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Abstract

The concentrations of chironomid remains in lake sediments are very variable and, therefore, chironomid strati-
graphies often include samples with a low number of counts. Thus, the effect of low count sums on reconstructed
temperatures is an important issue when applying chironomid-temperature inference models. Using an existing
data set, we simulated low count sums by randomly picking subsets of head capsules from surface-sediment sam-
ples with a high number of specimens. Subsequently, a chironomid-temperature inference model was used to as-
sess how the inferred temperatures are affected by low counts. The simulations indicate that the variability of inferred
temperatures increases progressively with decreasing count sums. At counts below 50 specimens, a further reduc-
tion in count sum can cause a disproportionate increase in the variation of inferred temperatures, whereas at higher
count sums the inferences are more stable. Furthermore, low count samples may consistently infer too low or too
high temperatures and, therefore, produce a systematic error in a reconstruction. Smoothing reconstructed tem-
peratures downcore is proposed as a possible way to compensate for the high variability due to low count sums.
By combining adjacent samples in a stratigraphy, to produce samples of a more reliable size, it is possible to assess
if low counts cause a systematic error in inferred temperatures.

Introduction

Remains of chironomid larvae are common in lake
sediments and have recently been used extensively as
proxies for reconstructing past limnology (see Walker,
1987, 1993 for reviews of the method). Statistical mod-
els have been developed that link the abundances of
subfossil chironomids with measured environmental
variables of interest, such as temperature, salinity, or
total phosphorus concentrations (Walker et al., 1991a,
1995; Lotter et al., 1998). Thus, downcore chironomid
analysis can now be used to give quantitative estimates
of past temperature and to provide insights concerning
the magnitude, duration and geographical extent of past
climate change (e.g., Walker et al., 1991b; Levesque

et al., 1993; Cwynar & Levesque, 1995). Presently, a
number of chironomid-temperature inference models
are available for temperate and arctic lakes in Europe
and North America (Lotter et al., 1997; Walker et al.,
1998; Olander et al., 1999; Brooks & Birks, 2000).

Many biological proxies commonly used to model
past environmental conditions are found in high num-
bers in lake sediments (e.g., pollen or diatoms). This
is only partly true for chironomids, as the concentra-
tions of their remains can fluctuate widely. Though den-
sities of ≥100 head capsules/cm3 are common (Walker,
1987, 1993), chironomid abundances may be much
lower in some sediments and, even if more material is
processed, the number of specimens found may be less
than 45 (Lotter et al., 1997). Also, the time and effort
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spent to isolate the microfossils from sediment is com-
paratively large in chironomid analysis, as chironomid
head capsules must be manually separated from other
residual material under a stereomicroscope. Since sites
and time windows of special interest to climate recon-
struction (e.g., alpine lakes or cold periods such as the
Younger Dryas) commonly have very low head capsule
concentrations, many authors have used head capsule
counts that are well below the minimum numbers rec-
ommended for other proxies. Typical ‘cut levels’ for
samples from modern chironomid-temperature train-
ing sets are 45–50 (e.g., Lotter et al., 1997; Walker et
al., 1998; Olander et al., 1999) and similar minimal sums
are recommended for downcore analysis (Hofmann,
1986). Although a number of authors have addressed
the effect of count sums on diversity (Rull, 1987; Birks
& Line, 1992) or on the reliability of percentage data
in a palaeoecological framework (Mosimann, 1965;
Maher, 1972), no similar studies are available on how
low counts affect quantitative environmental recon-
structions.

Intuitively, the reliability of inferred temperatures
will decrease with lower count sums: Low head cap-
sule numbers may lead to a disproportionate abundance
of rare species in a sample simply due to chance. The
contrary may also be true, rare species may be under-
represented and the inferred temperature will then be
biased towards the temperature optima of the dominant
taxa (see Palmer, 1998, for an example on how the
inferred temperature can change with sample size).
This is less of a problem in the modern training set used
to develop the temperature inference model, as the in-
dividual lakes can be tested against the other samples
in the calibration set via ‘leave one out’ cross-valida-
tion. Hence, outliers due to low count sums may be
identified on the basis of their fit with the model and
eliminated from the calibration (e.g., see Lotter et al.,
1997). Also, error estimates are produced for the model
during calibration (e.g., the root mean square error of
prediction; RMSEP; Birks 1995) and the error due to
low count sums will be incorporated into these statis-
tics to some extent. For downcore temperature recon-
structions the problem is more acute. In the absence of
instrumental measurements there is no way of know-
ing the true temperature value of a given sample. Fur-
thermore, sample-specific error estimates as available
for weighted averaging and weighted averaging partial
least squares calibration (Birks et al. 1990; Line et al.,
1994; S. Juggins, personal communication) assume
comparable count sums for the modern training set and
the downcore data.

The problem is, therefore, to produce a method of
estimating the potential error in the reconstructed tem-
perature due to a low number of individuals in a sam-
ple. This information can then be used to set a minimum
number of microfossils to be counted such that the er-
ror due to low counts is small in relation to the error
estimate of the temperature inference model. In this
study we present a method of estimating the low count
error for a given calibration set by randomly picking
subsets of head capsules from samples with a high count
sum. The inferred values for these subsets are then com-
pared with the inferred temperature of the original
sample and can be used to estimate the variation in
reconstructed temperatures due to low head capsule
sums. Thus, a threshold for count sums can be set that
minimises the effort spent in isolating and identifying
subfossil chironomids at a point where a large part of
the climatologically relevant information is still gained.

Methods

Lake selection

An existing chironomid-temperature calibration set
from the Swiss Alps containing surface sediment sam-
ples from 50 lakes (Lotter et al., 1997) was used for this
study. In order to include lakes over the whole envi-
ronmental gradient of interest and samples of different
compositional structure, we split the 50 lakes into three
evenly sized groups according to their mean summer
air temperature (i.e., into ‘warm’, ‘intermediate’ and
‘cold’ lakes). After eliminating lakes with less than 200
counts we then selected from each group one lake with
an exceptionally high and one with an exceptionally
low diversity (estimated using Hill’s N2 and Shan-
non’s diversity following Hill, 1973 and Legendre &
Legendre, 1998). The major biological, physical and
chemical characteristics of the six selected lakes are
summarised in Table 1 and described in detail in Lotter
et al. (1997, 1998) and Müller et al. (1998).

Simulation of low count sums

Samples with low counts were simulated by randomly
drawing a fixed number (count sum) of head capsules
from each of the six lakes. The probability of a taxon
being drawn was proportional to its abundance in the
sample and remained the same no matter how many
times a head capsule type had been drawn. The simu-
lation is, therefore, analogous to sampling with replace-
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ment, the basis of bootstrapping (Birks et al. 1990).
Using this procedure we produced for every lake 100
subsamples each for count sums of 5, 10, 15, 20, 25,
30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175,
and 200 head capsules.

Calibration and temperature inferences

Using the data set and methods described in Lotter et
al. (1997), a chironomid-summer air temperature infer-
ence model was calibrated separately for each of the
six lakes using two component weighted averaging-
partial least squares regression (WA-PLS; ter Braak
& Juggins, 1993; ter Braak et al., 1993). Six separate
models were necessary, as the lake used for the low
count simulation was excluded from the calibration
with the remaining 49 lakes providing the model (er-
ror statistics of the six models: RMSEP: 1.27–1.41 °C;
jackknifed r2: 0.84–0.87). Summer air temperatures
were inferred for all subsamples, producing a data
matrix of 100 inferred temperatures for each of the 19
different count sums for every lake. In addition, the
inferred value (T

tot
) and the sample specific root mean

square error of prediction (RMSEP
tot

) for the original
sample with the full count were calculated. Finally, in
order to detect any systematic bias in the inferred low
count temperatures, we calculated the mean error (ME

i
)

of the inferred temperatures of the low count samples
in relation to the temperature inferred for the original
sample:

ME
i
 = (1/n) Σ (T

ij
 – T

tot
) (1)

where ME
i
 is the mean error of a given lake for a count

sum of i (ranging from 5–200; see above), n is the
number of simulations (100 in our case), T

ij
 is the in-

ferred temperature for the simulated subsample number

j (ranging from 1–100) of the count sum i, and T
tot

 is
the inferred temperature based on the total head cap-
sule number in the original sample.

Results

The distribution of the inferred temperatures shows a
similar trend with decreasing count size for all six lakes
(Figure 1). The total range and the interquartile range
increase steadily from the maximum simulated count
sum of 200 down to about 100 specimens. As the sam-
ple size decreases further, both continue to rise but in
a more abrupt and irregular way to reach approximately
twice their original size at a count sum of 50. Between
a sum of 35 and 45 head capsules both statistics start
to increase disproportionally, although for some lakes
the range of inferred values remains remarkably con-
stant down to a count sum of 20–25 (e.g., ENG, LOC).
Both range and interquartile range at a given sample
size are of the same order of magnitude for five of the
six lakes. LOC, BUR, SCW, FÄL and ENG, for exam-
ple, yield a total range of 1.31–1.63 °C and an inter-
quartile range of 0.36–0.49 °C for a count sum of 100.
For LÄM the inferred values are very uniform down
to low count sums (e.g., a total range of 1.27 °C and
interquartile range of 0.23 °C for a count of 20). This
is not surprising, as LÄM has a very simple sample
structure, with only four taxa present in the original
sample (Table 1). Also, more than 60% of the chirono-
mids belong to a single taxon (Tanytarsus gr. lugens),
with a second reaching 24% (Chironomus gr. anthra-
cinus; see Lotter et al., 1997). For FÄL, LÄM, LOC,
SCW and ENG, the median of the inferred values is
more or less constant for all sample sizes. For BUR,
though, a distinct trend towards cooler inferred tem-
peratures is apparent for low count sums.

Table 1. Major characteristics of the lakes used to simulate low count sums (see Lotter et al., 1997 for more details)

Le Loclat Burgäschisee Schwendisee Fälensee Engstlensee Lämmerensee
(LOC) (BUR) (SCW) (FÄL) (ENG) (LÄM)

Elevation (m asl) 432 465 1159 1452 1850 2296
Latitude (N) 47 °01′ 13′′ 47 °10′ 10′′ 47 °11′ 19′′ 47 °15′ 08′′ 46 °46′ 27′′ 46 °24′ 08′′

Longitude (E) 6 °59′ 52′′ 7 °40′ 09′′ 9 °19′ 55′′ 9 °24′ 59′′ 8 °21′ 32′′ 7 °35′ 13′′

Max. depth (m) 9.2 31.0 9.5 31.0 49.0 2.5
Lake area (km2) 0.05 0.19 0.04 0.15 0.45 0.07
Catchment area (km2) 0.88 4.29 5.06 4.25 7.40 1.55
Mean summer air temperature (°C) 17.3 17.1 12.7 10.9 9.0 7.6
Number of taxa 27 25 27 10 21 4
Total number of specimens counted 202 389 301 501 378 717
Shannon’s diversity (H) 1.309 1.081 1.294 0.656 1.100 0.440
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Figure 1. Inferred temperatures for different count sums simulated for Le Loclat (LOC), Burgäschisee (BUR), Schwendisee (SCW), Fälensee
(FÄL), Engstlensee (ENG), and Lämmerensee (LÄM). Each box plot represents the results of 100 simulations for a given count sum (see text
for details). The limits of the boxes represent the first and third quartiles, whereas the whiskers encompass all values that are within 1.5 times
the interquartile distance from the box. Extreme values beyond the whiskers are indicated by circles. The horizontal line in the box corre-
sponds to the median. The reconstructed temperature (Ttot) and the sample specific root mean square error of prediction (RMSEPtot) for the
original sample are given next to the box plots.
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In order to compare the variability of the inferred
temperatures with the error predicted by the chirono-
mid-temperature calibration model, we calculated the
standard deviation of all 100 simulations for a given
sample size. One of the error statistics commonly used
to assess the performance of calibration models is the
root mean square error of prediction (RMSEP) that is
calculated from the residuals between the measured and
inferred values (see Birks, 1995, 1998). For a large
number of samples the RMSEP approximates the stand-
ard deviation of the residuals. Here, we compare the
standard deviation of the low count simulations with
the error predicted by the model. We argue that, as long
as the variability of the low count simulations is small
in relation to the error of the model, the effect of low
counts on the inferred values will be negligible, as any
inferred value should only be viewed in light of the
prediction error. For counts of 200 head capsules, the
standard deviation of the inferred values is well below
one fifth of the sample specific RMSEP of the original
sample (RMSEP

tot
) for all six lakes (Figure 2). At a

count of 100, the size of all standard deviations was still
below 25% and at 50 head capsules, below 40% of the
RMSEP

tot
. For head capsule count sums below 50 the

ratio increases further, although at a different rate for

each lake. For example, for SCW the standard devia-
tion is half the RMSEP

tot
 at a count of 45 individuals,

whereas for FÄL this threshold was only reached at 15
head capsules or less. Again, LÄM shows the smallest
variability of inferred values with the standard devia-
tion barely exceeding 40% of the RMSEP

tot
, even for

the lowest count of 5 head capsules.
Finally, we calculated the mean error of the inferred

values for each lake and count sum (ME
i
; Figure 3). We

assume that if the low head capsule counts give lower
or higher inferred temperatures than samples with a
higher count (i.e., they produce a systematic bias) this
should be apparent in a high negative or positive ME

i
,

irrespective of the variability of the results. The mean
error is negligible for LOC and LÄM even for very low
head capsule counts. ENG, FÄL, and SCW all have a
tendency to infer cooler temperatures from low count
samples, although even at a count sum of 30 specimens
the mean inferred temperature is at most 0.26 °C colder
than the inferred value of the original sample (T

tot
). On

the other hand, BUR shows high absolute values of ME
i

at count sums as high as 50 head capsules (0.5 °C) and
samples of five and ten specimens have inferred tem-
peratures that are more than 1.3 °C colder than the tem-
perature inferred from the original count.

Figure 2. Standard deviation of inferred temperatures (SD) for different count sums in relation to the sample specific root mean square error
of prediction of the original sample (RMSEPtot). Each of the six lakes is represented by a separate line (the dotted line indicates LÄM with an
exceptionally low SD). The y-axis values are given as standard deviation of the inferred temperatures, divided by the root mean square error
of prediction.
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Conclusions

Even though only a limited number of lakes are used
for this low-count simulation and the results presented
here depend strongly on the data set we used, they still
provide a number of insights into the way low counts
can affect quantitative temperature reconstructions:

(1) Count sums of 45–50 head capsules are commonly
used as a minimum count size for chironomid a-
nalysis (Hofmann, 1986). At this sample size the
inferred temperature values from the low count
simulations are still remarkably constant. Also, the
total range and interquartile range are of a similar
size as at count sums of 60–80 head capsules.
This suggests that no significant increase in the
reliability of the results can be obtained except by
drastically increasing the minimum count sum
(i.e., to about 100 or 150). For a count of 45 the
standard deviation of inferred temperatures com-
pared to the prediction error of the inference mod-
el is below 50% of the RMSEP

tot
 in all lakes. As

single inferred temperatures should generally
not be taken at face value in chironomid-based
temperature reconstructions and interpretation of
downcore trends is usually accomplished with
a robust smoothing function (e.g., Birks, 1998;
Brooks & Birks, 2000), we do not consider this var-

iability to be a major cause for concern in down-
core temperature reconstructions.

(2) For five of the six lakes the mean bias at a cut level
of 45–50 head capsules is small (absolute value
< 0.25 °C). Nevertheless, the results for one lake
(BUR) suggest that a serious systematic error may
occur when reconstructing temperatures from sam-
ples with low counts. Using 45–50 specimens, the
mean error of the BUR simulations is almost 0.5 °C
and at 20 head capsules, for instance, it increases
further to 0.7 °C. Therefore, temperature signals
inferred from low counts only should be treated with
caution. A possible way to detect if temperature
extremes are due to low count sums is to combine
adjacent samples to give a more reliable count size.
Any systematic bias will then become apparent in
the difference between inferred temperatures of the
amalgamated and the low count samples.

(3) The results presented here are strongly dependent
on the temperature inference model and on the data
set used for the low count simulations. Care should
therefore be taken when extrapolating our results
to other geographic regions or to chironomid-tem-
perature inference models with a different taxo-
nomic resolution. A minimum count of 45 seems
adequate for the model we used provided that
single extreme temperatures are not over-interpreted
and samples are tested for the possibility of a sys-

Figure 3. Mean error (ME
i
) of inferred temperatures for the low count simulations (see text for details). Each of the six lakes is represented

by a separate line (the dashed line indicates BUR with an exceptionally large absolute MEi).
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tematic bias (see point 2 above). The simulation
method used in this study provides a simple means
of estimating the effect of low head capsule counts
on the accuracy of quantitative temperature in-
ference models. For analysts relying heavily on
low head capsule sums in their interpretation, it is
important to assess the effect of low counts on their
temperature reconstructions. As described here, this
can be done by using a number of lakes from the
surface-sediment calibration data set to produce
subsamples of lower count sums. Alternatively,
samples from the same core material with larger
count sums and a similar composition as the low-
count samples of interest can be used for the low
count simulations. Finally, the simplest way of
obtaining a more reliable count sum is still by
processing more material or, if samples are taken
contiguously, by pooling adjacent samples prior to
temperature reconstruction.
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