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Abstract Potential Desiccation Polygons (PDPs), tens to hundreds of meters in size, have been observed
in numerous regions on Mars, particularly in ancient (>3 Gyr old) terrains of inferred paleolacustrine/playa
geologic setting, and in association with hydrous minerals such as smectites. Therefore, a better
understanding of the conditions in which large desiccation polygons form could yield unique insight
into the ancient climate on Mars. Many dried lakebeds/playas in western United States display large
(>50m wide) desiccation polygons, which we consider to be analogues for PDPs on Mars. Therefore, we
have carried out fieldwork in seven of these dried lakes in San Bernardino and the Death Valley National
Park regions complemented with laboratory and spectral analysis of collected samples. Our study
shows that the investigated lacustrine/playa sediments have (a) a soil matrix containing ~40-75% clays
and fine silt (by volume) where the clay minerals are dominated by illite/muscovite followed by smectite,
(b) carbonaceous mineralogy with variable amounts of chloride and sulfate salts, and significantly,

(c) roughly similar spectral signatures in the visible-near-infrared (VIS-NIR) range. We conclude that

the development of large desiccation fractures is consistent with water table retreat. In addition, the
comparison of the mineralogical to the spectral observations further suggests that remote sensing
VIS-NIR spectroscopy has its limitations for detailed characterization of lacustrine/playa deposits. Finally,
our results imply that the widespread distribution of PDPs on Mars indicates global or regional climatic
transitions from wet conditions to more arid ones making them important candidate sites for future

in situ missions.

1. Introduction

There are currently >1000 detections from orbiting imaging spectrometers of hydrous minerals on the
surface of Mars, which are widespread, yet concentrated in the Southern Highlands (see Carter et al. [2013]
for the global analysis). These detections are dominated by smectites, which are a special family of phyllosi-
licates with high affinity for water and various formation pathways that mostly require liquid water activity.
Many studies of smectite exposures and hydrous minerals, in general, have reported their association with
polygonal fracture patterns, which were commonly regarded as a potential result of the desiccation of the
once water-saturated smectite-bearing deposits [e.g., Ehimann et al, 2008, 2009; Wray et al.,, 2010, 2011;
Erkeling et al., 2012; Bishop et al., 2013; McKeown et al., 2013; E-Maarry et al., 2013, 2014].

El-Maarry et al. [2014] showed that potential desiccation polygons (PDPs) are a common feature in
phyllosilicate-bearing terrains attaining size scales that range from centimeters to tens of meters wide
using images from the High Resolution Imaging Experiment (HiRISE) [McEwen et al., 2007] and currently
active rovers (Figure 1). Most PDPs currently observed from orbit range in diameter from 1 to 30 m.
However, patterns that are in the submeter range are visible as well in certain locations on Mars that have
been investigated in situ by rover missions such as the Mars Exploration Rover “Opportunity” at Meridiani
[Mclennan et al., 2005; Watters et al, 2011] and the Mars Science Laboratory “Curiosity” at Gale Crater
[Grotzinger et al., 2014]. PDPs are generally flat, lacking raised rims or centers, and are most often observed
in light-toned units, with respect to the surrounding terrain. The polygonal patterns usually subdivide as a
result of secondary or multiple generations of cracks, which usually require images with submeter spatial
resolution to identify.

PDPs are mostly associated with Fe/Mg smectites- or vermiculites-bearing sedimentary deposits. However,
they have also been observed in deposits that show spectral signatures of chlorides, Al-rich smectites, and
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Mawrth Vallis, Mars

7

Lucerne Dry Lake, California, US

Figure 1. Potential desiccation polygons (PDPs) on Mars in comparison to desiccation polygons on Earth. (left column)
Mars displays PDPs that span a wide size range from centimeters to hundreds of meters. Arrows in the figures showing
large features point to the longest and largest sinuous fractures in the two locations. Image sources for Mawrth

Vallis: HIiRISE image PSP_006755_2030, Meridiani Planum: Navcam image 1N185802127EFF64EZP1700R0OM1, Lucerne
Valley: Google Earth, and Mesquite Flats: image acquired by the authors for this study. (right column) Earth images
have been intentionally gray scaled for better comparison. For additional information about the Terrestrial images,
refer to Table 1 and text.

less commonly of kaolinites and carbonates [El-Maarry et al., 2014]. Notable regions showing PDPs include
Mawrth Vallis [e.g., McKeown et al., 2013], Nili Fossae [e.g., Ehimann et al.,, 2008, 2010], Libya Montes [e.g.,
Erkeling et al., 2012; Bishop et al., 2013], Margratifer and Sirenum Terra [e.g., Osterloo et al.,, 2010; El-Maarry
et al, 2014], and chloride-bearing terrains [El-Maarry et al., 2013]. Since the vast majority of phyllosilicate
signatures is located in Noachian-aged terrains [Bibring et al., 2006; Carter et al., 2013], which is an era of
debatable climatic conditions, investigating the processes that create PDPs in association with these mineral
assemblages can constrain the climatic conditions during the time of their formation.

Of particular relevance to this work, numerous recent studies [Osterloo et al., 2008, 2010; Glotch et al.,
2010; Ruesch et al., 2012; El-Maarry et al., 2013] suggest that many chloride-bearing terrains, which are
also commonly associated with PDPs [El-Maarry et al., 2013], have a lacustrine/playa origin. Incidentally,
many playas and dried lakebeds also display large (>50 m wide) desiccation polygons, in particular in
western United States in the California/Nevada region [Neal et al., 1968]. Therefore, a study of these
regions as an analogue for locations displaying PDPs on Mars is essential to understand better these
features. To that end, we report here on the results of fieldwork that was carried out mainly in the summer
of 2014 at seven dried lakes/playas in California, U.S., including a number of sites in the Death Valley
National Park (DVNP).
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Table 1. List of Sites Visited for Fieldwork

# Location

Coordinates Main Characteristics

1 Lucerne Lake (San Bernardino)

Coyote Lake (San Bernardino)

Soggy Lake (San Bernardino)

North Panamint Lake (DVNP)
Mesquite flats (DVNP)

v b wnN

[e)}

Racetrack Playa (DVNP)
Deep Springs Playa (Inyo)

~N

Site #1: 34°29'45.70"N, 116°57'8.60"W #1: Vegetation-free large desiccation polygons (DPs) and salty, heaved soil
Site #2: 34°30'20.40"N, 116°54'55.20"W #2: Older vegetation-filled large DPs

35°4'11.27"N, 116°43'41.11"W Old vegetation-filled large DPs less salty and harder than Lucerne

34°27'7.02"N, 116°41'15.40"W Large vegetation-free DPs in hard sediments

36°24'22.95"N, 117°24'53.39"W Old vegetation-filled large DPs

36°36'36.57"N, 117°6'45.93"W Small centimeter-sized DPs in numerous thin outcrops between

the Mesquite dunes
36°41'39.1"N, 117°34'03.2"W Small centimeter-sized DPs in hard lakebed
37°16'31.63"N, 118°2'18.24"W Salt-crusted playa with salt polygons (No DPs)

2. Methods
2.1. Field Methods and Sample Acquisition

The western United States contains many playas and dried lakes. Among these, a small subset of these
locations displays large desiccation fractures (see Neal et al. [1968] for a comprehensive review). Moreover,
a significant number of these sites are generally inaccessible to the public due to their association with
U.S. military air bases. Nonetheless, a few sites are freely accessible and relatively easy to reach. For this study,
seven sites were chosen (Table 1 and Figures 2—-4) that cover a wide range of surface morphologies in order to
carry out a geological and compositional comparison. For instance, Coyote and Lucerne dried lakes display

SEresno

Los’/Angelesite ¥

100 km

Figure 2. Google Earth view covering parts of California and Nevada showing the locations of dried lakes visited in this
study, which include Deep Springs (DS), Racetrack Playa (RT), Mesquite Flats (MF), North Panamint (NP), Coyote (CY),
Lucerne (LC), and Soggy (SG) dried lakes/ playas. Image credit: Google Earth.
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Figure 3. Google Earth view of locations visited in this study, which encompass (a and b) Lucerne (two locations), (c) Coyote,
(d) Soggy, (e) North Panamint, (f) Racetrack, (g) Mesquite dunes, and (h) Deep Springs. The red dots show the approximate
location of acquired samples. More information is available in Table 1. Credit: Google Earth.

large polygonal fractures (Figure 3) but differ in their vegetation state with Lucerne showing far less vegeta-
tion (Figure 4). On the other hand, Mesquite Flats and Racetrack Playa (both in the DVNP) show only small
centimeter-sized polygons, whereas the Deep Springs Playa shows no desiccation polygons.

In terms of geography, three of these sites are located in San Bernardino County (Coyote, Lucerne, and
Soggy), three are located in DVNP (Mesquite, Racetrack, and North Panamint), and one location in Inyo
Country (Deep Springs). In order to study and collect samples from the DVNP sites, we acquired a research
permit. However, our initial permit for our visit in July 2014 only included the Racetrack and North
Panamint sites due to the National Park’s safety concerns with regard to sea level sites, such as Mesquite,
in the summer. Therefore, a supplementary permit was acquired specifically for the Mesquite region in
winter 2014.

The fieldwork generally consisted of two main tasks: (1) characterizing the surface morphology of the site
mainly through imaging using commercial digital cameras (Figure 4), and (2) collecting samples directly from
the surface and ~15-30 cm deep (Figure 5) in order to assess possible vertical variation and effect of surface
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Figure 4. Field images from the visited sites. (a) Lucerne site #1 showing two intersecting fractures (arrows). Note the car
for scale (b) Lucerne site #2 east of site #1 showing older cracks that have been filled by vegetation further accentuating
the pattern as viewed from air (see Figure 2b). The observed vegetation is approximately knee high. The fracture across
the image is ~30 m long. (c) Coyote Lake showing a similar vegetation infill accentuating the cracks. Here too, the
observed vegetation is approximately knee high. The fracture along the image is ~100 m long. (d) Soggy Lake showing
two intersecting cracks. Note the car for scale. () North Panamint showing a similar vegetation infill to Coyote and
Lucerne #2. The second author is shown for scale. (f) Racetrack Playa. Polygons in the foreground are ~10 cm wide. In
the background the 22 m high “Grandstand” dolomitic outcrop is visible. (g) Mesquite location among the Mesquite
dunes in Death Valley. For a close-up refer to Figure 1. (h) Deep Springs Playa showing salt polygons. The first author is
shown for scale.
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weathering. The approximate locations
where samples were collected are high-
lighted in Figure 3. The choice of sampling
location was generally governed by two
factors: (a) proximity to large desiccation
fractures as observed from mostly aerial
surveys (Figure 3), which did not necessa-
rily correspond to a particular part of the
lake basin (such as its center or margins),
and (b) proximity to routes accessible by
car in order to limit the distance traversed
on foot for safety concerns given the high
summer temperatures at the time. Two
150-300g samples were acquired from
each site (one surface, one 15-30cm
deep), except for Lucerne Lake, which
required sampling from two sites corre-
sponding to the different fracture settings
(the old and vegetated versus fresh-
looking nonvegetated fractures, Figures 3
and 4). The samples were collected roughly
from the polygon centers with small
shovels and stored in tightly sealed plastic
bags where they remained till the lab
analysis phase. For the sites that displayed
an indurated upper crust (Figure 5), care

Figure 5. Sampling method for acquiring the field samples. The samples  was taken to include only the crust in the
were taken from the (a) surface and at (b) 15-30 cm deep. The deep surface sampling. Afterward, the shovels
samples were directly collected from the walls to avoid contamination L
i : ) were used to dig till 15-30 cm deep where
from surface infill. The images shown here are for samples acquired . .
in Coyote Lake (Table 1, section 3.1.2.), which shows a centimeter- the sample was acquired directly from
thick fractured and indurated crust overlying compact, nonfractured, the trench wall to avoid contamination
fine-grained material. as much as possible from surface debris

infill (Figure 5).
2.2. Lab Analysis

The lab analysis consisted of three main techniques: (1) X-ray diffraction (XRD) analysis to derive chemical
composition and mineralogy, (2) Laser Diffraction (LD) to derive particle-size distribution, and (3) Visible-
Near-Infrared (VIS-NIR) analysis to characterize the spectral properties and to assess similarities and differences
with Martian remote sensing measurements [see El-Maarry et al., 2014]. Below, we briefly explain the methods
in more detail.

2.2.1. XRD Analysis

As a first step, the samples were milled for 1 min using a tungsten-carbide vibratory disk mill, in order to
produce a coarse-grained powder, and then dried overnight in an oven at 50°C. The samples were then split
into one portion for the clay mineralogy analysis and another for the basic mineralogy.

To measure the clay mineralogy, 15 g was mixed with NH,OH 0.01n to prevent coagulation and dispersed for
6-10 min ultrasonically and then poured into Atterberg cylinders. The cylinders were filled by NH,OH 0.01n to
create a sedimentation height of ~20cm and then left for ~16 h. During that time, 10% diluted Calgon
(sodium hexametaphosphate) was added to any of the cylinders that displayed flocculation. Afterward,
the suspended clay fraction (<2 um) was separated and acidified with 2n HCl, centrifuged (2500 rpm, 5 min -
cycles) and washed with distilled H,O. Then the clays were saturated with 2n CaCl, for 30 min. The remaining
Ca”" cations were removed by rinsing and centrifuging 3 times with distilled H,O. The remaining slurry was
dispersed again ultrasonically and spread over three glass plates for oriented sedimentation. First plate
was air dried, the second one was saturated with ethylene glycol at 50°C overnight to check for swelling
clays, and the third specimen was heated to 550°C for 1 h to distinguish kaolinite from chlorite. The three
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orientated specimens of each sample were measured on a Philipps PW3710 XRD unit with Cu Ka radiation at
40 kV/40 mA. Reflections from 4° 20 to 20° 2@ at 0.02°/step were recorded with an acquisition time of
1 s/step. The relative amount of montmorillonite, kaolinite, chlorite, and illite was determined by their relative
peak height.

To measure the basic mineralogy, 3 g of each dried and milled sample was simply mixed and homoge-
nized with 0.3 g LiF as an internal standard for phase quantification. The samples were disorientated prior
to duplicate measurements on a PANalytical” CubiX? X-ray diffractometer (http://www.panalytical.com/
CubiX3.htm) with Cu Ka radiation at 45 kV/40 mA using a monochromator. The range from 4° to 60° 2@
at 0.02°/step was recorded with an acquisition time of 1s/step. The quantitative abundance (wt %) of
the basic minerals was calculated based on the internal standardization (LiF), and semiquantitative
abundances of additional phases were derived by Rietveld analyses with PANalytical” HighScore Plus
software package.

2.2.2. LD Analysis

In order to prepare the samples, the soil aggregates in the samples were gently crushed in a mortar and sieved
to 2mm mesh size. Three grams of soil was suspended in 30 mL of distilled water and treated with ultrasound
for 5 min. Subsequently, the samples were centrifuged (3000 rpm, 5 min cycles), and the supernatant discarded.
This procedure was repeated 3 times to remove all soluble salts. In order to remove organic matter the soil
samples were treated with 10 mL of 30% H,0, overnight. Later, the samples were washed twice with distilled
water to remove the remaining H,O,. Finally, the soil samples were exposed to chemical dispersion by adding
20 mL of sodium hexametaphosphate (33 gL™") and sodium carbonate (7gL™"), and shaking overnight.

The particle-size distribution was measured on a Mastersizer 2000 system equipped with the Hydro 2000S
dispersion unit (http://www.malvern.com/en/products/product-range/mastersizer-range/default.aspx) using
the Laser Diffraction Method where upon illumination of a particle a spatial intensity distribution of the
scattered light is generated as function of its size [e.g., McCave and Syvitski, 1991]. The settings of the instru-
ments were adapted according to Ryzak and Bieganoski [2011]. A minimum of three aliquots of every sample
were analyzed, and the average distribution pattern calculated. The grain size distribution was classified
using the three main classes of clay (<2 pm), silt (2-63 pm), and sand (63-2000 pum).

2.3. VIS-NIR Spectral Analysis

The spectral measurements presented in this study were acquired using the Simulation Chamber for Imaging
the Temporal Evolution of Analogue Samples (SCITEAS) [Pommerol et al., 2015]. This small thermal vacuum
chamber allows exposing large (>10 cm in diameter and thickness) samples to low temperature and pressure
conditions. The surface state of the sample can be continuously monitored by visible and near-infrared
hyperspectral imaging through a large window in the center of the upper lid. The hyperspectral system
can also be used, as in this study, with the sample under ambient laboratory conditions. During the spectral
measurements, the samples were illuminated using a monochromatic light from a 100 W Quartz Tungsten
Halogen lamp. The scattered light from the sample was measured using a combination of two cameras: a
1.4 megapixel scientific grade camera (model TSI 1500M-GE from Thorlabs) imaging at the wavelength range
of 0.38-1.08 um and a near-infrared camera model Xeva-2.5-300 from Xenics, which has a high sensitivity
over the 0.85-2.5 um wavelength range. All measurements were calibrated relative to a reference surface
made of Spectralon (Labsphere). More details related to the SCITEAS setup are presented in Pommerol
et al. [2015]. For the purposes of this study, we have tuned the hyperspectral system to increase its spectral
resolution in the NIR while optimizing its signal-to-noise ratio at short and long wavelengths (reaching ~400)
in order to mimic the characteristics of the spectra recorded by the Compact Reconnaissance Imaging
Spectrometer for Mars (CRISM) instrument (see section 1).The spectral resolution varies from 6.5 to 13 nm full
width at half maximum from the VIS to the NIR, and the NIR spectra are acquired with a spectral sampling of
6 nm, which is comparable to 6.55 nm for CRISM [Murchie et al., 20071.

3. Results

3.1. Polygons Morphology and Other Features

3.1.1. Lucerne Dry Lake (San Bernardino County)

Lucerne Dry Lake is an irregularly shaped dry lakebed, approximately 3 x 7 km in size, located in the southern
Mojave Desert of California ~17 km north of the San Bernardino Mountains [Rubin et al., 2000]. The CA-247 S/
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Figure 6. Special features encountered in some of the visited sites: (a) salt concentrations in the cracks observed in
Lucerne Lake site #1. (b) Small centimeter-sized polygonal fracture patterns in Coyote Lake showing new (red arrows)
and old/healed (blue arrows) cracks interlaced, which is indicative of dry-wet cycles. (c) Fine-laminated mudstone
displaying centimeter-sized cracks in Mesquite Flats. (d) View of the dark muddy slurry underlying the bright salt crust in
Deep Spring Lake.

Barstow Road cuts through the lakebed and roughly divides it into an eastern and western part. The western
part of the lake lacks vegetation, yet displays some of the most remarkable fracture patterns (see Figure 1). On
the other hand, the eastern side shows more vegetation, which accentuates older fracture patterns.

Unfortunately, there is little by way of detailed fieldwork in the literature for the majority of the visited sites.
However, a number of geophysical and lithological logs for selected sites are available through the public
records of the U.S. Geological Survey (USGS). For instance, in Dockter [1980a], a stratigraphical cross section
is defined through drilling down to ~100 m deep. According to this report, the uppermost 30 m is dominated
by calcareous clays with minor (not exceeding 5%) amounts of silt and sand. According to Rubin et al. [2000],
the lakebed has been significantly affected by deflation processes that involve lifting and removal of uncon-
solidated clay-size and silt-size particles from the lake surface by wind erosion consistent with the occurrence
of clay and silt dunes along its margins.

Viewed from the ground, the two sides of the lake show different surface morphologies. The western side is
less consolidated, almost fluffy and heaved in some parts, and shows a progressive subdivision of fractures
creating polygons of variable size that range from centimeter- to meter-sized patterns. The larger patterns
as viewed from orbit are composed of shallow (almost ankle deep) linear troughs tens of centimeters wide.
These shallow troughs probably rest on top of fractures whose depth is unconstrained. The surface and
shallow subsurface show patches of evaporite deposits particularly within the fractures (Figure 6a). On
the other hand, the eastern side displays a more indurated surface and preferential growth of vegetation
within old fractures. In both sites, small centimeter-sized polygonal fractures are visible and show highly
irregular fracture intersections. The fractures themselves are mostly nonlinear and, along with the irregu-
larity of fracture intersection, indicate numerous dry-wet cycles [e.g., Tang et al., 2008; Goehring et al., 2010;
Goehring, 2013].

3.1.2. Coyote Dry Lake (San Bernardino County)

Coyote Dry Lake is a dry lakebed in the Mojave Desert ~24 km northeast of Barstow and ~65 km NE of
Lucerne Lake. It is accessible through the Interstate I-15 N and the Alvord Mountain Road but requires a
4 x4 car for some parts of the route. The lakebed is approximately 10 by 6 km at its widest point. It is
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sparsely vegetated and displays high concentrations of dark volcanic tuffs and pumice at the lake margins,
which are probably entrained by episodic surface runoff from the surrounding highlands and eventually
settle on the lakebed.

As with Lucerne, similar drilling-based lithological and geophysical assessments show that the uppermost
~70 m of the stratigraphical column is dominated by stratified calcareous clays before giving way to more
gravel- and sand-dominated layers [Dockter, 1980b]. More recent USGS gravity surveys of the region reveal
that the sediments filling the Coyote Lake basin are >1000 m thick [Jachens and Langenheim, 2014].

Most of the lakebed is polygonally patterned. However, the well-defined patterns are located in the eastern
central part of the lakebed (Figure 3c). Aerial survey images show that the large polygons reach sizes of
50-90 m in width. The fractures themselves are accentuated by the preferential growth of vegetation within
the fractures similar to the eastern side of Lake Lucerne (i.e., Lucerne site #2, Figure 4c).

From the ground, small centimeter wide (~8-20 cm) polygons are visible as well as smaller irregular cracks,
which could be initial subcracks formed shortly after drying. In contrast to the predominantly T junctions
(or orthogonal intersections) of the large fractures viewed from aerial surveys, smaller polygons on the
ground form irregular patterns of predominantly Y junctions. Lighter-toned patterns of healed fractures from
previous dry-wet cycles interlace the fractured patterns (Figure 6b), which is consistent with the prevalence of
Y junctions as crack intersections tend to gradually evolve from T to Y junctions with dry-wet cycles [e.g., Tang
etal, 2011].

The small fractures are only a few centimeters deep (with a fracture depth-to-spacing ratio of ~1:5) and divide
the lakebed into two main vertical horizons: a centimeter-thick fractured and indurated crust overlying
compact, nonfractured, fine-grained material (Figure 5). Finally, unlike the Lucerne location (site #2), many
of the vegetated areas are heaved to variable heights even exceeding shoulder height in one location.
3.1.3. Soggy Dry Lake (San Bernardino County)

Soggy Dry Lake is small dry lakebed measuring ~1 km by 2 km at its center. It lies ~25 km SE of the Lucerne
site and is readily accessible from the CA-247 S/Old Woman Springs Road. A detailed stratigraphical column
down to ~50 m deep is reported in Dockter [1980c]. According to this report, the surface down to ~1.5m is
dominated by silt and sand followed mainly by clays for ~25 m before giving way to silts and sandy layers
for the rest of the stratigraphical column.

Images from orbit show that only a small portion (roughly 200 m?) of the lakebed displays large polygonal
patterns that are ~40 m wide. From the ground, these polygons are composed of wide troughs similar to
the ones encountered in Lucerne site #1. However, the sample acquisition phase revealed a much more
indurated surface than what was encountered in Lucerne. In fact, the ground was very hard to dig into
in comparison to the other sites visited in this campaign, which suggests that this site is one of the driest
lakebeds visited.

Similar to previous sites, the ground is dominated by centimeter-sized polygonal fractures with lighter-toned
interlaced patterns suggestive of multiple dry-wet cycles.

3.1.4. North Panamint Lake/Playa (DVNP)

North Panamint Lake or playa is situated in Panamint Valley but is nonetheless within the confines of the
DVNP and is separated from Death Valley by the Panamint Range to the East. The lakebed is dominated by
clays, fine-grained silt, and minor sands [Motts and Carpenter, 1968; Messina et al., 2005]. According to Neal
et al. [1968], the playa contains lacustrine sediments of the Pleistocene-aged Lake Panamint at depth.
North Panamint is typical of numerous southwestern dry lakebeds, in that it contains several common
geomorphic features, including solution depressions, drain holes, mud volcanoes, phreatophyte, and spring
mounds [Messina et al., 2005].

Messina et al. [2005] made a detailed investigation of the large fractures in the playa and concluded that most
of the fissures observed are a result of desiccation (aided by their fortuitous experience of witnessing a fissure
in the process of formation after a flash flood in May 1999). However, some fissures appear to be tectonically
induced because of their anomalous orientation relative to the other desiccation fractures, which form
polygonal patterns, and are radially aligned and parallel or subparallel to the playa boundary.

The fieldwork was conducted in the northern side of the playa since images from aerial surveys suggested
that this location displayed the most developed fracture systems. The location is accessible through CA-190 W
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(which cuts through the basin and divides it into a northern and southern part) and a dirt road that requires a 4 x 4
car in some sections.

From the ground, the polygonal patterns resemble those observed in Coyote and Lucerne site #2 in display-
ing substantial vegetation growth within the fractures. However, in our location, the vegetation appeared to
grow in considerably wider (~2-3 m wide) bands than what was observed elsewhere. In addition, similar
small-sized polygons composed of nonlinear fractures creating Y junction intersections are ubiquitous.
3.1.5. Racetrack Playa (DVNP)

Racetrack Playa is a flat ~ 4.5 km by 2 km lakebed at its widest part. It is perhaps most famous for its “sliding
rocks,” which are boulders and cobbles that apparently move across the surface of the playa leaving clear
trails [e.g., Sharp and Carey, 1976; Reid et al., 1995; Messina and Stoffer, 2000; Lorenz and Jackson [2014];
Norris et al. [2014]]. The playa has even been suggested as an analogue for hydrocarbon lakes on Titan
[Lorenz et al., 2010].

As the playa is extremely flat (differing in altitude by 5-10 cm from one end to the other) [Lorenz et al.,
2010], it can easily get entirely flooded. When it dries up, small centimeter-sized polygons fill the playa
surface and most of the investigators who have carried out fieldwork in the site have noted their constant
presence when the lakebed is dry. The polygons are highly regular in size displaying widths in the range of
6-13 cm. However, the fractures themselves are mostly nonlinear, which is suggestive of multiple dry-wet
cycles, and form Y junctions similar to other small polygons encountered in other sites. Similar to Coyote,
the surface fractures extend vertically down to a few centimeters dividing the lakebed vertically into
two layers.

3.1.6. Mesquite Flats (DVNP)

The Mesquite flats occupy one of the lowest elevated areas (~15 m below sea level) in the basin and are
easily accessible from the CA-190 road with their own dedicated parking spot ~3 km east of Stovepipe
Wells. The area is known better for the sand dunes that currently cover most of the flats. Many locations
particularly in the interdune areas (Figure 3g) display light-toned flat terrains that show remarkable poly-
gonal fractures reminiscent of the patterns observed in Meridiani Planum on Mars by the Opportunity
Rover (see Figure 1).

Close inspection of a number of these sites shows that the polygonal fractures occur in very fine and lami-
nated mudstone. The fractures form a cracking hierarchy with wider fractures creating larger polygons and
vice-versa. The polygons are slightly high centered forming in thin sheets on the surface of the laminated
mudstone as observed in numerous available cross sections (Figure 6c) and show a variety of sizes ranging
from centimeters to tens of centimeters. Since this location is the subject of a detailed dedicated study, more
details about this site will be available in an upcoming manuscript.

3.1.7. Deep Springs Playa (Inyo County)

Deep Springs Lake is a small intermittent pan-shaped playa within a completely closed basin in Inyo County,
CA (see Jones [1965] for a detailed review of the playa’s geology and hydrology). The playa is accessible from
the CA-168 road. However, a 4x4 car with high clearance and oral permission are required in order to
traverse the ~5km long (and fenced) dirt roads leading from the highway to the playa as they appear to
be privately owned by nearby ranches.

The surface of the playa is marked by a thick, porous, variable-colored salt crust broken into irregular polygo-
nal units ranging from a few to tens of meters across (Figure 4h). Earlier researchers have noted similar
observations as well [Jones, 1965]. Below this thin salt crust, the lakebed is dark, muddy, soft and deformable
(Figure 6d), which made it very difficult to stand still in any given area of the surface without sinking. Some
regions of the playa surface display small patches of yellowish to reddish colored brines suggesting ongoing,
yet slow, evaporation as a result of the high altitude of the playa (~1500 m above sea level) and low annual
ambient temperatures [Jones, 1965].

3.2. Mineralogy of Acquired Samples

3.2.1. XRD and LD

A summary of the XRD results for samples collected from all sites is presented in Table 2. As mentioned
in section 2.1, samples were acquired in each site from the surface and at a depth ranging from 15 to
30cm deep. This approach helps in assessing the effect of surface weathering and investigating possible
subsurface variations.
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Table 2. Summary of XRD and LD Analysis on Samples Collected for This Study®

Lucerne Site 1 Lucerne Site 2 Coyote Soggy North Panamint Racetrack Mesquite  Deep Springs
S D S D S D S D S D S D S S D+
XRD
Calcite 8 8 10 10 5 7 9 9 7 11 1 11 8 1 1
Dolomite 1 1 2 2 0 0 2 3 6 15 7 4 15 5 17
Total carbonates 9 9 12 12 5 7 1 12 13 26 18 15 23 6 18
K-feldspar 6 15 24 12 5 5 5 7 7 12 10 8 10 2 4
Plagioclase 4 5 16 9 4 4 3 5 4 7 6 4 3 9 4
Quartz 4 4 12 9 5 5 8 6 7 6 14 11 7 2 7
Halite 2 X 0.5 X 6 1.5 9 4
Gypsum XXX X
Hornblende XX X X X X X X X X X
Pyrophillite X XX X X
Analcime 5 6
Thenardite 36 X
Clay + amorphous content 77 65 36 58 755 71 73 70 63 47.5 52 62 57 36 63
lllite/muscovite 71 72 54 51 58 58 66 70 46 38 68 69 52 81
Smectite® 10 9 30 33 26 24 14 13 31 39 7 6 37 7
Kaolinite® 14 9 6 7 7 0 5 5 7 7 10 25 6 3
Chlorite® 5 9 1M 10 9 18 16 13 17 16 15 0 5 9
LD (in % vol)

Clay (0.02-2 um) 40.8 1.7 13.7 27 337 267 284 17.1 22 18 16.1 15.6 19.5
Fine silt (2-6.3 um) 337 26.3 28 24 243 272 297 27.8 26.7 29.5 24 284 385
Total silt (2-63 um) 524 71.7 70.5 527 576 527 59.1 72.5 529 68 54.8 78 57.6
Clay + fine silt 74.5 38 41.7 51 58 539 581 449 487 475 401 44 58

#XRD Values are given as estimated wt %, while LD estimates are vol%. “S” and “D” correspond to samples acquired at the surface and at a depth of 20-30 cm
deep, respectively, except for the Deep Springs sample (D+), which was acquired at ~15 cm deep. Abundances given in “x” symbols are relative estimates since
precise abundances could not be measured from the XRD spectra. No LD data were acquired for the surface sample of Deep Springs (or clay analysis), because the
sample was salt dominated, nor for the Lucerne Site 1 at depth, because the sample was damaged during preparation.

Abundance normalized to the abundance of the four clay minerals.

From the data presented in Table 2, several trends are observed. With regards to general mineralogy, samples
are generally calcareous showing calcite abundances of 6-11wt % in addition to variable amounts of
dolomite ranging from 0 to 15wt %. The samples collected in DVNP are generally the most abundant in
carbonates reaching 26% in the North Panamint dried lake. In addition to carbonates, all sites display
moderate to high amounts of K-feldspar and low to moderate abundances of plagioclase. We also observe
low to moderate amounts of salts in the samples, which are dominated by chlorides (mainly halite).
However, certain localities display significant amounts of gypsum such as the Lucerne site #1 (albeit of
undetermined quantity), and thenardite (Na;SO,4), which is a dominant mineralogical species, along with
halite, in Deep Springs Playa. The presence of thenardite in Deep Springs, while unique to our samples, is
not surprising since it has been reported before in the region, particularly in Saline Valley ~65 km south of
Deep Springs [e.g., Hardie, 1968; Crowley, 1993].

With regards to clay mineralogy, the dominant clay mineral species appears to be illite/muscovite in nearly all
samples (38-81% of the clay content, with a mean of ~61% and a standard deviation of ~11.5%) in addition to
significant amounts of smectites and variable amounts of kaolinites and chlorites.

The abundance of clay minerals is not adequately constrained using the XRD technique as the presence of other
amorphous species such as organics adds notable uncertainty to the obtained values. Therefore, we utilized LD
techniques in order to the get a better estimate of the clay content. The results are similarly summarized in
Table 2. Almost all samples are dominated by silt-size grains followed by clays. However, a significant portion
of these silts are in the fine silt grain size (2-6.3 um) such that all samples contain a combined amount of clays
and fine silt in the volumetric range of ~40-75% with a mean of ~50% and a standard deviation of ~9.5%.

Finally, with regards to vertical variations, all sites show homogeneity in terms of general mineralogy from
the surface to deep samples with the exception of North Panamint, which shows a decrease in carbonate
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| 3.2.2. VIS-NIR Spectra
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P R I chamber are presented in Figure 7
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along with a comparison to reference
spectra (Figure 8). The references were
measured with the same instrument.
However, for the mineral references
that are identified in the XRD analysis
and missing from our inventory (e.g.,
thenardite), we have utilized spectra
from the USGS Digital Spectral Library
[Clark et al., 2007].

Figure 7. VIS-NIR spectra of field samples as measured in the SCITEAS
chamber. (top) The spectra in the San Bernardino County. (bottom) The
rest of the samples in the Death Valley National Park and Inyo County.
The acronyms/abbreviations are as follows: LUC1: Lucerne Lake site #1,
LUC2: Lucerne Lake site #2, RTP: Racetrack Playa, DS: Deep Spring Lake,
Pana: North Panamint Lake. Finally, S and D represent “surface” and
“deep” samples, respectively. Note the similarities in absorptions in
almost all samples.

Most of the samples show similar absorp-

tion features where all the samples show
deep absorptions at ~1.90-1.91 um, except for the thenardite-dominated sample (Deep Springs surface sam-
ple, DS_S) that shows a broader absorption centered at ~1.93 um, and most show absorptions of variable
depth at ~1.41 um. The samples may be slightly distinguished from each other by the presence/absence of
absorptions near 2.21 and 2.31 pm.

In general, the samples acquired in the San Bernardino and Mojave regions appear to have stronger absorp-
tions than those of the Death Valley region. This difference does not appear to be related to grain size
(Table 2), as no discernable trend could be identified in the LD analysis, but instead could indicate that the
samples in the Death Valley region are simply less hydrated.

The absorption bands at ~1.41 and 1.91 um are usually attributed to adsorbed water and hydrated minerals
in general [e.g., Hunt, 1977]. The 2.21 and 2.29-2.31 um absorption features generally correspond to Al-OH
and Mg-OH or Fe(ll)-OH bonds, respectively [e.g., Clark et al., 1990; Frost et al., 2002; Bishop et al., 2002].
Almost all samples show a shoulder at ~2.4 um, which unfortunately is ambiguous because it is near our
detection limit and exhibits higher noise levels. The combination of these five absorptions (i.e, 1.4, 1.9, 2.2,
2.3, and 2.4-2.5) should roughly correspond to illite/muscovite, which dominates the field samples
(Table 2) in addition to smectites. Indeed, illite/muscovite and K-mica, in general, display absorption features
at 2.2, 2.34-2.35, and 2.45 um [e.g., Clark et al., 1990], whereas the 2.29-2.32 absorptions are indicative of
Fe/Mg smectite [e.g., Clark et al., 1990; Grauby et al., 1994; Bishop et al., 2002]. However, it is important to
note that the 2.34-2.35 absorption feature is markedly lacking or highly ambiguous in our spectra despite
the dominance of illite/muscovite in our samples. We cannot attribute this ambiguity to instrumental
limits because we are able to discern such absorption features in the reference minerals we measured, includ-
ing illite (IMt_1 in Figure 8), which incidentally matches well with the spectra of the same mineral in the
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Figure 8. Reference spectra used in this study. (top)The spectra for refer-
ence minerals acquired from the Clay Minerals Society measured directly
in the SCITEAS chamber. (bottom) The spectra that have been derived
from the USGS spectral library [Clark et al., 2007]. The acronyms of the
standard clays are the ones used by the Clay Minerals Society and are as
follows: NAu_2: Nontronite (Fe-rich smectite), IMt_1: lllite, KGa_2: Kaolinite,
STx_1b: Ca-Montmorillonite, and ISCz_1: Illite-smectite mixed layer.

Note that the IMt_1 USGS spectra are shown in both figures mainly for

USGS spectral library (Figure 8). In
the absence of such absorptions,
we would not be able to identify
illite/muscovite in our samples without
a priori knowledge.

Other minerals detected in the XRD
analysis that should show similar
absorptions in at least one of these
five absorption bands include carbo-
nates (1.9 and 2.3-2.35) [Hunt and
Salisbury, 1970; Gaffey, 1984], kaolinite
(14 and a doublet at ~2.2 um)[Clark
et al., 1990; Petit et al., 1999], halite and
thenardite (~1.4 and ~1.9 um) [Crowley,
1991], and gypsum (~1.45-1.5, ~19,
~2.2, and ~2.4 um)[Crowley, 1991].

4. Discussion

4.1. Conditions for Development of
Large Desiccation Fractures

In total, seven different locations were
investigated in this study (Table 1).
Four of those display large desiccation
fractures, two display small centimeter-
sized polygons, and one salt-rich playa
displays meter-sized salt polygons but
no conventional desiccation features. In
terms of mineralogy, no discernable

comparison with the IMt_1 spectra acquired from SCITEAS. . . .
trends exist that would distinguish the

sites showing large desiccation fractures
from the ones that do not. In fact, all locations show roughly a few common attributes: (1) a soil matrix with
significant clay and fine silt content (~50% on average), (2) illite/muscovite-dominated clay content (~60% on
average of the clay content) with significant amounts of smectite, and (3) carbonaceous mineralogy with
variable amounts of salts, mainly as chlorides and in some cases sulfates. This suggests that other, or additional,
factors control the development of large desiccation fractures.

Early studies [e.g., Neal et al., 1968] have argued that large desiccation polygons should develop in associa-
tion with intense evaporation and lowering of groundwater levels rather than simple evaporation from the
surface. Testing this idea, El-Maarry et al. [2012] demonstrated that large desiccation fractures may indeed
form through such a mechanism by modeling the tensile stresses that would develop through lowering of
a water table under conditions of hydraulic diffusivity that are commonly associated with clay-dominated
deposits and showed that fractures may form in a timescale of 1 to 2 years, which was also in agreement with
Neal et al.'s [1968] predictions. Therefore, lowering of the water table appears to be a key factor in the forma-
tion of large (hundreds of meters in scale) desiccation fractures.

Neal et al. [1968] and Goetz [1980] had attributed the lowering of water table levels in regions such as the
San Bernardino County to intense irrigation and human consumption, which offers an explanation for the
development of large fractures in the sites visited in this particular region. Indeed, regional water table maps
for the San Bernardino region [e.g., Teague et al., 2014] (a detailed list of regional water table maps is available
through The Mojave Water Agency (http://www.mojavewater.org/regional-water-table.html)) clearly show a
decline in water table levels since the 1950s in many regions including the Lucerne dried Lake. It should be
noted that similar comprehensive data are unavailable for the two other dried lakes of interest in the County
(i.e, Soggy and Coyote), probably due to their relatively more secluded nature.
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If indeed water table retreat was a key factor in the formation of large desiccation features, we would assume
that such a mechanism has been lacking, at least on the same scale, in the DVNP area, where the Racetrack
and Mesquite sites are located. Indeed, geological reports indicate that groundwater underlies most of the
Death Valley region and “is probably in a steady state” [Miller, 1977] being annually replenished by a 4000
miles? drainage area and stream channels during floods despite the extremely dry conditions of the valley
(Miller [1977], see also Bedinger and Harrill [2012] for a more recent report).

In particular, the Mesquite flats are situated in one of the low elevation points of the valley (~15 m below
sea level), which makes it a preferred location for groundwater discharge [Bedinger and Harrill, 2012]. On
the other hand, the high elevation of Racetrack Playa (~1130 m above sea level) places it well above
ground water levels but facilitates regular precipitation through heavy downpour or more commonly
through snow accumulation in winter [Lorenz et al., 2011]. As a result, these two sites (showing only small
centimeter-sized desiccation features) are dominated by surface evaporation processes rather than water
table retreat.

With regards to Deep Springs Lake, the only visible polygons on the surface are meter-sized salt polygons.
El-Maarry et al. [2015] have recently reported using lab experiments that soils mixed with very high
concentrations of salt could create an almost impermeable salt crust that acts to slow desiccation rates
considerably and may even stop the process entirely [El-Maarry et al., 2015]. Indeed, our experience in
the field shows that the subsurface mud beneath the salt crust is retaining its near slurry state. Therefore, we
conclude that the high salt contents in the Deep Springs Lake are responsible for the absence of large
desiccation fractures.

Finally, although the North Panamint Lake, which shows large desiccation fractures, is currently part of the
DVNP, it in fact lies geographically west of Death Valley being separated from it by the North Panamint
Mountain Range. Therefore, it is likely that the region was similarly affected by groundwater retreat in
agreement with Messina et al.'s [2005] conclusions following their investigation of the area. Interestingly,
the lowering of the water table in the area may have been anthropogenic similar to other visited sites
(e.g., Lucerne), but may also be geologic. During the late Pleistocene, hundreds of meter deep lake is reported
to have filled the Panamint Valley during periods of maximum pluvial activity [e.g., Jayko, 2005; Bedinger and
Harrill, 2012]. Therefore, long-term climatic changes leading to lowering of regional water tables may have
been partly responsible for the evolution of the dried lake into its current form [Neal and Motts, 1967]. This
natural long-term climatic variation may have interesting implications for the formation of PDPs on Mars,
which we discuss briefly in the next section.

4.2, Identification of Paleolacustrine/Playa Sites on Mars and Implications for Paleohydrology

El-Maarry et al. [2014] showed that PDPs are a common feature in phyllosilicate- and chloride-bearing
terrains on Mars. In their study, the spectral evidence for the presence of smectites in combination with
PDPs was proposed as a useful tool for identifying paleolacustrine/playa sites, which are of high geological
and exobiological significance for future Mars exploration missions, especially future rovers such as the
European ExoMars Rover (planned for 2018) and the US-led Mars 2020 mission. Our chemical characteriza-
tion of field samples acquired from dried lakes/playas displaying large desiccation fractures lends support
to the connection between large desiccation polygons and paleolacustrine sites considering the detection
of significant amounts of smectites in all field samples. However, these samples appear to be dominated by
illite/muscovite, whereas smectites appear to be the more commonly identified hydrous mineral species
on Mars. Nevertheless, our spectral analysis using an imaging spectrometer as an analogue to CRISM with
roughly similar sampling rate and signal-to-noise ratio shows that it is difficult to identify illite/muscovite in
paleolacustrine deposits that similarly contain significant amounts of smectites in addition to other
hydrous minerals and salts. Therefore, it is possible that many illite/muscovite-dominated deposits on
Mars have gone undetected.

In fact, despite the chemical variability of our samples and their inferred variable hydrological history, most
of our samples are very difficult to spectrally distinguish from one another being mostly dominated by
the absorption features at ~1.4,1.9, 2.2, and 2.3 um. In that respect, we consider the current remote sensing
VIS-NIR instruments adequate for identifying paleolacustrine/playa deposits. However, a detailed charac-
terization looks nearly impossible in the absence of other tools and experiments that would need to be
carried out in situ. It should be noted that Lynch et al. [2015] arrived to the same conclusions following their
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fieldwork in the Great Salt Lake Desert. Therefore, our conclusions, in this regard, are not new but are in
support of theirs.

Furthermore, our work may have important implications for our understanding of the paleohydrology of
Mars. Our analysis shows that it is very challenging to distinguish sites that are dominated by surface
evaporation from those characterized by groundwater fluctuations through even a detailed mineralogical
investigation. In that respect, the presence of large desiccation fractures is a useful tool in inferring the differ-
ent hydrological histories. By extension, the presence of many sites showing PDPs may suggest a global or
multiple local transition phases in the hydrological cycle on Mars where a shift occurred from a period of high
liquid water activity (even if transient), possibly pluvial dominated, to periods characterized by slow ground-
water table retreat and associated dry conditions at the surface. Thorough dating of the many sites showing
PDPs on Mars may reveal whether the transition was global or characterized by multiple fluctuations at a
more local or regional scale.

Finally, we regard the sites that have been visited in this study as useful terrestrial analogues that should be
investigated further and may act as testing beds for future rovers especially those equipped with drilling
capabilities given the high probability that such rovers will be eventually sent to similar locations on Mars
because of their high geological and exobiological significance.

5. Summary

We have carried out fieldwork in seven dried lakes and playas in western United States complemented with
laboratory analysis of acquired samples in order to understand the conditions in which large (tens to hun-
dreds of meters in size) desiccation fractures and polygons develop on Earth as an analogue for PDPs on
Mars. The acquired samples display these common trends: (1) A soil matrix containing a significant amount
of clays and fine silt (an average of ~50% by volume), (2) illite/muscovite-dominated clay content (~60% on
average) with significant amounts of smectite, (3) carbonaceous mineralogy with variable amounts of salts,
mainly as chlorides and in some cases sulfates, and (4) roughly similar spectral signatures in the VIS-NIR range
with absorption features at ~1.4, 1.9, 2.2, and 2.3 um.

Our analysis of the mineralogy and review of the hydrological evolution of the numerous locations suggests
water table retreat maybe a key factor in the formation of large desiccation polygons, consistent with pre-
vious studies [e.g., Neal et al., 1968; Goetz, 1980; El-Maarry et al., 2012]. In addition, the comparison of the
mineralogical data to the spectral one further suggests that VIS-NIR remote sensing is adequate in identifying
paleolacustrine deposits, yet its usefulness becomes limited if detailed characterization of the lacustrine
deposits is needed. Finally, our results imply that the numerous locations on Mars that contain PDPs may
indicate global or regional climatic transitions from liquid water-rich conditions to more arid ones.
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