excitonic splitting.
Moreover, we will see in Sec. V that the prequenched splitting
can be well estimated from the treatments of Refs. 12 and 13.

C. Analysis of spectra

The experimental spectrum has been measured up to
750 cm−1 above the S2 vibronic origin. Also the computed
spectrum has been restricted to this region. The experimental
spectrum is dominated by the S2(1Bu) ← S0(1Ag) transition

and its associated ag vibrational excitations, which are fully
allowed. As will be shown below, vibrational bu excitations of
the S1(1Ag) state also become allowed via vibronic coupling.

1. Fulton-Gouterman model

As a starting point, we compare the calculated spectrum
based on the FG model with the experimental 2C-R2PI
spectrum in Fig. 7. Diagonalization of the original FG
Hamiltonian (Eq. (1)) yields the spectra for both locally
excited states. For comparison with the experimental
spectrum, restriction to the symmetry-allowed S2 ← S0
transition is achieved by employing the FG Hamiltonian in the
electronically and vibrationally delocalized basis (see Eq. (3)).
Therefore, in the spectrum, the modes appear as positive

FIG. 5. Least squares fits (dashed lines) to the excitation energies of the S1 (1Ag ) and S2 (1Bu) excited states along the ag modes 4, 7, 13, and 18. + and
× display the ab initio data points.
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TABLE V. Coupling parameters of the bu-symmetric (oCP)2 modes (RI-CC2/aug-cc-pVTZ) up to 800 cm−1,
obtained by least squares fits to the sum and difference of the excitation energies (compare Eq. (12)). All modes
included in the calculation of the spectrum are marked with an asterisk.

Mode ωGS (cm−1) γ(1) (cm−1) γ(2) (cm−1) λ (cm−1) λ2/2ω2
GS

5∗ 82.6 −36.5 −36.5 71.1 0.370
9∗ 165.8 −50.4 −21.5 67.8 0.084
16 407.0 −25.3 −25.3 12.5 5×10−4

17∗ 467.5 −35.6 −24.2 373.5 0.319
23 559.2 −28.9 −28.9 80.2 0.010
26 596.0 −8.8 −8.8 150.5 0.032
29 724.3 −37.7 −37.7 216.2 0.045

and negative combinations Q+ and Q− of the monomeric
modes. The vibrations considered for the calculation are
the four lowest-frequency totally symmetric modes of the
oCP-monomer (νmono

1 , νmono
4 , νmono

7 , νmono
9 , see Table III

and Fig. 2) in the energy range up to 560 cm−1. To
account for the effect of the higher-frequency modes, we
introduce a prequenched excitonic splitting of 69.5 cm−1. The
corresponding quenching (or reduction) factor Γ is determined
in a non-phenomenological way by applying Förster’s
perturbation theory expression16 Γ =


i exp−b2

i/(~ωi)2 to all
the higher-frequency modes starting from mode νmono

11 . For
more details, we refer to Ref. 13 from which also the coupling
constants are taken. The spectra are shifted to a common
origin.

In the calculated FG spectrum of Fig. 7(b), the line at
117 cm−1 represents an excited state with a roughly equal
mixture of one and two quanta of the monomer mode νmono

1 in

its negative linear combination, i.e., levels 11
− and 12

−. In line
with the symmetry considerations of Sec. II B 2, the former
(latter) component is associated with the Ag (Bu) symmetric
electronic wave function. The following line at 125 cm−1

corresponds to a single-quantum excitation of the positive
linear combination of νmono

1 (11
+). The three lines at 235,

242, and 250 cm−1 are higher quanta of mode νmono
1 , namely,

13
−, 11

+1
2
−, and 12

+. Even a third series of lines is visible at
363 cm−1, namely, 11

+1
3
−, 12

+1
2
−, and 14

−. Note that lines with an
even number of quanta in 1− are always associated with the Bu-
symmetric electronic wave function (as already stated above),
whereas odd quanta come with the Ag-symmetric electronic
wave function. Somewhat separated is the first excitation of
mode νmono

4 at 382 cm−1, with a rather small relative intensity
of 0.04, reflecting the small Huang-Rhys factor of 0.08. The
excitations of mode νmono

7 follow at 454 and 459 cm−1, also as
a single quantum 71

+ and one or two quanta 71
− and 72

−. This is

FIG. 6. Least squares fit to the sum (solid) and difference (dashed) of the excitation energies along bu modes 5, 9, and 17. The sum at Q = 0 is set to zero. + and
× display the sum and the difference of the ab initio calculated energies (in cm−1) of the S1 and S2 states, respectively.
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FIG. 7. Comparison of the experimental R2PI spectrum (a) with a 4-mode
spectrum (b) calculated in the framework of the Fulton-Gouterman model,
employing only monomer vibrational modes. In panel (b), the labels of
several weaker lines have been omitted for clarity.

again similar to mode νmono
1 . More details will be discussed in

Sec. IV D. The combined excitations of νmono
1 and νmono

7 are
seen at 577 and 584 cm−1. All assignments of the calculated
FG spectrum are summarized in Table VI.

The experimental and theoretical spectra are in acceptable
agreement for the energy range of mode νmono

7 . This is due to
the similarity of νmono

7 with the corresponding dimer modes
ν17 and ν18 (see Sec. IV A). The FG model is sufficient in this
case. The deviations between theory and experiment are most
obvious in the low-frequency range. The dimer vibrations
ν9 and ν10 that correspond to the monomer mode νmono

1 are
40 to 75 cm−1 higher in energy and the lines are therefore
expected to be shifted to higher energy (see Fig. 8). Instead, the
experimental spectrum shows the excitation of low-frequency
intermonomeric modes at about 80 cm−1, which are not
accounted for in the FG spectrum due to the limitation of the
model.

In previous related work on the 2-aminopyridine dimer,
the FG model has been extended in an ad hoc way by
including also intermonomer modes with empirically fitted
values of the coupling constants.7 Here, we aim for a
more rigorous approach with parameters computed ab initio

TABLE VI. Assignment of spectral features of the S2← S0 transition of the
ortho-cyanophenol dimer calculated within the FG approach, see Fig. 7. All
frequencies in cm−1.

Mode FG

12
− 117

11
+ 125

13
− 235

11
+1

2
− 242

12
+ 250

12
+1

2
− 363

41
+ 382

72
− 454

71
+ 459

1171 577
1171 584

FIG. 8. Comparison of the experimental R2PI spectrum (a) with a 9-mode
spectrum (b) calculated in the framework of the LVC model.

and therefore proceed by using a more general vibronic
Hamiltonian (Eq. (5)) for the analysis of the spectrum.

2. Linear vibronic coupling scheme

Fig. 8 shows a comparison between the experimental
R2PI spectrum and the calculated 9-mode LVC spectrum.
Both spectra are shifted to a common origin. The 2C-R2PI
spectrum of (oCP)2 is measured over the 32 850–33 600 cm−1

range. The first band in the experimental spectrum in Fig. 8(a)
is assigned to the 00

0 band, which lies at 32 855 cm−1. The
vibronic Hamiltonian comprises the ag-symmetric modes ν4,
ν7, ν10, ν13, ν18, and ν24, as well as the bu-symmetric modes
ν5, ν9, and ν17. Their frequencies are all in the energy range of
interest. The coupling constants are taken from Tables IV and
V. The phenomenological, prequenched excitonic splitting
used is 105.8 cm−1, see also Sec. V.

All assignments of the experimental and calculated
spectra are summarized in Table VII. For the LVC spectrum,
they are based on energetic considerations, together with the
calculated nodal properties of the vibronic levels, computed
as indicated in Sec. III A.

TABLE VII. Comparison of experimental (R2PI) and theoretical (LVC)
spectral features of the S2← S0 transition (see Fig. 8) of (oCP)2. All fre-
quencies in cm−1.

Mode R2PI LVC

ν1
4 85.3 {79.8, 83.2}

ν2
5 121.2 132.1

ν1
7 133.4 134.8

ν2
4 162.5 153.8

ν1
10 201.2 199.5

ν1
4ν

1
7 {214.4, 218.2} {212.2, 215.0}

ν3
4 - 234.5

ν1
4ν

1
10 266.0 279.3

ν2
4ν

1
7 295.8 287.3

ν1
13 377.4 380.9

ν1
18 449.3 468.0

ν1
4ν

1
18 533.4 548.0
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The first detail that stands out in the computed spectrum,
Fig. 8(b), in comparison to the FG spectrum in Fig. 7(b) is the
pair of low-frequency lines near 80 cm−1. They correspond to
the intermonomeric mode ν4 (H-bond shearing, see Fig. 3).
The experimental spectrum shows a band multiplet, while
the LVC spectrum shows a doublet of lines with similar
intensity. For further discussion of the calculated doublet
structure, we refer to Sec. IV D. In the following, we
address possible explanations for the experimentally observed
multiplet structure.

From comparative calculations including the low-
frequency bg symmetric mode ν3 (40.4 cm−1), we consider it
unlikely that a double excitation of mode ν3 (within the QVC
scheme) is responsible for one of these extra lines. Also the
inclusion of quadratic couplings in modes ν4 or ν5 as well as
their mixed coupling does not result in further lines in this
region of the spectrum. We suspect that the experimentally
observed multiplet is due to couplings of vibrations ν4 and
ν5 with the very low-frequency modes ν1, ν2, and ν3 that
appear between 10 and 50 cm−1, see the list of frequencies
(Table SIV in the supplementary material.43) As an indication,
we point out that also all higher quanta of mode ν4 show a
similar multiplet structure. These putative couplings have not
been analyzed in detail, since the methods employed in this
work rely on rectilinear Cartesian displacement coordinates
that are not suited for the description of the out-of-plane
low-frequency modes ν1, ν2, and ν3.

The line at 135 cm−1 can be assigned to the totally
symmetric intermonomeric mode ν7 (see Fig. 3). The
experimental spectrum shows a line at 121 cm−1 that does not
appear in the LVC spectrum. Due to symmetry constraints,
we can exclude an excitation of the bg-symmetric mode ν6
(calculated at 121.6 cm−1). Instead, we assign it as the double
excitation of mode ν5, which appears as the line at 132 cm−1

in the calculated spectrum. A series of lines for the double
excitation of mode ν4 appears at 154 cm−1 about 8 cm−1 lower
than in the experimental spectrum. The following lines in
the LVC spectrum (Fig. 8(b)) can be assigned to mode ν10
(200 cm−1), a combination of modes ν4 and ν7 (214 cm−1) and
a triple excitation of mode ν4 (235 cm−1). We further assign the
line at 279 cm−1 to a combined excitation of modes ν4 and ν10
and that at 287 cm−1 to a combined excitation of two quanta
in mode ν4 and one quantum in mode ν7. The corresponding
lines in the experimental spectrum occur at 266 cm−1 and at
296 cm−1.

The intensity of the ag mode ν13 at 381 cm−1 is
significantly underestimated by the LVC model. Since its
ground state PES shows a harmonic behaviour and the
quadratic fit to the excitation energies works well (see Fig. 5),
the deviations cannot be caused by anharmonicity. Also the
inclusion of quadratic coupling parameters for mode ν13 does
not improve the relative intensity (see Table IV). The small
intensity is therefore probably due to an underestimation of the
linear coupling along this mode by the ab initio calculation. At
468 cm−1 appears the excitation of mode ν18. The shift relative
to experiment is 19 cm−1. The higher-frequency region in the
experimental spectrum shows combined excitations of mode
ν18 with either mode ν4 or mode ν7. Here, the assignment in
the calculated spectrum is not unique.

Despite some deviations, the spectra are in good overall
agreement. We recall that all frequencies and coupling
constants are computed purely ab initio without any empirical
adjustment. Clearly, the results obtained using the LVC model
are superior to the FG model.

D. Assignment of low-dimensional spectra and wave
functions

For a more detailed insight into the vibronic coupling
phenomenon, we analyze a two-mode spectrum including
only the two low-frequency intermonomeric vibrations ν4
(ag) and ν5 (bu), see Fig. 3. As before, we introduce
a phenomenological, prequenched splitting between the
electronically excited states. Due to the suppression of more
modes than in the spectrum of Fig. 8, the prequenched
excitonic splitting is reduced to 40 cm−1. The spectra
are shown in Fig. 9 together with the numbering of the
vibronic lines. The blue (upward) lines belong to states of
Bu vibronic symmetry (symmetry-allowed transitions), while
the red (downward) lines indicate Ag vibronic symmetry
(forbidden transitions; not relevant for comparing with
experiment, but included for the discussion). Due to the
reduced dimensionality of the calculations, the spectral range
is reduced to 200 cm−1. The first line in the Bu spectrum is set
to zero energy. We present the vibronic WFs corresponding
to the vibronic levels according to their symmetry as contour
lines employing a colouring scheme to indicate their sign.
They are collected in Fig. 10 for the states that appear in the
Ag spectrum and Fig. 11 for those in the Bu spectrum. The left
columns contain the electronic part of the WF corresponding
to the lower Ag-symmetric (S1) electronic state, whereas the
right columns show the Bu-symmetric (S2) electronic WF
component, see also Eq. (10). In accordance with symmetry
considerations, the Ag-symmetric electronic WF component
for the Ag-symmetric vibronic lines shows an even number of
nodes in the coupling mode ν5, whereas for the Bu-symmetric
electronic WF component, the number of nodes is odd (see

FIG. 9. LVC model 2-mode spectrum of Ag (red, downward) and Bu (blue,
upward) vibronic symmetry corresponding to Fig. 8. Only Q4 and Q5 are re-
tained with an effective, prequenched energy gap of 40 cm−1. The associated
excited-state vibronic wave functions are shown in Figs. 10 and 11.
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FIG. 10. Wave functions (solid, colored lines) and potential energy surfaces (dashed lines) for Ag vibronic symmetry states of the 2-mode spectrum (red,
downward in Fig. 9, forbidden transitions). The different wave function amplitude scales to the right of each sub-figure reflect the different weights of the
electronic wave function as listed in Table VIII.

Fig. 10). For the Bu vibronic states, even and odd nodes
are interchanged (see Fig. 11). All subfigures of Fig. 10 and
Fig. 11 include the adiabatic PESs for the S1 and S2 states as
dashed contour lines. The assignments of the vibronic lines
together with the weights of the respective WFs are collected
in Table VIII.

The 00 line in Fig. 9 corresponds to an excitation with
a nodeless WF in the S1 state with a contribution of 86.2%,
corresponding to the optically forbidden vibronic S1 origin.
The remaining 13.8% of the vibronic WF corresponds to
the fundamental of mode ν5 in the S2 (Bu) electronic state.
The first Bu vibronic state 01 amounts to a single excitation
of the intermonomeric mode ν5 in the Ag electronic state
(weight 46.1%) and a broad nodeless wave function in the
Bu electronic state (53.9%). The WF components for the
vibronic states 00 and 01 are interchanged relative to each
other. However, state 00 clearly is the vibronic origin of the S1
(Ag) state, whereas the contributions from the S1 and S2 states
for 01 are almost equally mixed.

Of the following two Ag-symmetric vibronic states 02
and 03, the first consists of a fundamental excitation of mode
ν4 with a contribution of 84.4%, and a combination of single
quanta of modes ν4 and ν5 with a contribution of 15.6%. The
vibronic state 03 is a mixture of a double excitation of mode ν5
(64.9%) with the fundamental of mode ν5 (35.1%). Although
the Ag-symmetric electronic contribution to the vibronic WF
is clearly dominant, the contribution from the second excited
electronic state increases with increasing vibronic energy
as is seen from the weights in Table VIII. This increased
mixing of the two states is expected, as the vibronic energies
approach and move up in the energy range of the S2 electronic
state.

The lines 04 and 05 are symmetry-allowed (Bu) vibronic
excitations of both ν4 and ν5 in the Ag-symmetric electronic
state (40.7% and 36.8%, respectively) and are approximate
mirror images of each other. The same holds for the
corresponding Bu electronic components. They both appear as
one node in Q4 and a combination of zero and two nodes in Q5
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FIG. 11. Same as Fig. 10, for Bu vibronic symmetry states of the 2-mode spectrum (blue, upward in Fig. 9, allowed transitions).

(59.3% and 63.2%, respectively). The two lines are separated
by 8.6 cm−1. This is slightly more than the separation of
3.4 cm−1 for the doublet in the 9-mode LVC spectrum near
80 cm−1 (Fig. 8); the difference is, however, not significant.
One might expect one of the lines to be the excitation of the
totally symmetric mode ν4 on the Bu electronic state, and
the other one to be the excitation of the coupling mode ν5

TABLE VIII. Assignment of the vibronic lines in the 2-mode spectrum of
Fig. 9. Energies are given in cm−1. The weights given in % refer to the
electronic wave function given in the table heading.

Line Energy Ag (S1) Bu (S2)

00 (red) −23.8 00
0 86.2% 40

051
0 13.8%

01 (blue) 0.0 40
051

0 46.1% 00
0 53.9%

02 (red) 56.2 41
050

0 84.4% 41
051

0 15.6%
03 (red) 69.5 40

052
0 64.9% 40

051
0 35.1%

04 (blue) 77.4 41
051

0 40.7% 41
050

0+40
052

0 59.3%
05 (blue) 86.0 41

051
0 36.8% 41

050
0+40

052
0 63.2%

on the Ag electronic surface due to intensity borrowing.19,45

The doublet structure in both spectra is associated with
the mirror images of peculiar nodal patterns displayed in
Fig. 11.

For the Bu-symmetric vibronic states, the mixing of the
two electronic states is in general more pronounced than for
the Ag-symmetric states. Clearly, the effects observed are
not solely due to intensity borrowing from the Ag-symmetric
electronic state. For further insight, we neglect nonadiabatic
effects and compare the LVC 2-mode spectra with spectra
computed for uncoupled adiabatic PESs.19

In Fig. 12, we display the 2-mode spectra on the S1
adiabatic surface (red, down) and the S2 adiabatic surface
(blue, up) using the same modes (ν4 and ν5) and parameters
as for the LVC spectra of Fig. 9. The vibrational lines are
denoted a, b, . . . , f for the first excited state and k, l, . . . ,p
for the second excited state. The corresponding six wave
functions are collected in Figs. 13 and 14. In the Ag spectrum,
only lines a (0.0 cm−1, 00 origin), c (80.4 cm−1, 41), d
(109.8 cm−1, 52), and f (160.9 cm−1, 42) are visible. Lines
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FIG. 12. Same spectrum as in Fig. 9 but recomputed in the adiabatic approxi-
mations. Ag symmetry corresponds to the lower adiabatic PES, Bu symmetry
to the upper adiabatic PES. The underlying vibronic wave functions are
shown in Figs. 13 and 14.

b (46.3 cm−1, 51) and e (126.8 cm−1, 4151) have vanishing
intensity due to symmetry as they include a single excitation of
the bu-symmetric mode ν5. The relative energy for excitations
of the ag-symmetric mode ν4 is as expected from the shifted

harmonic oscillator model close to the harmonic ground state
frequency of 80.9 cm−1. However, for the bu-symmetric mode
ν5, the computed adiabatic frequency is smaller by a factor of
almost two, due to the repulsion of the electronically excited
states, by which the lower surface is flattened.19

In the Bu spectrum, lines k (104.3 cm−1, 00 origin), l
(185.6 cm−1, 41), n (266.9 cm−1, 42), and p (322.8 cm−1, 52)
are visible. There, lines m (219.3 cm−1, 51) and o (300.7 cm−1,
4151) have vanishing intensity. Herein, the frequency for
mode ν4 again matches the harmonic ground state frequency,
whereas the frequency for mode ν5 is almost 50% larger
since the upper adiabatic surface is steeper along the coupling
mode.

In contrast to the coupled LVC wave functions of Figs. 10
and 11, the WF for the uncoupled adiabatic surfaces leads to
regular nodal structures along both the coupling and the tuning
modes. The difference between the WFs computed in the LVC
scheme and the adiabatic approximation demonstrates the
large amount of nonadiabaticity that is present in the (oCP)2
system, where some of the nodal patterns result from mixing
of different numbers of vibrational quanta. A similar profound
difference can be found in the spectra, in particular the doublet
structure of the lines at 80 cm−1 in Fig. 9 can be ascribed to
nonadiabatic effects.

FIG. 13. Wave functions (solid, col-
ored lines) and PESs (dashed lines)
for Ag vibronic lines of the adiabatic
2-mode spectrum (red, downward in
Fig. 12).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.92.9.56 On: Fri, 27 Mar 2015 10:25:39



084308-15 Kopec et al. J. Chem. Phys. 142, 084308 (2015)

FIG. 14. Same as Fig. 10, for Bu vi-
bronic symmetry states of the adia-
batic 2-mode spectrum (blue, upward in
Fig. 12).

V. CONCLUSIONS

We first show that the experimental R2PI spectrum of the
ortho-cyanophenol dimer cannot be satisfactorily reproduced
within the scope of the Fulton-Gouterman model. Instead,
one has to go beyond and use more general vibronic coupling
schemes. We herein presented our results for the coupled
S1/S2 ← S0 transitions of (oCP)2 using the LVC approach
and the MCTDH method. In contrast to the FG model, the
spectrum is dominated by the intermonomer vibrations ν4, ν5,
and ν7, which illustrates the limitations of the FG model. We
cannot explain the multiple splittings in the low frequency
mode ν4 as well as the underestimated intensity of mode ν13.
However, the experimental and calculated spectra are in good
overall agreement. This agreement is unprecedented for first-
principles calculations like here, which rely almost exclusively
on ab initio data for the system parameters. The present
approach is relatively close to that of Nebgen et al.26,27 who
use a FG type of treatment for the intramonomer modes and a
quadratic coupling scheme for the intermonomer modes. This
latter work differs from ours also in the amount of parameter
adjustment needed to reproduce experimental spectra.

From a low-dimensional analysis of the vibronic wave
functions, we identify nodal properties of the wave functions
which confirm the more tentative assignments based only on
energetic considerations. All vibronic states (irrespective of
symmetry) involve substantial mixing of the S1 (Ag) and S2
(Bu) electronic states (taken as diabatic in accordance with the
matrix Hamiltonian of Eq. (5)). For the dipole-allowed S2 (Bu)
vibronic symmetry, the S2 electronic state is associated with an
even number of nodes in the coupling mode coordinate, and
for the S1 electronic state, this number is odd. For the dipole-
forbidden S1 (Ag) vibronic symmetry, “even” and “odd” are to
be interchanged. We emphasize that this qualitative feature,
as well as the nodal patterns of Figs. 10 and 11, remains the
same in the 9-mode calculation of Fig. 8 as in the 2-mode
calculation. From comparative calculations on the uncoupled
adiabatic surfaces, we can identify most of the effects observed
as nonadiabatic.

Except for the prequenched (“effective”) energy gap, all
system parameters are obtained from ab initio data without
any adjustment. Even for the energy gap, we can make contact
with the theoretical treatment of Refs. 12 and 13, which can be
used to compute a prequenched energy gap resulting from the
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coupling to all the higher-frequency modes not included in the
calculation of the spectrum. For the 9-mode spectrum of Fig. 8
and the 2-mode spectrum of Fig. 9, this leads to “prequenched”
gaps of 98.2 cm−1 and 43.9 cm−1, respectively (starting from
a vertical excitonic splitting of 308 cm−1).46 These numbers
are close to the values actually adopted for the calculation
of the spectra, namely, 105.8 cm−1 and 40.0 cm−1 according
to Secs. IV C 2 and IV D. Thus, even in this respect, the
phenomenological adjustment amounts to a few cm−1 only.
Efforts are underway to further improve the treatment and
understanding of the prequenching effects.

The present approach is expected to pave the way for
the analysis of related systems. It should also allow for a
more detailed understanding of the time-dependence of the
excitation energy transfer in all these cases. Work along these
lines is ongoing in our groups.

ACKNOWLEDGMENTS

It is a pleasure to dedicate this work to David R. Yarkony
on the occasion of his 65th birthday. Financial support
by the Deutsche Forschungsgemeinschaft under Grant No.
KO945/17-1 is gratefully acknowledged. We thank the bw-
GRiD project47 for the provision of computational resources.
P.O. and S.L. gratefully acknowledge support from the Swiss
National Science Foundation (Project No. 200020-152816).

1Hydrogen Bonding and Transfer in the Excited State, 1st ed., edited by K.-L.
Han and G.-J. Zhao (Wiley, Chichester, 2011), Vols. 1 and 2.

2G. D. Scholes and G. Rumbles, Nat. Mater. 5, 683 (2006).
3F. C. Spano, Annu. Rev. Phys. Chem. 57, 217 (2006).
4Y.-C. Cheng and G. R. Fleming, Annu. Rev. Phys. Chem. 60, 241 (2009).
5C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández,
and B. Kohler, Annu. Rev. Phys. Chem. 60, 217 (2009).

6P. Ottiger, J. A. Frey, H.-M. Frey, and S. Leutwyler, J. Phys. Chem. A 113,
5280 (2009).

7P. Ottiger, S. Leutwyler, and H. Köppel, J. Chem. Phys. 131, 204308 (2009).
8A. Müller, F. Talbot, and S. Leutwyler, J. Chem. Phys. 116, 2836 (2002).
9P. Ottiger and S. Leutwyler, J. Chem. Phys. 137, 204303 (2012).

10C. G. Heid, P. Ottiger, R. Leist, and S. Leutwyler, J. Chem. Phys. 135, 154311
(2011).

11F. A. Balmer, P. Ottiger, and S. Leutwyler, J. Phys. Chem. A 118, 11253
(2014).

12P. Ottiger, S. Leutwyler, and H. Köppel, J. Chem. Phys. 136, 174308 (2012).
13S. Kopec, P. Ottiger, S. Leutwyler, and H. Köppel, J. Chem. Phys. 137,

184312 (2012).
14R. L. Fulton and M. Gouterman, J. Chem. Phys. 35, 1059 (1961).
15R. L. Fulton and M. Gouterman, J. Chem. Phys. 41, 2280 (1964).
16T. Förster, “Delocalized excitation and excitation transfer,” in Modern Quan-

tum Chemistry, edited by O. Sinanoglu (Academic Press, New York, 1965),
Chap. III. B, p. 93.

17E. G. Buchanan, P. S. Walsh, D. F. Plusquellic, and T. S. Zwier, J. Chem.
Phys. 138, 204313 (2013).

18C. König and J. Neugebauer, J. Phys. Chem. B 117, 3480 (2013).
19H. Köppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys. 57, 59

(1984).

20Conical Intersections: Electronic Structure, Dynamics and Spectroscopy,
edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific,
Singapore, 2004).

21Conical Intersections: Theory, Computation and Experiment, edited by W.
Domcke, D. R. Yarkony, and H. Köppel (Word Scientific, Singapore, 2011).

22S. Mahapatra, H. Köppel, L. S. Cederbaum, P. Stampfuss, and W. Wenzel,
Chem. Phys. 259, 211 (2000).

23C. Lévêque, A. Komainda, R. Taieb, and H. Köppel, J. Chem. Phys. 138,
044320 (2013).

24S. Faraji and H. Köppel, J. Chem. Phys. 129, 074310 (2008).
25S. Faraji, H.-D. Meyer, and H. Köppel, J. Chem. Phys. 129, 074311 (2008).
26B. Nebgen, F. L. Emmert III, and L. V. Slipchenko, J. Chem. Phys. 137,

084112 (2012).
27B. Nebgen and L. V. Slipchenko, J. Chem. Phys. 141, 134119 (2014).
28F. Lahmani, M. Broquier, and A. Zehnacker-Rentien, Chem. Phys. Lett. 354,

337 (2002).
29A. Witkowski and W. Moffitt, J. Chem. Phys. 33, 872 (1960).
30M. Andrzejak and P. Petelenz, Chem. Phys. 335, 155 (2007).
31H. Köppel, “Vibronic coupling effects in spectroscopy and non-adiabatic

transitions in molecular photodynamics,” in Molecular Quantum Dynamics,
edited by F. Gatti (Springer, Heidelberg, 2014).

32W. D. H. Köppel and L. S. Cederbaum, “The multi-mode vibronic-coupling
approach,” in Conical Intersections, edited by D. Y. W. Domcke and H.
Köppel (World Scientific, New Jersey, 2004), pp. 323–368.

33S. Gómez-Carrasco, S. Faraji, and H. Köppel, “Multistate vibronic dynam-
ics and multiple conical intersections,” in Conical Intersections: The-
ory, Computation and Experiment (World Scientific, Singapore, 2011),
pp. 249–300.

34H. Köppel and W. Domcke, “Vibronic dynamics in polyatomic molecules,”
in Encyclopedia of Computational Chemistry, edited by P. von Ragué
Schleyer (Wiley, Chichester, 1998), Vol. 5, p. 3166.

35H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73
(1990).

36M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, Phys. Rep. 324, 1
(2000).

37Multidimensional Quantum Dynamics: MCTDH Theory and Applications,
edited by H.-D. Meyer, F. Gatti, and G. A. Worth (Wiley-VCH, 2009).

38TURBOMOLE V6.0 2009, a development of University of Karlsruhe and
Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH,
since 2007, available at http://www.turbomole.com.

39G. A. Worth, M. H. Beck, A. Jäckle, and H.-D. Meyer, The MCTDH
Package, version 8.2, (2000); H.-D. Meyer, The MCTDH Package, version
8.3 (2002); The MCTDH Package, version 8.4 (2007), see http://mctdh.uni-
hd.de.

40H.-D. Meyer, F. L. Quéré, C. Léonard, and F. Gatti, Chem. Phys. 329, 179
(2006).

41A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996).
42A. Jäckle and H.-D. Meyer, J. Chem. Phys. 109, 3772 (1998).
43See supplementary material at http://dx.doi.org/10.1063/1.4913363 for lists

of bond lengths and angels for the oCP monomer and dimer as well as a
complete list of frequencies of (oCP)2.

44B. Brauer, R. B. Gerber, M. Kabelác̆, P. Hobza, J. M. Bakker, A. G. A. Riziq,
and M. S. de Vries, J. Phys. Chem. A 109, 6974 (2005).

45G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic
Molecules, reprint edition ed. (1991).

46The prequenched gaps are obtained by applying Förster’s perturbation
theory ansatz12,13,16 to the appropriate dimeric bu modes. See Sec. II B
for the relation between the FG model and the LVC scheme.

47bwGRiD, member of the German D-Grid initiative, funded by the
Ministry for Education and Research (Bundesministerium für Bildung
und Forschung) and the Ministry for Science, Research and Arts Baden-
Wuerttemberg (Ministerium für Wissenschaft, Forschung und Kunst
Baden-Württemberg), see http://www.bw-grid.de.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.92.9.56 On: Fri, 27 Mar 2015 10:25:39

http://dx.doi.org/10.1038/nmat1710
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104557
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093719
http://dx.doi.org/10.1021/jp811359k
http://dx.doi.org/10.1063/1.3266937
http://dx.doi.org/10.1063/1.1434987
http://dx.doi.org/10.1063/1.4767400
http://dx.doi.org/10.1063/1.3652759
http://dx.doi.org/10.1021/jp509626b
http://dx.doi.org/10.1063/1.4705119
http://dx.doi.org/10.1063/1.4763979
http://dx.doi.org/10.1063/1.1701181
http://dx.doi.org/10.1063/1.1726260
http://dx.doi.org/10.1063/1.4807300
http://dx.doi.org/10.1063/1.4807300
http://dx.doi.org/10.1021/jp3105419
http://dx.doi.org/10.1002/9780470142813.ch2
http://dx.doi.org/10.1016/S0301-0104(00)00204-4
http://dx.doi.org/10.1063/1.4776758
http://dx.doi.org/10.1063/1.2958915
http://dx.doi.org/10.1063/1.2958918
http://dx.doi.org/10.1063/1.4747336
http://dx.doi.org/10.1063/1.4896561
http://dx.doi.org/10.1016/S0009-2614(02)00134-3
http://dx.doi.org/10.1063/1.1731278
http://dx.doi.org/10.1016/j.chemphys.2007.04.007
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1016/S0370-1573(99)00047-2
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://www.turbomole.com
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://mctdh.uni-hd.de
http://dx.doi.org/10.1016/j.chemphys.2006.06.002
http://dx.doi.org/10.1063/1.471513
http://dx.doi.org/10.1063/1.476977
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1063/1.4913363
http://dx.doi.org/10.1021/jp051767m
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de
http://www.bw-grid.de

	1

