A triplet spike-timing–dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations

Gjorgjieva, Julijana; Clopath, Claudia; Audet, Juliette; Pfister, Jean Pascal (2011). A triplet spike-timing–dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations. Proceedings of the National Academy of Sciences of the United States of America - PNAS, 108(48), pp. 19383-19388. Washington, D.C.: National Academy of Sciences NAS 10.1073/pnas.1105933108

Full text not available from this repository. (Request a copy)

Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock–Cooper–Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing–dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Pre-clinic Human Medicine > Institute of Physiology

UniBE Contributor:

Pfister, Jean Pascal

Subjects:

600 Technology > 610 Medicine & health

ISSN:

0027-8424

Publisher:

National Academy of Sciences NAS

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:21

Last Modified:

05 Dec 2022 14:06

Publisher DOI:

10.1073/pnas.1105933108

Web of Science ID:

000297463100058

URI:

https://boris.unibe.ch/id/eprint/6959 (FactScience: 212090)

Actions (login required)

Edit item Edit item
Provide Feedback