Proliferative kidney disease in brown trout – infection level, pathology and mortality under field conditions

Heike Schmidt-Posthaus¹*, Regula Hirschi¹, Ernst Schneider²

¹Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Berne, Laenggassstrasse 122, P.O. Box 8466, 3001 Berne, Switzerland
²Alte Landstrasse 156, 8800 Thalwil, Switzerland

Running title: PKD related mortality and pathology under field conditions

ABSTRACT:

Proliferative kidney disease (PKD) is an emerging disease threatening wild salmonid populations. In temperature controlled aquaria, PKD can cause mortality rates of up to 85% in rainbow trout. So far, no data about PKD related mortality in wild brown trout are available. The aim of this study was to investigate mortality rates and pathology in brown trout kept in a cage within a natural river habitat which is known to harbor Tetracapsuloides bryosalmonae. Young of the year (YOY) brown trout, free of T. bryosalmonae, were exposed in the river Wutach, in the Northeast of Switzerland, during three summer months. Samples of wild brown trout caught by electrofishing near the cage location were examined in parallel. The incidence of PKD in cage exposed animals (69%) was not significantly different to the disease prevalence of wild fish, 82 and 80%. The mortality in cage exposed animals, however, was as low as 15%. At the termination of the exposure experiment, surviving fish showed histological lesions typical for PKD regression, suggesting that many YOY brown trout survive the initial infection. Our results at the river Wutach suggest that PKD in brown trout does not always result in high mortality under natural conditions.

* Corresponding author. Email: heike.schmidt@vetsuisse.unibe.ch
INTRODUCTION

Proliferative kidney disease (PKD) is an emerging disease of wild and farmed salmonid fish in Europe (Okamura et al. 2011). The disease is caused by the malacosporean parasite *Tetracapsuloides bryosalmonae* belonging to the Myxozoa (Hedrick et al. 1993, Canning et al. 2000, Okamura et al. 2001). The parasite’s complex life cycle involves bryozoans as invertebrate (Anderson et al. 1999, Longshaw et al. 1999, Okamura et al. 2001) and salmonids as vertebrate hosts (Feist & Bucke 1993, Hedrick et al. 1993). *T. bryosalmonae* infects salmonids through skin and gills (Feist et al. 2001, Longshaw et al. 2002) or gills only (Morris et al. 2000, Grabner & El-Matbouli 2010), and is afterwards distributed systemically. The main target organ in the fish host is the kidney (Kent & Hedrick 1985), where it multiplies and differentiates from extrasporogonic stages in the renal interstitium to sporogonic stages in the lumen of renal tubuli (Kent & Hedrick 1985). Spores are then excreted via the urinary system (Kent & Hedrick 1985, Morris et al. 2002, Hedrick et al. 2004, Bettge et al. 2009). Transmission to bryozoans has been demonstrated in brown and brook trout (Morris & Adams 2006, Grabner & El-Matbouli 2008). In affected young-of-the-year (YOY) salmonids, proliferative and granulomatous nephritis and necrotizing vasculitis with thrombus formation has been described (Hedrick et al. 1993, El-Matbouli & Hoffmann 1994, Bettge et al. 2009). Surviving fish show chronic lesions with interstitial fibrosis and tubulonephrosis, followed by a complete regeneration of renal morphology (Schmidt-Posthaus et al. 2012, 2013). The spread and outcome of the infection are suspected to be enhanced by water temperature with severe disease and increased mortality at temperatures above 15°C (Wahli et al. 2008, Bettge et al. 2009, Okamura et al. 2011). In temperature controlled aquaria, PKD associated pathology and mortality are well documented in rainbow trout (*Oncorhynchus mykiss*, Bettge et al. 2009, Schmidt-Posthaus et al. 2012). These studies showed mortality up to 85% at a constant water temperature of 18°C. It was hypothesized that infection with *T. bryosalmonae* plays a significant role in the decline of wild salmonid populations, e.g. brown trout (*Salmo trutta fario*) in Switzerland and wild Atlantic salmon (*Salmo salar*) in Central
disease in wild salmonid populations was also shown in other countries (Dash and Vasemägi 2014,
Feist et al. 2002, Skovgaard and Buchmann 2012). However, so far, these studies only investigated
prevalence, infection intensity and associated pathology under field conditions. Mortality rates and
causes of mortality or contributing factors to it were not evaluated and are still under debate (Dash and
Vasemägi 2014, Skovgaard and Buchmann 2012).
The aim of this study was to investigate PKD-related pathology and mortality in YOY brown trout
exposed in a cage experiment to river water within their natural environment. Specifically, the
following questions were investigated: (i) Does infection with *T. bryosalmonae* cause mortality in
YOY brown trout under fluctuating temperature conditions as seen in the field?; and (ii) Does
infection with *T. bryosalmonae* cause comparable pathology in cage exposed brown trout as seen in
wild caught animals?

MATERIAL AND METHODS

Study sites and fish sampling

Experiments were conducted over a period of 3 months (16th of July to 8th of October 2013). The
examined river system (Wutach) is situated in the southern part of Germany and has a 4.8 km border
section to Switzerland in the midsection of the river. It passes through rural and urban areas before
feeding into the larger river Rhine (Fig. 1). The Wutach has several tributaries; one of these was
included in this study (Ehrenbach) (Fig. 1). Fish can migrate from the tributary into the Wutach but
not vice versa because of an unpassable barrier. In former years, brown trout were regularly stocked in
the Wutach (stocked fish originated from a trout hatchery nearby), but catches by anglers and
electrofishing resulted in decreased numbers of fish in the midsection of the river (fishing statistics
1979-2013, unpublished data). Stocking was stopped one year prior to the beginning of the
experiment. Therefore, investigated animals from the field sampling originated from natural spawning.
In the tributary (Ehrenbach) included in this study, a stable brown trout population was recorded
(fishing statistics 1979-2013, unpublished data) and no PKD records exist.
Investigations were conducted in two separate approaches, (i) a cage experiment was performed exposing YOY brown trout for three months to water in the Wutach; (ii) wild brown trout were sampled by electrofishing in two stretches in the Wutach and at one stretch in the Ehrenbach (field sampling). Water temperature was measured inside the cage and at two locations in river water, in the Wutach and the Ehrenbach.

Cage experiment

A cage, 1x1x0.5 m, was placed into the Wutach in the midstream part of the river (Fig. 1). Mesh size of the cage was 1 cm in diameter. An additional mesh was placed outside of the cage in the upstream position to avoid blocking of the cage by large floating refuses. This mesh was cleaned regularly. During the experiment, the cage itself was not cleaned to avoid additional stress of the exposed animals. 100 YOY brown trout were purchased from a trout hatchery. Offspring of various broodstock, originally deriving from the Wutach, were mixed on the farm. Animals used in this experiment therefore originated from various mother animals. To determine if stocked fish were negative for infection with *T. bryosalmonae* at the beginning of the experiment, five brown trout were euthanized in clove oil and immediately examined as described below. Ten brown trout served as a negative control and were kept in spring water at the hatchery of origin.

In the middle of July 2013, 85 brown trout were placed into the cage. They were fed 1% of body weight with commercial fish food (TroCo Ultra, Coppens, Netherlands, pellet size 2 mm) using an automatic feeding machine ensuring continuous food supply. All fish were monitored daily for signs of disease or mortality. Moribund or dead fish were removed and investigated immediately. Three months after the start of the exposure experiment, all remaining trout were euthanized in clove oil, tagged and immediately investigated.

Field sampling

Fish were sampled at two stretches in the river Wutach, one stretch 2 to 3 km upstream of the cage experiment and one stretch 3 to 4 km downstream (Fig. 1). Additionally, the tributary was sampled a
few kilometres upstream of the entry into the river Wutach (Fig. 1). In September 2013, 10 and 11
YOY brown trout, respectively, were sampled at each of the two sites in the Wutach and 15 YOY
brown trout in the Ehrenbach by electrofishing. Due to low density of YOY it was not possible to
sample higher numbers of animals. Fish were euthanized separately in clove oil and examined as
described below.

Pathology, histopathology and immunohistochemistry

Length of every dead or euthanized fish was recorded, followed by a complete necropsy. Animals
originating from the cage experiment were weighted and the condition factor was calculated
(100*weight/lenght³, Bagenal, 1978). Macroscopic changes in the inner organs were recorded.
Animals were then immediately fixed in 10 % buffered formalin for histopathological and
immunohistochemical (IHC) examination. Kidney samples of all animals (cage experiment, field
sampling) were routinely paraffin-embedded and 4 μm sections were prepared for haematoxylin-eosin
(H&E) stain. Suspicious cases were examined by IHC using a monoclonal anti-
*Tetracapsuloides
bryosalmonae* (PKX) antibody (AquaMAb-P01, Aquatic Diagnostics Ltd., Stirling, UK, Adams et al.
1992). Histopathological changes of the kidney were graded according to a common pathological
grading system as 0 (no) to 6 (severe). Presence of *T. bryosalmonae* was examined on whole
histological and IHC kidney sections and infection intensity was classified as 0 (no parasites present
on whole slide), 1 (single parasites), 2 (mild infection rate), 3 (mild to moderate infection rate), 4
(moderate infection rate), 5 (moderate to severe infection rate) or 6 (severe infection rate) at a
magnification of 200 to 400x.

Real time PCR for detection of *T. bryosalmonae* DNA in kidney tissue

Fish negative for *T. bryosalmonae* by histology and/or IHC were examined by real time PCR. Two
20 μm sections of paraffin embedded material were deparafinized. Lysis and extraction of total DNA
was performed using DNeasy tissue Kit (Quiagen, Basel, Switzerland) according to the manufacturer’s
protocol. Samples were incubated with proteinase K at 56°C and 450 rpm overnight. The yield was
determined by spectrophotometry using the NanoDrop photometer (NanoDrop Technologies, Inc., Wilmington, USA). Real time PCR was performed using SYBR GoTaq® qPCR Master Mix (Promega, Dübendorf, Switzerland) according to the manufacturer’s instructions. Primer pair PKX3F (CTAAGTACATACTTCGGTAGA) and PKX4R (CCGTTACAACCTTGTTAGGAA), described by Kent et al. (1998), was used. A positive control sample obtained from the kidney of clinically infected brown trout from other studies and a negative control using water were included in the PCR procedure. A 297bp gene sequence of the small subunit ribosomal DNA (SSU rDNA) was detected. Samples with a threshold cycle value (Ct) of 35 or lower and a melting temperature equal to the positive control were classified as positive. To confirm the specificity of the real time PCR, the real time PCR was repeated without dissociation stage and the PCR products were purified with Nucleospint® (Machery-Nagel, Oensingen, Switzerland). The products were checked on a 1% agarose gel for amplification and molecular weight. To verify the sequence, the PCR products were sent to Microsynth AG, Balgach, Switzerland for sequencing. The identity of PCR products was determined by BLAST-n searching (Altschul et al, 1997) of the available sequences in the GenBank database (www.ncbi.nlm.nih.gov).

Water temperature

Water temperature was recorded every 2 hours by temperature loggers located inside the cage, in the Wutach near the cage, and in the Ehrenbach near the fish sampling site (Fig. 1). Mean values for each day were calculated and reported.

Statistics

PKD prevalence was calculated as the sum of *T. bryosalmonae* positive animals per group divided by the total number of animals per group (percentage). The incidence of PKD describes the percentage of newly diseased individuals in the numerically defined group at risk for infestation over a limited time period. Significant differences between the groups were tested using the chi-square-test at a p ≤ 0.05 significance level.
Parasite infection intensity was calculated by the sum of values for infection intensity per fish divided by the total number of infected animals. Mean of pathology score was calculated by the sum of pathology scores per fish divided by the total number of affected animals.

RESULTS

Water Temperature

In the Wutach, water temperature constantly exceeded 15°C for 38 days in a row from July to August (Fig. 1). Afterwards, water temperature exceeded 15°C over 10 additional non-consecutive days. As fish in the cage were exposed starting in the middle of July, when water temperature was already high, these animals experienced 39 days of water temperature above 15°C. In the Ehrenbach, water temperatures of 15°C and higher were only reached on 8 days, and no longer than 5 days in a row.

Cage experiment

Infection incidence, intensity, mortality and pathology

Animals sampled at the beginning of the experiment before exposure to river water and those kept in the hatchery were in good body condition, and showed no signs of *T. bryosalmonae* infection. No *T. bryosalmonae* positive trout could be identified by real time PCR. No mortality was recorded in the group kept at the fish farm.

Inside the cage in the river Wutach, 15 brown trout died during the first 73 days (Fig. 2). Two animals which died during the first 14 days of the experiment showed neither macroscopical signs of PKD nor any histological kidney pathology nor presence of *T. bryosalmonae* DNA. In all animals that died at later time points, infection with *T. bryosalmonae* was evident. Parasites were visible histologically in nine animals. These nine animals showed moderate to severe kidney lesions typical for an acute PKD infection (mean value: 3.33, SD: 1.12, Fig. 3a). In the remaining four animals, autolysis was already advanced; thus in these fish, presence of parasite DNA could only be shown by real time PCR. No other signs of concurrent disease were detected in these spontaneous deaths, therefore mortality due to
PKD was calculated at 15% (13/85). These PKD related mortalities occurred between 45 and 73 days post exposure (p.e., Fig. 2).

The surviving 70 brown trout were euthanized after 84 days. Body condition was good (condition factor, mean value: 1.09, SD: 0.11). Thirty-four of the 70 surviving brown trout (49%) showed intact *T. bryosalmonae* by histology or IHC. Infection intensity in these animals varied between mild and moderate, at a mean intensity of 1.5 (SD: 0.65). By real time PCR, *T. bryosalmonae* DNA was detected in additional 12 brown trout.

Thirty-seven animals presented different pattern of kidney pathology. Sixteen trout showed acute renal changes with extrasporogonic parasites in the interstitium and intravascular thrombi composed of parasite stages, fibrin and mainly macrophages and few lymphocytes. Ten animals showed chronic active changes like interstitial fibrosis, tubulonephrosis and tubuloneogenesis together with an acute response to the disease as described above. In these animals, parasites were present in the interstitium, in the vessels, but also in the tubular lumen (Fig. 2d). However, detectable numbers of intratubular parasites were low. Six animals showed only solitary parasites in the interstitial tissue with only focal lesions. In five animals, kidney changes were already chronic (Fig. 3b,c) with spores in the tubular lumen (Fig. 3d) or no detectable parasites in vessels or the interstitial tissue. No signs of concomitant disease were present in any of the 70 animals.

Overall, PKD incidence was 69% (59 out of 85 exposed brown trout) after three months of exposure (Table 1), which was not significantly different to PKD prevalence in wild brown trout (see below).

Field sampling

Infection prevalence, intensity and renal pathology

In the Ehrenbach, none of the examined brown trout showed any signs of a *T. bryosalmonae* infection, neither by histology, immunohistochemistry nor by real time PCR. Kidney morphology was within normal limits in all examined fish.

In the Wutach, at the upstream and downstream location, PKD prevalence was 82% and 80%, respectively (Table 1). Infection intensity varied between mild and severe, with a mean value of 2.8
and 3.5, respectively (Table 1). At the upstream location, infection with T. bryosalmonae was mostly associated with moderate to severe acute kidney lesions (Fig. 3a, Table 1). The mean pathology score was 3.6 (Table 1). One animal showed acute renal lesions and an interstitial severe fibrosis, interpreted as a chronic active lesion. At the downstream location, all infected animals showed acute kidney lesions. The mean pathology score was 3.75. At the up- and at the downstream location, parasites were located in the interstitial tissue and in the vessels.

Chi-square analysis comparing PKD prevalence between the two field sampling groups up- and downstream of the cage and the PKD incidence in the cage showed no significant group differences (p=0.8921).

DISCUSSION

Previous studies hypothesized that increased PKD related mortality is a major contributor to the decline of brown trout populations (Wahli et al. 2008, Zimmerli et al. 2007, Schmidt-Posthaus et al. 2013), and YOY brown trout seemed to be especially affected (Burkhardt-Holm et al 2005, Hari et al. 2006). In several brown trout populations in Switzerland, lower YOY brown trout densities could be correlated to the occurrence of PKD (Borsuk et al. 2006). In other countries (e.g. Denmark, Norway), the effect of T. bryosalmonae infections on the population level is still under discussion (Skovgaard and Buchmann 2012, Mo et al. 2011). T. bryosalmonae positive brown trout were found in high numbers in different fish populations by PCR, however clinical signs were only rare (Skovgaard and Buchmann 2012, Mo et al. 2011). Therefore, the authors discussed that T. bryosalmonae infections are not always detrimental for wild fish. However, mortality rates related to particular diseases in wild fish populations are difficult to measure as usually no post-mortem data can be collected. Therefore, the aim of this study was to evaluate PKD related pathology and mortality in YOY brown trout kept in a cage in the river Wutach. Interestingly, mortality stayed as low as 15% in our experiment, despite the fact that 69% of caged fish became infected during the experimental period. In temperature controlled aquaria using rainbow trout, mortality up to 85% was shown at constant water temperatures of 18°C (Schmidt-Posthaus et al 2012) over a time period of 75 days post exposure. After 47 days p.e.,
cumulative mortality already reached 77% (Bettge et al. 2009). In our cage experiment, PKD related
mortality in brown trout occurred between 45 and 73 days p.e. (Fig. 2). Therefore, onset of mortality
was delayed compared to laboratory experiments using rainbow trout (Bettge et al. 2009). Species
differences could be an explanation for this difference with brown trout being less sensitive to the
infection. Water temperature higher than 15°C is thought to be critical for disease related mortality
(Bettge et al. 2009, Okamura et al. 2011). In our experiment, daily mean water temperature exceeded
15°C for 39 days inside the cage. Fish were exposed relatively late, starting middle of July, whereas
native YOY trout are exposed much earlier to infestation. Low mortality could therefore also be due to
insufficient infection rate due to low spore density in the water. Spore release by bryozoan seems to be
undulating instead of continuous with a peak value in June / July (Hanna Hartikainen, pers. comm.).
Further research is needed to investigate this possible impact, e.g. by exposing brown trout in river
water over the whole season with regular samplings during the exposition period to monitor disease
development in exposed brown trout. However, incidence of infected animals at the end of our
experiment was 69%, similar (p>0.05) to the disease prevalence found in wild brown trout at the
nearby locations in the Wutach (80 and 82%).
Additionally, lesions in caged fish were comparable to those occurring in wild fish in the same river
during the time period of the experiment, severity of pathology was advanced in wild fish compared to
caged animals. However, whereas wild brown trout and caged brown trout dying during the
experiment showed acute kidney changes with intravascular extrasporegonic parasites, as well as
parasites in the renal interstitium, caged fish sampled at the end of the experiment showed a high
percentage (41%) of chronic or chronic active lesions with spores already present inside renal tubuli.
This indicates spore translocation into the tubular lumen (sporogenic stage) and spore excretion. The
low number of detectable spores in the tubular lumen by immunohistochemistry can be due to the fact
that the used monoclonal antibody (anti-*Tetracapsuloides bryosalmonae* (PKX) antibody, AquaMAb-
P01, Aquatic Diagnostics Ltd., Stirling, UK) only partly detects sporogenic stages of the parasite, and
therefore the number of intratubular spores was probably underestimated. Between the sampling of
wild fish and the end of the cage experiment, there was a time delay of 4 weeks, which might explain
this morphological difference with more chronic stages in caged animals. Therefore, these animals
seemed to be survivors, already within a recovery stage of the disease. Unlike rainbow trout, brown
tROUT are able to excrete intact spores which can re-infect bryozoa (Morris & Adams 2006, Grabner &
El-Matbouli 2008). In the field, additional stressors, like concurrent diseases, can retard parasite
development in the kidney and the kidney regeneration process in wild brown trout (Schmidt-Posthaus
et al. 2013). Food competition can also be regarded as one additional stressor in the field. This stressor
was not present in our study as animals in the cage were fed with artificial food which was also
reflected by the good body condition of caged brown trout.

Our results suggest that PKD in brown trout does not always result in high mortality under natural
conditions. Additional research is needed to confirm these indications and to investigate possible
applications on other river systems.

Acknowledgements: We thank the fishermen „Oberes Wutachtal Stühlingen e.V.“ for helping in
supervision of the trout in the cage, Peter Weisser and Patrick Wasem for their helpful comments and
Christopher Robinson, EAWAG Dübendorf, for analysing the data of the temperature logger.

LITERATURE CITED

Anderson CL, Canning EU, Okamura B (1999) 18S rDNA sequences indicate that PKX organism
parasitizes bryozoa. Bull Eur Ass Fish Pathol 19: 94-97

tROUT: time- and temperature-related renal pathology and parasite distribution. Dis Aquat Org 83

(1): 67-76

brown trout (Salmo trutta) in Swiss rivers using a Bayesian probability network. Ecol Model

192: 224-244

Mo TA, Kaada I, Joranlid AK, Poppe TT (2011) Occurrence of Tetracapsuloides bryosalmonae in the kidney of smolts of Atlantic salmon (Salmo salar) and sea trout (S. trutta). Bull Eur Assoc Fish Pathol 31:151-155

List of figures

Fig. 1: a. Location of field sampling sites (grey bars), cage (black rectangle) and location of temperature logger in the Wutach and the Ehrenbach (grey triangles). Black bars indicate barriers which are not traversable by brown trout. b. Temperature curve in the Ehrenbach. c. Temperature curve in the Wutach in the cage. Thin lines indicate 15°C which was shown to be critical for PKD related clinical signs and mortality in trout. Thick dark line indicates period where temperature stayed above 15°C.

Fig. 2: Survivorship curve of brown trout (Salmo trutta fario) kept in the cage in the river Wutach. P.e.= post exposure in river water

Fig. 3: Histological lesions found in brown trout kept in the cage in river water, a. acute renal change with thrombus formation (arrow), thrombus consists of mainly macrophages, fewer lymphocytes and parasites (open arrowhead), b. chronic renal changes with fibrosis around tubuli and vessels (open arrowheads), c. higher magnification of chronic changes (star) with fibrosis and infiltration with macrophages and eosinophilic granular cells, HE stain. d. IHC investigation showing positive parasite spores (arrowhead) in the tubular lumen. Bars (a,c) = 25 µm, (b) = 50 µm, (d) = 10 µm
List of tables

Table 1: *Salmo trutta fario*, field sampling and cage experiment, different locations of sampling, length, prevalence of infected brown trout, infection intensity (shown as mean values ± standard deviation) and associated renal pathology (shown as mean values ± standard deviation), PKD related mortality, nk = not known. Histopathological changes of the kidney were graded as 0 (no), 1 (scattered), 2 (mild), 3 (mild to moderate), 4 (moderate), 5 (moderate to severe) or 6 (severe). Presence of *T. bryosalmonae* was classified as 0 (no parasites present on whole slide), 1 (single parasites), 2 (mild infection rate), 3 (mild to moderate infection rate), 4 (moderate infection rate), 5 (moderate to severe infection rate) or 6 (severe infection rate) at a magnification of 200 to 400x.

<table>
<thead>
<tr>
<th>Location</th>
<th>n</th>
<th>Length (cm) (Mean ± SD)</th>
<th>Prevalence (%)</th>
<th>Infection intensity (Mean ± SD)</th>
<th>Pathology (Mean ± SD)</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field sampling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wutach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream location</td>
<td>11</td>
<td>10.2 ± 1.0</td>
<td>82</td>
<td>2.8 ± 1.6</td>
<td>3.6 ± 1.7</td>
<td>nk</td>
</tr>
<tr>
<td>Downstream location</td>
<td>10</td>
<td>10.4 ± 0.8</td>
<td>80</td>
<td>3.5 ± 2.1</td>
<td>3.75 ± 1.7</td>
<td>nk</td>
</tr>
<tr>
<td>Ehrenbach</td>
<td>15</td>
<td>9.3 ± 1.5</td>
<td>0</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>nk</td>
</tr>
<tr>
<td>Fish farm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting control</td>
<td>5</td>
<td>8.8 ± 0.8</td>
<td>0</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Negative control</td>
<td>10</td>
<td>11.7 ± 1.8</td>
<td>0</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Cage experiment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wutach</td>
<td>85</td>
<td>11.2 ± 1.3</td>
<td>69</td>
<td>1.6 ± 1.1</td>
<td>2.3 ± 1.4</td>
<td>15</td>
</tr>
</tbody>
</table>