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Abstract  

Osteoporotic proximal femur fractures are caused by low energy trauma, typically 

when falling on the hip from standing height. Finite element simulations, widely used 

to predict the fracture load of femora in fall, usually include neither mass-related 

inertial effects, nor the viscous part of bone's material behavior. The aim of this study 

was to elucidate if quasi-static non-linear homogenized finite element analyses can 

predict in vitro mechanical properties of proximal femora assessed in dynamic drop 

tower experiments. The case-specific numerical models of thirteen femora predicted 

the strength (R2 = 0.84, SEE = 540 N, 16.2%), stiffness (R2 = 0.82, SEE = 233 N/mm, 

18.0%) and fracture energy (R2 = 0.72, SEE = 3.85 J, 39.6%); and provided fair 

qualitative matches with the fracture patterns. The influence of material anisotropy 

was negligible for all predictions. These results suggest that quasi-static 

homogenized finite element analysis may be used to predict mechanical properties of 

proximal femora in the dynamic sideways fall situation. 

 

Keywords  

Proximal femur fracture, Drop tower test, Finite element analysis, Quasi-static model, 

Fracture pattern  
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1 Introduction 

Osteoporosis-related fragility fractures of the proximal femur are associated with high 

morbidity and mortality, and often result in decreased patient quality of life 

(Cummings and Melton, 2002; Johnell and Kanis, 2006; Roth et al., 2010). Worldwide 

occurrence of these injuries was reported to be as high as 1.6 million per year and is 

known to increase with age (Johnell and Kanis, 2006; Melton, 1996). Falling is a 

dynamic event involving high strain rates. Material properties of bone tissue are not 

only volume fraction dependent and anisotropic (Helgason et al., 2008; Morgan et al., 

2003), but are also visco-elastic and visco-plastic (i.e. stiffer and stronger, but more 

brittle) under impact- compared to quasi-static loading conditions (Carter and Hayes, 

1977). Accordingly, the stiffness and fracture force of whole bones are strain rate 

dependent (Courtney et al., 1994). Additionally, in drop-tower test configurations that 

aim to better mimic sideways falling accidents, the rate of loading is a function of the 

sample's stiffness (Gilchrist et al., 2014). 

Numerous previous studies used finite element (FE) analysis to predict fracture 

properties of bones via virtual mechanical testing (Ariza et al., 2015; Cody et al., 

1999; Dall'Ara et al., 2013a; Dragomir-Daescu et al., 2011; Keyak et al., 2001; Luisier 

et al., 2014). In order to avoid the above mentioned complexities related to the 

dynamic event, most FE models aim at predicting the quasi-static behavior of bones. 

Accordingly, such models neglect mass-related effects and utilize material models 

that are calibrated based on low strain rate experimental testing of small bone cores 

(Helgason et al., 2008). These models are validated by means of quasi-static 

destructive testing of whole bones. It is, however, not known if such models would 

accurately predict the mechanical properties of bones subjected to accident-relevant 

dynamic failure or if the viscous material behavior of bone tissue and the inertial 

effects would be required. However, several previous experimental studies (Carter 

and Hayes, 1976; Linde et al., 1991) suggested that the influence of loading rate on 

bone elasticity and strength, associated with the organic constituents, was 

independent of bone density and therefore relative differences of bone strength were 

independent of loading rate. We therefore hypothesized that numerical models, 

which utilize a material model of bone that was validated on the whole bone scale at 

a specific loading rate, would predict elasticity and strength on another loading rate. 
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The aim of this study was therefore to investigate if stiffness, ultimate load, energy to 

failure and fracture pattern of intact proximal femora tested in vitro using a dynamic 

drop tower test to simulate sideways fall could be predicted with a finite element 

approach that was previously developed for and validated under quasi-static 

conditions. 

 

2 Materials and Methods 

2.1 Sample preparation and imaging 

Fourteen fresh frozen (-20 °C) human cadaveric femora (left/right: 5/9) were obtained 

from individual donors (female/male: 10/4, age: 85.3 ± 7.1 years, range: 72 – 95 

years). The bones were obtained from the Department of Pathology of the 

Kantonspital Basel, Switzerland, with appropriate consent of the relatives. The bones 

were cleaned of all soft tissues except the articular cartilage. The proximal part of 

each femur, bounded by the distal end of the lesser trochanter, was scanned with 

high resolution peripheral quantitative computer tomography (HR-pQCT, XtremeCT, 

Scanco Medical AG, Brüttisellen, Switzerland). Scanning settings were 60 kVp 

voltage, 900 µA current, and 123 µm isotropic voxel size. Osteoporosis status (6 

osteoporotic, 6 osteopenic, 2 healthy) was estimated based on the areal bone 

mineral density (aBMD) assessed by projecting the HR-pQCT image along the 

anterior-posterior axis and correcting using an established relationships accounting 

for the difference between QCT-based and dual X-ray absorptiometry (DXA)-based 

aBMD values (Khoo et al., 2009). 

 

2.2 Experimental testing 

The femora were tested in vitro according to a previously described protocol (Fliri et 

al., 2013) using a drop tower setup that simulates a sideways fall on the hip (Figure 

1, left). In brief, following thawing at room temperature for 24 hours, the proximal 160 

mm of each femur was cut. The distal 50 mm part of the shaft was embedded in a 

cylindrical poly(methyl methacrylate) (PMMA) block and attached to a hinge joint 

allowing rotations only around the horizontal axis, perpendicular to the bone axis. 

The bone was rotated around its longitudinal axis to 15° internal rotation and the 

location of the hinge joint was adjusted to provide a 15° angle of the shaft axis with 
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respect to the horizontal plane. The greater trochanter was shallowly embedded 

(approximately 10 mm) in a metallic spherical cap using PMMA to distribute the 

ground reaction force. 

In a controlled free fall setup, a 45 kg mass was dropped on the femoral head. A 

vertically aligned PMMA cylinder with a negative spherical cup at the bottom, which 

simulates the acetabulum, was placed below the falling weight and used to transmit 

the loads to the femoral head. The motion of this element was not constrained within 

the vertical plane. The drop weight was released from a height of 114 mm above the 

most medial point of the femoral head, providing 50 J of potential energy. Axial 

displacement of the falling weight and reaction force at the lateral support were 

recorded by means of a displacement transducer (WA/50 mm, HBM, Darmstadt, 

Germany) and a 20 kN load cell (1-U9B/20kN, HBM), respectively, and digitized at 

10,000 Hz using an ADwin data acquisition system (Jäger Computergesteuerte 

Messtechnik GmbH, Lorsch, Germany) and Matlab 6.5.1 (MathWorks Inc., Natick, 

USA). The test was recorded with a high-speed camera (Exilim EX-F1, Casio, Tokyo, 

Japan) at 1,200 frames/s. 

Apparent stiffness (KExp) was defined as the largest slope of the linear part of the 

force-displacement curve and maximal force (Fmax_Exp) was assessed as the highest 

vertical reaction force. Energy at maximal force (Emax_Exp) was evaluated as the area 

under the force-displacement curve up to Fmax_Exp. Photographs and anteroposterior 

X-rays taken after the experiments were used to evaluate the fracture pattern and 

determine the fracture type according to the Müller/AO-classification. 

 

2.3 Numerical modeling 

HR-pQCT-based, homogenized finite element (hFE) models of each bone were 

generated with a fully automated modeling framework performing all tasks of pre-

processing and model generation (image processing, meshing, material property 

mapping, model alignment, as well as assignment of constrains and loading), 

submitting to the FE solver and post-processing the results. This framework was 

implemented as an in-house script written in GNU Octave 3.8.2 

(www.gnu.org/software/octave/) and used tools from Medtool 3.8 (Medtool, 2014), 

the iso2mesh 2013 toolbox (Fang and Boas, 2009), CGAL 3.5 (Computational 

Geometry Algorithms Library, www.cgal.org), Fiji (Schindelin et al., 2012) with the 
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BoneJ plugin (Doube et al., 2010) and ITK ("The Insight Segmentation and 

Registration Toolkit", www.itk.org). 

 

2.3.1 Geometry and meshing 

The voxel values of the HR-pQCT images were converted from Hounsfield units to 

BMD using the scanner's calibration function. The outer mask of the bone domain 

was segmented with a special fill algorithm (Pahr and Zysset, 2009) in Medtool. The 

bone voxel domain was meshed, using iso2mesh and CGAL, with linear tetrahedral 

elements having edge lengths of approximately 3 mm, which were then converted 

into quadratic tetrahedrons. This size corresponded to the edge length of hexahedral 

elements and was smaller than the size of quadratic tetrahedral trabecular bone 

elements used in previous studies (Dall'Ara et al., 2013a; Luisier et al., 2014) utilizing 

the same material mapping strategy described below. 

 

2.3.2 Material property assignment 

Homogenized material properties were assigned to each element using a 

background grid based approach by means of an automated mapping algorithm 

(Pahr and Zysset, 2009) in Medtool as follows. The BMD image was converted to 

bone volume fraction (BV/TV) using a femur-specific calibration law (Luisier et al., 

2014) and masked with the outer bone mask. Mean BV/TV was evaluated at grid 

points, spaced 3.5 mm apart, using 7.5 mm diameter spherical regions that were 

centered at each grid point. Furthermore, the bone-masked BMD image was 

smoothed using a Gaussian filter with a kernel size of one voxel and a sigma of 0.8 

and segmented with a global threshold of 120 HA mg/cm3, identified visually. 

Architectural anisotropy (fabric) was quantified at the grid points based on the content 

of the spherical regions using the mean intercept length (MIL) method (Whitehouse, 

1974). The loss of degree of anisotropy of the fabric tensor due to the relatively low 

image resolution of the HR-pQCT images compared to the dimensions of the 

trabecular microarchitecture was corrected using a calibration law (Varga and Zysset, 

2009). Each finite element was then assigned an individual orthotropic material card 

based on the BV/TV and fabric information interpolated from the background grid 

data based on the location of the tetrahedron centroid. 
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The material behavior of bone was modelled using an established constitutive law, 

used also in previous studies (Maquer et al., 2015), that predicts the mechanical 

properties including orthotropic elasticity and plasticity, as well as damage based on 

the actual volume fraction and fabric eigensystem (Schwiedrzik et al., 2013; 

Schwiedrzik and Zysset, 2013). Essentially, the underlying rheological model is a 

damageable elastic spring in series with a plastic pad and a dashpot element in 

parallel. The model was implemented as a user material (UMAT) for the finite 

element solver Abaqus/Standard (Simulia, Dassault Systemes, Velizy-Villacoublay, 

France). Parameters of this model are summarized in Table 1. 

In a previous study separate modeling of cortical and trabecular bone compartments 

showed no significant benefit for the hFE-based prediction of proximal femoral 

fractures in sideways fall configuration (Luisier et al., 2014) and therefore it was not 

performed here. Given the relatively large element size, no distinction between 

cortical and trabecular bone compartments was made during homogenization, 

representing a "smeared-cortex" approach. The power-law-based dependence of 

mechanical properties on volume fraction was therefore extrapolated for high density 

regions (BV/TV > 0.5) using a "tissue function" (Dall'Ara et al., 2013a) that ensured 

continuity of the piecewise function at BV/TV = 0.5 as well as prediction of the pore-

less properties at BV/TV = 1.0. 

 

2.3.3 Model alignment and boundary conditions 

The hFE model of each femur was aligned into the position corresponding to the 

experimental fall simulation setup in two steps (Figure 1, right) using Octave. In the 

first step the mesh was transformed into an anatomical "bone" coordinate system. 

The latter was defined based on the part of the proximal femur that was contained by 

the HR-pQCT scans, using three landmarks: head center (HC), neck axis (NA) and 

distal shaft axis (SA). HC was defined as the center of the sphere fitted on the 

surface nodes of the head region. NA was evaluated based on the vector connecting 

HC and the intersection of the skeletonization-based center line of the outer bone 

mask with the sphere centered at HC having a radius 5 mm larger than that of the 

femoral head. The skeleton on the outer bone mask image was computed using 

BoneJ. SA was defined based on the center of masses of the most distal ten slices 

(~1.2 mm) of the femoral shaft available on the HR-pQCT image. The model was 
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then transformed into the bone coordinate system in three steps: 1) translated to 

match HC with the origin 2) rotated consecutively around the global 'x' and 'y' axes, 

respectively, to match SA with the 'z' axis, and 3) rotated around the 'z' axis to align 

NA into the 'x-z' plane. This way the global 'x', 'y' and 'z' axes were aligned with the 

anatomical medial-lateral, anterior-posterior and proximal-distal (SA) axes, 

respectively. In the second step two consecutive rotations were applied to provide 

15° angle between the shaft axis and the horizontal plane, respectively 15° internal 

rotation corresponding to the "test" coordinate system. 

Boundary conditions of the experimental tests were reproduced in the hFE models 

(Figure 1, right). The distal hinge joint was simulated with a control node, which was 

located along SA at 160 mm distance from the most proximal point of the femoral 

head. All degrees of freedom of this node except for the rotation around the global 'y' 

axis were constrained. Surface nodes of the distal shaft located further than 80 mm 

from the most proximal point of the femoral head were coupled kinematically with this 

control node. 

The shallow PMMA embedding of the greater trochanter was simulated by 15 mm 

long truss elements attached to the bone surface nodes located within the most 

lateral 10 mm region of the aligned femur and direction of which was set according to 

the local surface normal vectors. The effective material properties of these elements 

were set based on the average surface element size and the properties of PMMA, 

which were estimated to be 3,000 MPa Young's modulus and 0.3 Poisson's ratio, and 

were set to "compression only" in order to allow for detachment of the embedding 

observed experimentally for several samples. The nodes of these line elements that 

were not attached to the bone were kinematically coupled to a control node, which 

was positioned slightly below the most lateral point. Motion of that node was 

constrained along the global 'x' axis. 

The PMMA element that transferred the loads from the dropping weight to the femur 

in the experiments was included in the simulations as a spherical surface that was 

modelled with an analytical rigid body shell. The latter was positioned above the 

femoral head, with 'y' and 'z' coordinates matched with those of HC and its motion 

was fixed in the 'y-z' plane. This constraint was required to ensure convergence of 

the simulations. Loading step was defined by applying 25 mm displacement on this 
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shell along the 'x' direction. Frictionless contact was defined between the lateral side 

of the shell and the medial surface of the femoral head.  

 

2.3.4 hFE simulations and post-processing 

The Abaqus input files were generated using Octave. The hFE analyses including 

geometrical and material nonlinearities were performed using the implicit solver of 

Abaqus 6.13. The vertical reaction force of the lateral control node was extracted 

from the results using Abaqus Python and plotted against the vertical displacement of 

the medial spherical cup shell. The first apparent peak of the numerical force-

displacement curve was taken as the maximal load (Fmax_FE) and the area under the 

curve until this point defined the energy to failure (Emax_FE). The maximal slope of the 

curve, evaluated automatically with a moving kernel, provided the definition for 

apparent stiffness (KFE). Contour plots of the scalar damage variable were generated 

for all models at 25 mm displacement or at the last converged step using Abaqus 

Python and visualized in Paraview (Kitware Inc., New York, USA). The damage 

results were classified into three categories based on the matching with the 

experimental fracture patterns. In the present study, criterion for "good" match was 

defined such that the essential components of the pattern, including the superior 

(proximal) and inferior (distal) ends of the fracture line, were well captured. For a 

"fair" match at least one side of the fracture line had to be well represented. Cases 

with considerable mismatch (e.g. subcapital vs. pertrochanteric) were classified as 

"poor" match. 

In order to evaluate the influence of material anisotropy, the simulations were also 

performed using isotropic material properties for bone tissue. 

 

2.4 Statistics 

Linear regression analysis was performed and coefficient of determination (R2) was 

used to evaluate how well the hFE results can predict the experimental data. Cook's 

test was used to detect outliers with the threshold set to 4/N (Bollen and Jackman, 

1985) = 0.29. 
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3 Results 

 

3.1 Experimental results 

The drop tower tests provided ten trochanteric (AO/OTA 31 A type) and four neck 

(AO/OTA 31 B type) fractures. Results of all fourteen samples were maximum force 

of 3,364 ± 1,247 N (mean ± SD), apparent stiffness of 1,305 ± 507 N/mm and 

maximum energy of 7.3 ± 3.5 J. The experimental and numerical force-displacement 

curves of all fourteen samples are shown in the Supplementary Material. An 

exemplary experimental force-displacement curve (sample ID 4) is shown in Figure 2. 

Results showed two peaks for nine out of the fourteen bones and the maximal force 

was located at the second peak for two samples. When treating these two specimens 

separately, both Kexp and Emax_Exp were highly related to Fmax_Exp (Figure 3). 

 

3.2 Numerical predictions 

One sample was identified as an outlier based on the linear regression analysis by 

means of Cook's test with Cook's distance being 2.78 for stiffness and 0.72 for 

strength. All regression analyses were therefore performed with the remaining 

thirteen samples. Apparent stiffness (R2 = 0.82), strength (R2 = 0.84) and energy to 

fracture (Emax_Exp = 1.62*Emax_FE - 0.43 J, R2 = 0.72) were all well predicted by the 

hFE analyses (Figure 4, Table 2). The slopes and the intercepts of the linear 

regressions were not significantly different from 1.0 and 0.0, respectively. Standard 

error of estimate (SEE) was 540 N (16.2%) for ultimate force, 233 N/mm (18.0%) for 

stiffness and 3.85 J (39.6%) for fracture energy. 

The level of prediction provided by the hFE models having the simplified isotropic 

material properties was similar compared to the anisotropic models for strength (R2 = 

0.82) and stiffness (R2 = 0.78), but was better for fracture energy (R2 = 0.82). 

The hFE simulations of three samples stopped immediately after reaching the 

maximum force. Fracture pattern analysis for these bones was therefore restricted to 

the initiation location, which matched in all three cases with the experimental one. 

However, as the entire pattern could not be evaluated, these cases were classified as 

"fair" prediction quality. Analysis of all fourteen samples provided four "good", six 

"fair" and four "poor" matching quality cases (Figure 5). In general, the hFE models 

tended to indicate the inferior aspect of the fracture line to be located more proximal, 
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i.e. in the neck region, compared to the experimental results being predominantly 

pertrochnateric. However, even if the exact fracture pattern was not identical, the 

initiation point was accurately predicted in all but two cases. In addition to the fracture 

in the neck or trochanteric regions, there was a highly damaged region on the head 

right under the rigid shell. Moreover, prior to reaching the ultimate force level, 

damage was observed in the central trabecular region of the greater trochanter in the 

hFE models of ten of the fourteen femora. The other four samples originated from 

male donors and three of these bones were the three strongest of the whole set. 

 

4 Discussion 

 

4.1 Quasi-static hFE models predict dynamic experimental properties 

The aim of this study was to evaluate if the mechanical properties of proximal femora 

in dynamic fall configuration can be adequately predicted with quasi-static finite 

element analysis. The latter represents the state of the art numerical tool and does 

not include the strain rate dependence of bone material properties (i.e. visco-

elasticity and visco-plasticity), mass-related inertial effects, or the combination of both 

arising due to the dependence of the loading rate on bone stiffness (Gilchrist et al., 

2014). Moreover, the mechanical contribution of bone marrow is not considered in 

these models. 

The main outcome was that the differences between the numerical quasi-static and 

experimental dynamic mechanical properties on the whole bone level appeared to be 

fairly consistent, providing strong linear relationships. Moreover, the strengths of the 

correlations compared well with ranges reported in the literature for in vitro proximal 

femur fracture studies investigating the sideways fall loading mode (Table 3). In 

particular, using a similar hFE modeling approach and the same material model, 

Luisier et al. (Luisier et al., 2014) found that fracture load of proximal femora, 

assessed in a well-controlled quasi-static sideways fall test configuration (Dall'Ara et 

al., 2013b), could be predicted with R2 = 0.856 and SEE = 13.4% (vs. R2 = 0.840 and 

SEE = 540 N, 16.2% in the present work). While they did not investigate apparent 

stiffness of the bones, an earlier QCT-based hFE study reported predictions of 

strength with R2 = 0.85 (SEE = 440 N, 14%) and of stiffness with R2 = 0.74 (SEE = 
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230 N, 14.2%) for the same set of samples (Dall'Ara et al., 2013a). Results of the 

present study showed similarly strong predictions and the differences may be 

attributed to the size and composition of the sample group including older donors 

(Dall'Ara et al.: N = 36, age = 76 ± 12 ys, range = 46 – 96 ys, vs. this study: N = 13, 

age = 85.3 ± 7.1 ys, range = 72 – 95 ys). 

These findings suggest that the results of quasi-static and dynamic experiments can 

be predicted with similar accuracy using these types of hFE models and that the 

major portion of the missing predictive power in the present study may not be due to 

the lack of viscosity or other effects related to the dynamic event. This provides 

further justification for the use of quasi-static hFE approaches of the proximal femur 

in the fall loading case for diagnostic and follow-up purposes. 

To the best knowledge of the authors, there is only a single previous FE study that 

attempted to predict experimental proximal femur fracture in sideways fall induced by 

means of a drop tower setup ((Ariza et al., 2015), with N = 14, age = 76 ± 12 ys, 

range = 50 – 96 ys, Fmax range = 1407 – 3724 N). This study found moderate 

correlations for stiffness and absorption energy, but no correlation for strength. 

Besides the fact their samples set consisted of femora with a lower and narrower 

range of maximum load, the difference between the results of Ariza et al. and that of 

the present work may be related to the different experimental setup as fracture was 

induced by impacting the greater trochanter in that study. Indeed, our results may be 

valid only for the particular experimental test setup used here and might not apply to 

alternative configurations, e.g. where the impacted side is at the greater trochanter 

(Ariza et al., 2015; de Bakker et al., 2009; Eckstein et al., 2004; Gilchrist et al., 2014; 

Roberts et al., 2010). However, both the head-impact and trochanter-impact loading 

scenarios were shown numerically to provide similar strain fields (Haider et al., 2013). 

Therefore, the reason for the different outcomes of the presents work and that of 

Ariza et al. may be related rather to the different material model that was employed. 

In this respect, it is important to note that the material properties of the constitutive 

law used in the present study were taken directly from the results of biopsy-level 

experiments and were not tuned to the anatomical location or loading type and may 

therefore apply to alternative loading conditions as well. The strength of this modeling 

approach, incorporating the previously established material model, is that it has 

performed similarly well or even better in predicting the quasi-static mechanical 
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properties of femora in stance (Dall'Ara et al., 2013a; Luisier et al., 2014), as well as 

those of other bones including the vertebral spine and the distal radius (Dall'Ara et 

al., 2012; Pahr et al., 2012; Varga et al., 2009; Varga et al., 2011; Zysset et al., 

2013). 

In this study we hypothesized that the relative differences in stiffness and strength on 

the organ scale were independent of loading rate. The strong correlations found here 

corroborate this hypothesis. As expected, we found the predictions to deviate from 

the 1:1 line and the hFE-based mechanical properties were lower on average. The 

difference was closely multiplicative for the stiffness and the fracture energy, while it 

was a combination of the multiplication and a constant shift for strength. In particular, 

the mean stiffness and maximal load was 46% and 75% higher, respectively, in the 

dynamic experiments compared to the quasi-static simulations, with the outlier 

excluded. An experimental study using proximal femora of elderly donors reported 

that a 50-fold increase in the displacement rate resulted in an approximately 20% 

larger fracture load and 100% higher stiffness, but no differences in energy 

absorption capacity (Courtney et al., 1994). These results only partially explain the 

dynamic experimental vs. quasi-static numerical discrepancies observed in the 

present study. The differences between Courtney et al.'s and our results may be 

related to the smaller but on average stronger sample group (N = 10, 4 female, 6 

male, age = 73.1 ± 7.8 ys,  Fmax = ~4.2 ± 1.5 kN), strain rate (fixed rate of 100 

mm/sec vs. free fall), or other details of the experimental test setup. 

The core hypothesis of this study was based on the extrapolation of the density-

independent nature of the strain rate dependence of bone mechanical properties 

from the tissue scale, at which it was mostly investigated in previous studies (Carter 

and Hayes, 1977; Linde et al., 1991; McElhaney, 1966), to the organ scale, at which 

the experiments were performed. Our results indicate that this was a valid 

assumption. However, the linear relations found here between the quasi-static 

numerical and dynamic experimental results may not reflect the heterogeneous 

elastic and plastic strain rates introduced by localization and a true rate dependent 

elastic and plastic behavior. While both tensile (Wright and Hayes, 1976) and 

compressive (Carter and Hayes, 1977) strength and stiffness were previously 

reported to exhibit strong positive strain rate dependence, a recent study found 

ultimate properties to decrease with increasing strain rate in tension (Hansen et al., 
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2008). In most cases, proximal femur fracture in sideways fall is initiated by the 

failure of the superior neck cortex in compression and followed by damaging of the 

inferior neck cortex in tension (de Bakker et al., 2009), confirmed also by our results. 

Reaching the ultimate state on the organ scale may therefore be affected by the 

complex strain rate dependence of the bone material properties on the tissue scale 

that must have contributed also to our results. Future studies may be required to 

investigate these relationships in further details. Such studies will require 

experimental data to define a strain rate dependent yield criterion and the following 

hardening and softening behavior of bone tissue that are not readily available. 

Fracture energy is a sensitive parameter and its prediction was rather limited. At the 

same time, this mechanical property is an important one and may be highly relevant 

for fracture risk prediction. Moreover, the relatively large SEE value (approximately 

40%) indicates that, besides the above mentioned rate dependent behavior, 

additional effects would need to be considered and real dynamic simulations may 

have to be used in order to more appropriately capture energy to fracture. 

In the present work we used homogenized FE models. The recent study of Nawathe 

et al. showed that HR-pQCT-based nonlinear micro-FE models that include the fine 

details of the bony micro-architecture predicted the experimental fracture load 

assessed at a high strain rate in a sideways fall test setup with very high accuracy on 

a younger, but apparently more fragile sample set (R2 = 0.94, N = 12, age = 76 ± 10 

ys, range = 62 – 93 ys, Fmax = 2.84 ± 1.05 kN, range = 0.93 – 4.67 kN, constant 100 

mm/sec) (Nawathe et al., 2014). Moreover, those analyses revealed new details on 

the mechanism of proximal femur fractures. While such models show a clear 

advantage as research tool, they are extremely computationally expensive, requiring 

tens of thousands of CPU hours on supercomputers. hFE simulations can be 

performed on a regular personal computer within a few hours. The results of 

Nawathe et al. suggest that the remaining variation not captured by hFE models may 

be due to the homogenized nature of these approaches. Additionally, pre-existing 

fatigue damage (Seref-Ferlengez et al., 2015) may contribute the experimental 

variations, that, to our knowledge, has not been included in FE models investigating 

proximal femur failure. 

The material properties used in the hFE analyses were based, beyond bone volume 

fraction, on fabric. Inclusion of structural anisotropy was previously shown in case of 
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spinal vertebrae to significantly increase the prediction accuracy of hFE models (Pahr 

et al., 2014), which was the same as that of micro-FE models (Pahr et al., 2012). 

However, in the present study, the isotropic hFE models provided similarly strong 

prediction of the experimental strength as the anisotropic ones. This was in line with 

the findings of previous studies comparing anisotropic HR-pQCT-based hFE models 

of proximal femora with isotropic ones (Hazrati Marangalou et al., 2012; Luisier et al., 

2014). Another previous study showed no benefit of including anisotropy when 

predicting stiffness of proximal femora, but the anisotropic models were approx. 26% 

more compliant (Enns-Bray et al., 2014). In contrast, our results showed that the 

anisotropic models were on average approximately 10% stronger and stiffer. These 

are in line with the findings of Luisier et al. (Luisier et al., 2014). The explanation for 

the fact that fracture energy appeared to be better predicted by the isotropic models 

is not straightforward and would require further investigation that was beyond the 

scope of the present work. In general, our results support earlier findings that 

inclusion of anisotropy into computer models is less influential in non-physiological 

loading scenarios. These findings are important towards the aim of clinical 

applicability of the used hFE analysis framework, as trabecular anisotropy may not be 

available in regular QCT images. However, anisotropy may be more relevant in 

loading cases that are closer to the physiological ones, i.e. for which bones are well 

adapted (Luisier et al., 2014; Pahr et al., 2014), and when different load cases must 

be matched simultaneously. 

 

4.2 Fracture pattern is fairly well predicted 

The ability of the hFE method to predict the experimental fracture patterns was found 

to be moderate as, on average, it produced "fair" matching quality. "Good" or "fair" 

correspondence was found in 10 out of the 14 cases (~70%). However, the onset of 

failure could be well captured in all but two cases. The reason for accurately 

predicting only the initial damage, but not being able to reproduce the exact fracture 

pattern, may partially be that the post-yield function of the used material model did 

not show enough softening to simulate the relatively brittle behavior at high strain 

rates. 

Our results were in line with the results of Keyak et al. (Keyak et al., 2001) who 

found, using linear hFE models and a "factor of safety" measure, 80% match in the 
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fracture initiation in fall load case (N=15). A recent study utilizing a similar hFE 

approach as the present work reported good qualitative agreement in 71% of the 30 

fracture cases in sideways fall, with neck fractures being better predicted (91%) than 

trochanteric ones (33%) (Dall'Ara et al., 2013a). In line with this, we found that, in 

general, the simulations showed a better match for the proximal end of the fracture 

line and tended to predict the distal end to be more medial (i.e. closer to the neck 

region) than the experimental one and therefore tended to predict neck fractures 

instead of trochanteric ones. The reason for the moderate predictions of the present 

study may be the relatively high portion of trochanteric fractures (71%), which appear 

to be in general more challenging to capture via FE. Another FE study reported good 

agreement for seven out of nine samples in the validation set (Dragomir-Daescu et 

al., 2011), while the distinction between "good" and "fair" matching was different than 

the one used here. In the recent study of Schileo et al. location of failure onset was 

accurately predicted by the FE models for five out of six samples in fall loading mode 

(Schileo et al., 2014). Also in drop tower tests, the initial location of fracture could be 

predicted well in seven cases, partially well in another seven bones and was not 

captured in a single case (Ariza et al., 2015). It has been recently proposed that local 

effects, e.g. the perforations of the cortex by blood vessels, which are by definition 

not captured by the hFE approach, may contribute to the initiation and propagation of 

the fracture (Helgason et al., 2014). However, a very recent study using the microFE 

technique, that should resolve these finer-scale structural details, classified also only 

eight out of twelve cases correctly (Nawathe et al., 2014), with accuracy similar to 

that of the homogenized FE methods. In line with that paper, we observed initial 

damage in the trabecular region of the greater trochanter. However, our hFE models 

predicted, next to the actual fracture, damage in the head region. This pathological 

effect was caused by the rigid surface used to load the head and the lack of articular 

cartilage layer, and were therefore related to non-properly distributed loads in the 

models. In summary, our findings suggest that the fracture line prediction accuracy of 

FE models may not be related to the loading rate of the experiment. 
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4.3 Limitations 

Our findings are largely limited by the small sample set. However, the used femora 

originated mainly from osteoporotic and osteopenic donors representing the target 

population for strength prediction. 

A single outlier was identified in the hFE-based predictions. In particular, this bone 

was much softer and weaker than predicted by its hFE model. It is possible that not 

all details of the experimental boundary conditions could be well represented in the 

numerical models. However, the fracture pattern of this sample was very well 

predicted and was classified as "good" matching quality. This sample may have had 

an unrecognized pre-existing crack or other defect. Alternatively, the donor potentially 

could have had a specific disease affecting properties of the bone tissue so that the 

used density vs. material property relationship did not hold. 

Damping effects of lateral soft tissue (Majumder et al., 2008) and the pelvic ring 

(Gilchrist et al., 2014) were not included either in the experimental or in the numerical 

model. These components would affect apparent stiffness and energy dissipation. 

These may also potentially influence the fracture load, but likely to a lesser extent, 

however. Further, compliance of the testing setup was not compensated when 

evaluating the experimental apparent stiffness. 

Classification of quality of match between the hFE-based damage maps and the 

experimental fracture pattern was subjective. However, to the best knowledge of the 

authors, no standardized approach has been published for this purpose. For the 

same reason, results of different studies cannot be directly compared. 

Motion of the spherical rigid body shell representing the medial PMMA element in the 

hFE models was constrained in the plane perpendicular to its loading direction, which 

was required - as mentioned above - to ensure stability of the numerical simulations. 

While in the experiments this element was theoretically free to move in this plane, in 

practice it was still constrained by the friction forces generated by the compression 

between the back side of the PMMA block and steel plate placed behind it. These 

may justify the boundary conditions used in the hFE models, which may be correct 

until reaching the maximum force. Neglecting this frictional force may have been an 

equally strong assumption. 
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Truss elements were used to represent PMMA cup at the greater trochanter. By this 

the shear stiffness of the embedding material was neglected. These may affect the 

bone region in the very vicinity of this boundary condition. As the region of interest 

(i.e. the fracture) was further away from this region, this simplification should be 

acceptable (Saint-Venant's principle). 

When estimating the aBMD values of the proximal femora we assumed that the 

organ-scale volumetric bone mineral densities of QCT and HR-pQCT modalities are 

equivalent and neglected potential deviations related to the in vitro scanning 

conditions. These assumptions are not expected to affect the osteoporosis ranking of 

the bones. 

 

4.4 Conclusion 

This study demonstrated that hFE models were able to accurately predict the 

mechanical properties of proximal femora tested in a dynamic drop tower 

experimental setup. As the latter is believed to better represent the real fall event 

than the widely used quasi-static tests with a constant high loading rate, our results 

are encouraging towards clinical application of numerical simulations (Orwoll et al., 

2009). This is further supported by the fact that the predictions remained adequately 

high when using the simplified isotropic models that rely only on density, which is 

available in clinical QCT images. Moreover, the highly automated pre- and post-

processing, as well as the relatively low computational cost of hFE models allow for 

efficient analysis of large sample sets. However, efficacy of these models in 

identifying individuals at high risk of fracture should be further investigated. 
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Figures 

 

 

  

Figure 1 Schematic illustration of the experimental test setup (left) and its 
representation in the numerical model (right). HC: head center, NA: neck angle, SA: 
shaft angle. 

 

 

 

 

Figure 2 Typical experimental force-displacement curve showing two peaks, with the 
maximal load Fmax_Exp located at the first peak (black dot). The red line shows the 
linear elastic region where the apparent stiffness Kexp was evaluated. The green area 
indicates energy to fracture (Emax_Exp). 
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Figure 3 Experimental maximum force was strongly related to both the apparent 
stiffness (left) and the energy at maximum force (right). The two samples that 
exhibited the maximum force at the second peak of the force-displacement curve 
were treated separately. 

 

 

 

   

Figure 4 hFE models predicted both the experimental apparent stiffness (left) and 
the maximum force (right) of thirteen proximal femora that were assessed by means 
of the drop tower test setup. The outlier was detected by Cook's test. 
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Figure 5 Qualitative evaluation of the hFE-based fracture pattern prediction by 
comparing with experimental post-test photographs in two views showing the anterior 
(A) and posterior (P) sides. For each of the three quality categories "Good", "Fair" 
and "Poor", two samples are shown. Arrows indicate similarities (green), as well as 
small (orange) and large (red) deviations. 
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Tables 

 

 

Elastic constants Yield constants 

ε0 ν0 μ0 k δ l σ+
0 σ−

0 ζ0 τ0 p q 
[MPa] [-] [MPa] [-] [-] [-] [MPa] [MPa] [-] [MPa] [-] [-] 

9,995 0.228 3,361 1.62 1.0 1.1 66.01 98.88 0.218 41.89 1.69 1.05 

Table 1 Parameters of the constitutive law. ε: elastic modulus, ν: Poisson's ratio, μ: 
shear modulus, k: power component of density for elasticity, δ: parameter of the 
tissue function, l: power component for the fabric eigenvalues for elasticity, σ+ and σ-: 
tensile and compressive yield stresses, respectively, ζ: coupling constant determining 
the shape of the yield surface in the stress space, τ: shear yield stress, p: power 
component of density for yield, q: power component for the fabric eigenvalues for 
yield. The subscript 0 refers to the extrapolated idealized pore-less properties. 

 

 

 

R2 values Fmax_Exp KExp Emax_Exp 

Fmax_FE 0.84 0.46 0.55 
KFE 0.75 0.82 n.s. 
Emax_FE 0.66 n.s. 0.72 

Table 2 Coefficients of determination (R2) of linear regression analyses between the 
experimental and the FE-based results after exclusion of the outlier. Bold characters 
highlight values larger than 0.7, "n.s." indicates non-significant correlations. 
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Study Sample 
size 

Experimental 
displ. rate 

Finite element model 
type 

R2 
Strength 

R2 
Stiffness 

(Keyak et al., 
1998) 

18 0.5 mm/s homogenized, linear, 
isotropic 

0.90 - 

(Orwoll et al., 
2009) 

51 Not known homogenized, 
nonlinear, isotropic 

0.80 - 

(Dragomir-
Daescu et al., 
2011) 

9 100 mm/s homogenized, 
nonlinear, isotropic 

0.85 0.87 

(Koivumaki et 
al., 2012) 

40 6.6 mm/s homogenized, 
nonlinear, isotropic 

0.87 - 

(Nishiyama et 
al., 2013) 

20 2 mm/s homogenized, linear, 
isotropic 

0.81 0.89 

(Dall'Ara et 
al., 2013a) 

36 5 mm/min homogenized, 
nonlinear, anisotropic 

0.85 0.74 

(Enns-Bray et 
al., 2014) 

7 2 mm/s homogenized, linear, 
anisotropic 

(0.35) 0.79 

(Luisier et al., 
2014) 

36 5 mm/min homogenized, 
nonlinear, anisotropic 

0.86 - 
 

(Nawathe et 
al., 2014) 

12 100 mm/s microFE 0.94 - 

(Ariza et al., 
2015) 

15 Free fall homogenized, 
nonlinear, isotropic 

-0.06 0.35 

Present study 13 Free fall homogenized, 
nonlinear, anisotropic 

0.84 0.82 

Table 3 The FE method applied in the present work to investigate proximal femur 
fracture under free fall condition has similar predictive ability compared to that of 
previous studies using fixed strain rate loading in sideways fall loading configuration. 

 

 

Highlights 

 Proximal femur fracture was induced in drop tower tests mimicking fall (N=14) 

 Homogenized finite element (hFE) models were generated automatically from 

CT images 

 Quasi-static hFE analysis predicted hip fractures occurring in dynamic 

sideways fall 

 Strength (R2=0.84), stiffness (R2=0.82) and fracture energy (R2=0.72) were 

well predicted 
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