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HIGHER ORDER ELICITABILITY AND OSBAND’S PRINCIPLE1

BY TOBIAS FISSLER AND JOHANNA F. ZIEGEL

University of Bern

A statistical functional, such as the mean or the median, is called elic-
itable if there is a scoring function or loss function such that the correct fore-
cast of the functional is the unique minimizer of the expected score. Such
scoring functions are called strictly consistent for the functional. The elic-
itability of a functional opens the possibility to compare competing forecasts
and to rank them in terms of their realized scores. In this paper, we explore
the notion of elicitability for multi-dimensional functionals and give both nec-
essary and sufficient conditions for strictly consistent scoring functions. We
cover the case of functionals with elicitable components, but we also show
that one-dimensional functionals that are not elicitable can be a component
of a higher order elicitable functional. In the case of the variance, this is a
known result. However, an important result of this paper is that spectral risk
measures with a spectral measure with finite support are jointly elicitable if
one adds the “correct” quantiles. A direct consequence of applied interest is
that the pair (Value at Risk, Expected Shortfall) is jointly elicitable under mild
conditions that are usually fulfilled in risk management applications.

1. Introduction. Point forecasts for uncertain future events are issued in a
variety of different contexts such as business, government, risk-management or
meteorology, and they are often used as the basis for strategic decisions. In all
these situations, one has a random quantity Y with unknown distribution F . One
is interested in a statistical property of F , that is a functional T (F ). Here, Y can
be real-valued (GDP growth for next year), vector-valued (wind-speed, income
from taxes for all cantons of Switzerland), functional-valued (path of the inter-
change rate Euro–Swiss franc over one day), or set-valued (area of rain tomorrow,
area of influenza in a country). Likewise, also the functional T can have a variety
of different sorts of values, among them the real- and vector-valued case (mean,
vector of moments, covariance matrix, expectiles), the set-valued case (confidence
regions) or also the functional-valued case (distribution functions). This article is
concerned with the situation where Y is a d-dimensional random vector and T is
a k-dimensional functional, thus also covering the real-valued case.

It is common to assess and compare competing point forecasts in terms of a loss
function or scoring function. This is a function S such as the squared error or the
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absolute error which is negatively oriented in the following sense: If the forecast
x ∈ R

k is issued and the event y ∈ R
d materializes, the forecaster is penalized by

the real value S(x, y). In the presence of several different forecasters, one can com-
pare their performances by ranking their realized scores. Hence, forecasters have
an incentive to minimize their Bayes risk or expected loss EF [S(x,Y )]. Gneiting
(2011) demonstrated impressively that scoring functions should be incentive com-
patible in that they should encourage the forecasters to issue truthful reports; see
also Engelberg, Manski and Williams (2009), Murphy and Daan (1985). In other
words, the choice of the scoring function S must be consistent with the choice of
the functional T . We say a scoring function S is strictly F -consistent for a func-
tional T if T (F ) is the unique minimizer of the expected score EF [S(x,Y )] for
all F ∈ F , where the class F of probability distributions is the domain of T . In
some parts of the literature, strictly consistent scoring functions are called proper
scoring rules. Our choice of terminology is in line with Gneiting (2011). Following
Lambert, Pennock and Shoham (2008) and Gneiting (2011), we call a functional
T with domain F elicitable if there exists a strictly F -consistent scoring function
for T .

The elicitability of a functional allows for regression, such as quantile regres-
sion and expectile regression [Koenker (2005), Newey and Powell (1987)] and for
M-estimation [Huber (1964)]. Early work on elicitability is due to Osband (1985),
Osband and Reichelstein (1985). More recent advances in the one-dimensional
case, that is, k = d = 1 are due to Gneiting (2011), Lambert (2013), Steinwart
et al. (2014) with the latter showing the intimate relation between elicitability
and identifiability. Under mild conditions, many important functionals are elic-
itable such as moments, ratios of moments, quantiles and expectiles. However,
there are also relevant functionals which are not elicitable such as variance, mode,
or Expected Shortfall [Gneiting (2011), Heinrich (2014), Osband (1985), Weber
(2006)].

With the so-called revelation principle Osband (1985) [see also Gneiting
(2011), Theorem 4] was one of the first to show that a functional, albeit itself
not being elicitable, can be a component of an elicitable vector-valued functional.
The most prominent example in this direction is that the pair (mean, variance) is
elicitable despite the fact that variance itself is not. However, it is crucial for the
validity of the revelation principle that there is a bijection between the pair (mean,
variance) and the first two moments. Until now, it appeared as an open problem
if there are elicitable functionals with non-elicitable components other than those
which can be connected to a functional with elicitable components via a bijection.
Frongillo and Kash (2015) conjectured that this is generally not possible. We solve
this open problem and can reject their conjecture: Corollary 5.5 shows that the pair
(Value at Risk, Expected Shortfall) is elicitable, subject to mild regularity assump-
tions, improving a recent partial result of Acerbi and Székely (2014). To the best
of our knowledge, we provide the first proof of this result in full generality. In
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fact, Corollary 5.4 demonstrates more generally that spectral risk measures with
a spectral measure having finite support in (0,1] can be a component of an elic-
itable vector-valued functional. These results may lead to a new direction in the
contemporary discussion about what risk measure is best in practice, and in par-
ticular about the importance of elicitability in risk measurement contexts [Acerbi
and Székely (2014), Davis (2016), Embrechts and Hofert (2014), Emmer, Kratz
and Tasche (2015)].

Complementing the question whether a functional is elicitable or not, it is in-
teresting to determine the class of strictly consistent scoring functions for a func-
tional, or at least to characterize necessary and sufficient conditions for the strict
consistency of a scoring function. Most of the existing literature focuses on real-
valued functionals meaning that k = 1. For the case k > 1, mainly linear function-
als, that is, vectors of expectations of certain transformations, are classified where
the only strictly consistent scoring functions are Bregman functions [Abernethy
and Frongillo (2012), Banerjee, Guo and Wang (2005), Dawid and Sebastiani
(1999), Osband and Reichelstein (1985), Savage (1971)]; for a general overview
of the existing literature, we refer to Gneiting (2011). To the best of our knowl-
edge, only Osband (1985), Lambert, Pennock and Shoham (2008) and Frongillo
and Kash (2015) investigated more general cases of functionals, the latter also
treating vectors of ratios of expectations as the first nonlinear functionals. In his
doctoral thesis, Osband (1985) established a necessary representation for the first-
order derivative of a strictly consistent scoring function with respect to the report
x which connects it with identification functions. Following Gneiting (2011), we
call results in the same flavor Osband’s principle. Theorem 3.2 in this paper com-
plements and generalizes Osband (1985), Theorem 2.1. Using our techniques, we
retrieve the results mentioned above concerning the Bregman representation, how-
ever, under somewhat stronger regularity assumptions than the one in Frongillo and
Kash (2015); see Proposition 4.4. On the other hand, we are able to treat a much
broader class of functionals; see Proposition 4.2, Remark 4.5 and Theorem 5.2.
In particular, we show that under mild richness assumptions on the class F , any
strictly F -consistent scoring function for a vector of quantiles and/or expectiles is
the sum of strictly F -consistent one-dimensional scoring functions for each quan-
tile/expectile; see Proposition 4.2.

The paper is organized as follows. In Section 2, we introduce notation and de-
rive some basic results concerning the elicitability of k-dimensional functionals.
Section 3 is concerned with Osband’s principle, Theorem 3.2, and its immediate
consequences. We investigate the situation where a functional is composed of elic-
itable components in Section 4, whereas Section 5 is dedicated to the elicitability
of spectral risk measures. We end our article with a brief discussion; see Section 6.
Most proofs are deferred to Section 7 and the supplementary material Fissler and
Ziegel (2016).
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2. Properties of higher order elicitability.

2.1. Notation and definitions. Following Gneiting (2011), we introduce a
decision-theoretic framework for the evaluation of point forecasts. To this end, we
introduce an observation domain O ⊆ R

d . We equip O with the Borel σ -algebra
O using the induced topology of Rd . We identify a Borel probability measure P

on (O,O) with its cumulative distribution function (c.d.f.) FP : O → [0,1] defined
as FP (x) := P((−∞, x] ∩ O), where (−∞, x] = (−∞, x1] × · · · × (−∞, xd ] for
x = (x1, . . . , xd) ∈ R

d . Let F be a class of distribution functions on (O,O). Fur-
thermore, for some integer k ≥ 1, let A ⊆ R

k be an action domain. To shorten nota-
tion, we usually write F ∈ F for a c.d.f. and also omit to mention the σ -algebra O.

Let T :F → A be a functional. We introduce the notation T (F) := {x ∈ A:x =
T (F ) for some F ∈ F}. For a set M ⊆ R

k , we will write int(M) for its interior
with respect to R

k , that is, int(M) is the biggest open set U ⊆ R
k such that U ⊆ M .

The convex hull of M is defined as

conv(M) :=
{

n∑
i=1

λixi

∣∣∣n ∈N, x1, . . . , xn ∈ M,λ1, . . . , λn > 0,

n∑
i=1

λi = 1

}
.

We say that a function a: O → R is F -integrable if it is F -integrable for each
F ∈ F . A function g: A×O →R is F -integrable if g(x, ·) is F -integrable for each
x ∈ A. If g is F -integrable, we introduce the map

ḡ: A ×F →R, (x,F ) �→ ḡ(x,F ) =
∫

g(x, y)dF(y).

Consequently, for fixed F ∈ F we can consider the function ḡ(·,F ): A → R, x �→
ḡ(x,F ), and for fixed x ∈ A we can consider the (linear) functional ḡ(x, ·):F →
R, F �→ ḡ(x,F ).

If we fix y ∈ O and g is sufficiently smooth in its first argument, then for
m ∈ {1, . . . , k} we denote the mth partial derivative of the function g(·, y) with
∂mg(·, y). More formally, we set

∂mg(·, y): int(A) →R, (x1, . . . , xk) �→ ∂

∂xm

g(x1, . . . , xk, y).

We denote by ∇g(·, y) the gradient of g(·, y) defined as ∇g(·, y) := (∂1g(·, y),
. . . , ∂kg(·, y))
; and with ∇2g(·, y) := (∂l ∂mg(·, y))l,m=1,...,k the Hessian of
g(·, y). Mutatis mutandis, we use the same notation for ḡ(·,F ), F ∈ F . We call
a function on A differentiable if it is differentiable in int(A) and use the notation
as given above. The restriction of a function f to some subset M of its domain is
denoted by f|M .

DEFINITION 2.1 (Consistency and elicitability). A scoring function is an F -
integrable function S: A × O → R. It is said to be F -consistent for a functional
T :F → A if S̄(T (F ),F ) ≤ S̄(x,F ) for all F ∈ F and for all x ∈ A. Furthermore,
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S is strictly F -consistent for T if it is F -consistent for T and if S̄(T (F ),F ) =
S̄(x,F ) implies that x = T (F ) for all F ∈ F and for all x ∈ A. Wherever it is
convenient, we assume that S(x, ·) is locally bounded for all x ∈ A. A functional
T :F → A ⊆ R

k is called k-elicitable, if there exists a strictly F -consistent scoring
function for T .

DEFINITION 2.2 (Identification function). An identification function is an F -
integrable function V : A × O → R

k . It is said to be an F -identification function
for a functional T :F → A ⊆ R

k if V̄ (T (F ),F ) = 0 for all F ∈ F . Furthermore,
V is a strict F -identification function for T if V̄ (x,F ) = 0 holds if and only if
x = T (F ) for all F ∈ F and for all x ∈ A. Wherever it is convenient, we assume
that V (x, ·) is locally bounded for all x ∈ A and that V (·, y) is locally Lebesgue-
integrable for all y ∈ O. A functional T :F → A ⊆ R

k is said to be k-identifiable,
if there exists a strict F -identification function for T .

If the dimension k is clear from the context, we say that a functional is elicitable
(identifiable) instead of k-elicitable (k-identifiable).

REMARK 2.3. Depending on the class F , some statistical functionals such as
quantiles can be set-valued. In such situations, one can define T :F → 2A. Then a
scoring function S: A × O → R is called (strictly) F -consistent for T if S̄(t,F ) ≤
S̄(x,F ) for all x ∈ A, F ∈ F and t ∈ T (F ) [with equality implying x ∈ T (F )]. The
definition of a (strict) F -identification function for T can be generalized mutatis
mutandis. Many of the results of this paper can be extended to the case of set-
valued functionals—at the cost of a more involved notation and analysis. To allow
for a clear presentation, we confine ourselves to functionals with values in R

k in
this paper.

2.2. Basic results. The first lemma gives a useful equivalent characterization
of strict consistency. Its proof is a direct consequence of the definition.

LEMMA 2.4. A scoring function S: A × O → R is strictly F -consistent for
T : F → A ⊆ R

k if and only if the function

ψ :D →R, s �→ S̄(t + sv,F )

has a global unique minimum at s = 0 for all F ∈ F , t = T (F ) and v ∈ S
k−1

where D = {s ∈ R: t + sv ∈ A}.
The following result follows directly from the definition of consistency (Defini-

tion 2.1). However, it is crucial to understand many of the results of this paper.

LEMMA 2.5. Let T :F → A ⊆R
k be a functional with a strictly F -consistent

scoring function S: A × O →R. Then the following two assertions hold:
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(i) Let F ′ ⊆ F and T|F ′ be the restriction of T to F ′. Then S is also a strictly
F ′-consistent scoring function for T|F ′ .

(ii) Let A′ ⊆ A such that T (F) ⊆ A′ and S|A′×O be the restriction of S to A′ ×O.
Then S|A′×O is also a strictly F -consistent scoring function for T .

The main results of this paper consist of necessary and sufficient conditions for
the strict F -consistency of a scoring function S for some functional T . What are
the consequences of Lemma 2.5 for such conditions? Assume that we start with a
functional T ′:F ′ → A′ ⊆ R

k and deduce some necessary conditions for a scoring
function S′: A′ × O → R to be strictly F ′-consistent for T ′. Then Lemma 2.5(i)
implies that these conditions continue to be necessary conditions for the strict F -
consistency of S′ for T :F → A′ where F ′ ⊆ F , and T is some extension of T ′
such that T (F) ⊆ A′. On the other hand, Lemma 2.5(ii) implies that the neces-
sary conditions for the strict F ′-consistency of a scoring function S′: A′ × O → R

continue to be necessary conditions for the strict F ′-consistency of S: A × O →R

for T ′, where A′ ⊆ A and S is some extension of S′.
Summarizing, given a functional T :F → A, a collection of necessary condi-

tions for the strict F -consistency of scoring functions for T is the more restrictive
the smaller the class F and the smaller the set A is [provided that T (F) ⊆ A, of
course]. Hence, in the forthcoming results concerning necessary conditions, it is
no loss of generality to just mention which distributions must necessarily be in
the class F to guarantee the validity of the results. Furthermore, it is no loss of
generality to make the assumption that T is surjective, so A = T (F).

Some of the subsequent results also provide sufficient conditions for the strict
F -consistency of a scoring function S: A × O → R for a functional T :F → A.
Those results are the stronger the bigger the class F and the bigger the set A is. For
the notion of elicitability, this means that the assertion that a functional T :F → A
is elicitable is also the stronger the bigger the class F and the bigger the set A is. To
demonstrate this reasoning, observe that if the functional T :F → A is degenerate
in the sense that it is constant, so T ≡ t for some t ∈ A (which covers the particular
case that F contains only one element), then T is automatically elicitable with a
strictly F -consistent scoring function S: A×O →R, defined as S(x, y) := ‖x− t‖.

As a last result in this section, we present the intuitive observation that a vector
of elicitable functionals itself is elicitable.

LEMMA 2.6. Let k1, . . . , kl ≥ 1 and let Tm:F → Am ⊆ R
km be a km-elicitable

functional, m ∈ {1, . . . , l}. Then the functional T = (T1, . . . , Tl): F → A is k-
elicitable where k = k1 + · · · + kl and A = A1 × · · · × Al ⊆R

k .

PROOF. For m ∈ {1, . . . , l}, let Sm: Am × O → R be a strictly F -consistent
scoring function for Tm. Let λ1, . . . , λl > 0 be positive real numbers. Then

S(x1, . . . , xl, y) :=
l∑

m=1

λmSm(xm, y)(2.1)

is a strictly F -consistent scoring function for T . �
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A particularly simple and relevant case of Lemma 2.6 is the situation k1 =
· · · = kl = 1 such that k = l. It is an interesting question whether the scoring func-
tions of the form (2.1) are the only strictly F -consistent scoring functions for T ,
which amounts to the question of separability of scoring rules that was posed by
Frongillo and Kash (2015). The answer is generally negative. As mentioned in
the Introduction, it is known that all Bregman functions elicit T , if the compo-
nents of T are all expectations of transformations of Y [Abernethy and Frongillo
(2012), Banerjee, Guo and Wang (2005), Dawid and Sebastiani (1999), Osband
and Reichelstein (1985), Savage (1971)] or ratios of expectations with the same
denominator [Frongillo and Kash (2015)]; see also Proposition 4.4. However, for
other situations, such as a combination of different quantiles and/or expectiles, the
answer is positive; see Proposition 4.2. These results rely on “Osband’s principle”
which gives necessary conditions for scoring functions to be strictly F -consistent
for a given functional T ; see Section 3.

There are more involved functionals that are k-elicitable than combinations
of k 1-elicitable components. An immediate example that is the pair (expecta-
tion, variance) which can be obtained through the revelation principle from the
2-elicitable pair (expectation, second moment). In Section 5, we show that the con-
cept of k-elicitability is also not restricted to functionals that can be obtained by
combining Lemma 2.6 and the revelation principle. It is shown in Weber (2006),
Example 3.4 and Gneiting (2011), Theorem 11, that the coherent risk measure
Expected Shortfall at level α, α ∈ (0,1), does not have convex level sets and
is therefore not elicitable. In contrast, we show in Corollary 5.5 that the pair
(Value at Riskα,Expected Shortfallα) is 2-elicitable relative to the class of distri-
butions on R with finite first moment and unique α-quantiles. This refutes Propo-
sition 2.3 of Osband (1985); see Remark 5.3 for a discussion.

3. Osband’s principle. In this section, we give necessary conditions for the
strict F -consistency of a scoring function S for a functional T :F → A. In the
light of Lemma 2.5 and the discussion thereafter, we have to impose some richness
conditions on the class F as well as on the “variability” of the functional T . To this
end, we establish a link between strictly F -consistent scoring functions and strict
F -identification functions. We illustrate the idea in the one-dimensional case. Let
F be a class of distribution functions on R, T :F →R a functional and S:R×R →
R a strictly F -consistent scoring function for T . Furthermore, let V :R × R → R

be an oriented strict F -identification function for T . Then, under certain regularity
conditions, there is a nonnegative function h:R→R such that

d

dx
S(x, y) = h(x)V (x, y).(3.1)

If we naïvely swap differentiation and expectation and h does not vanish, the
form (3.1) plus the identification property of V are sufficient for the first order
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condition on S̄(·,F ), F ∈ F , to be satisfied and the orientation of V (see Re-
mark 4.1) as well as the fact that h is positive are sufficient for S̄(·,F ) to satisfy
the second-order condition for strict F -consistency. So the really interesting part
is to show that the form given in (3.1) is necessary for the strict F -consistency of
a scoring function for T .

The idea of this characterization originates from Osband (1985). He gives a
characterization including R

k-valued functionals, but for his proof he assumes that
F contains all distributions with finite support. This is not a problem per se, but
in the light of Lemma 2.5 and the discussion thereafter it is desirable to weaken
this assumption. In particular, the results in Section 5 on spectral risk measures
cannot be derived if F has to contain all distributions with finite support. Rely-
ing on a functional space extension of the Kuhn–Tucker theorem, Osband (1985)
conjectures that his characterization continues to hold if F consists only of abso-
lutely continuous distributions, but we do not believe that his approach is feasible
in this case. In Steinwart et al. (2014), Theorem 5, there is a rigorous statement
of Osband’s principle for the one-dimensional functionals where the distributions
in F must be absolutely continuous with respect to some finite measure. We shall
give a proof in the setting of an R

k-valued functional that does not have to specify
the kinds of distributions in F , but only uses the following (minimal) collection of
regularity assumptions. To this end, we apply a similar technique as in the proof
of Osband (1985), Lemma 2.2, which is based on a finite-dimensional argument.

Let F be a class of distribution functions on O ⊆ R
d . Fix a functional T :F →

A ⊆ R
k , an identification function V : A × O → R

k and a scoring function S: A ×
O →R.

ASSUMPTION (V1). Let F be a convex class of distributions functions on
O ⊆ R

d and assume that for every x ∈ int(A) there are F1, . . . ,Fk+1 ∈ F such that

0 ∈ int
(
conv

({
V̄ (x,F1), . . . , V̄ (x,Fk+1)

}))
.

REMARK 3.1. Assumption (V1) implies that for every x ∈ int(A) there are
F1, . . . ,Fk ∈ F such that the vectors V̄ (x,F1), . . . , V̄ (x,Fk) are linearly indepen-
dent.

Assumption (V1) ensures that the class F is “rich” enough meaning that
the functional T varies sufficiently in order to derive a necessary form of the
scoring function S in Theorem 3.2. Assumptions like (V1) are classical in
the literature. For the case of k-elicitability, Osband (1985) assumes that 0 ∈
int(conv({V (x, y):y ∈ O})). Steinwart et al. (2014), Definition 8 and Lambert
(2013) treat the case k = 1 and work under the assumption that the functional
is strictly locally nonconstant which implies assumption (V1) if the functional is
identifiable.
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ASSUMPTION (V2). For every F ∈ F , the function V̄ (·,F ): A → R
k , x �→

V̄ (x,F ), is continuous.

ASSUMPTION (V3). For every F ∈ F , the function V̄ (·,F ) is continuously
differentiable.

If the function x �→ V (x, y), y ∈ O, is continuous (continuously differentiable),
assumption (V2) [assumption (V3)] is satisfied, and it is equivalent to (V2) [(V3)]
if F contains all measures with finite support. However, (V2) and (V3) are much
weaker requirements if we move away from distributions with finite support. To
illustrate this fact, let k, d = 1 and V (x, y) = 1{y ≤ x} − α, α ∈ (0,1), which
is a strict F -identification function for the α-quantile. Of course, V (·, y) is not
continuous. But if F contains only probability distributions F that have a con-
tinuous derivative f = F ′, then V̄ (x,F ) = F(x) − α and (d/dx)V̄ (x,F ) = f (x)

and V satisfies (V2) and (V3). The following assumptions (S1) and (S2) are simi-
lar conditions as (V2) and (V3) but for scoring functions instead of identification
functions.

ASSUMPTION (S1). For every F ∈ F , the function S̄(·,F ): A → R, x �→
S̄(x,F ), is continuously differentiable.

ASSUMPTION (S2). For every F ∈ F , the function S̄(·,F ) is continuously
differentiable and the gradient is locally Lipschitz continuous. Furthermore,
S̄(·,F ) is twice continuously differentiable at t = T (F ) ∈ int(A).

Note that assumption (S2) implies that the gradient of S̄(·,F ) is (totally) differ-
entiable for almost all x ∈ A by Rademacher’s theorem, which in turn indicates that
the Hessian of S̄(·,F ) exists for almost all x ∈ A and is symmetric by Schwarz’s
theorem; see Grauert and Fischer (1978), page 57.

THEOREM 3.2 (Osband’s principle). Let T :F → A ⊆ R
k be a surjective, elic-

itable and identifiable functional with a strict F -identification function V : A ×
O →R

k and a strictly F -consistent scoring function S: A×O →R. If the assump-
tions (V1) and (S1) hold, then there exists a matrix-valued function h: int(A) →
R

k×k such that for l ∈ {1, . . . , k}

∂lS̄(x,F ) =
k∑

m=1

hlm(x)V̄m(x,F )(3.2)

for all x ∈ int(A) and F ∈ F . If in addition, assumption (V2) holds, then h is
continuous. Under the additional assumptions (V3) and (S2), the function h is
locally Lipschitz continuous.
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Under the conditions of Theorem 3.2, equation (3.2) gives a characterization
of the partial derivatives of the expected score. If we impose more smoothness
assumptions on the expected score, we are also able to give a characterization of
the second-order derivatives of the expected score.

COROLLARY 3.3. For a surjective, elicitable and identifiable functional
T :F → A ⊆ R

k with a strict F -identification function V : A × O → R
k and a

strictly F -consistent scoring function S: A×O →R that satisfy assumptions (V1),
(V3) and (S2), we have the following identities for the second-order derivatives:

∂m ∂lS̄(x,F ) =
k∑

i=1

∂mhli(x)V̄i(x,F ) + hli(x)∂mV̄i(x,F )

(3.3)

=
k∑

i=1

∂lhmi(x)V̄i(x,F ) + hmi(x)∂lV̄i(x,F ) = ∂l ∂mS̄(x,F ),

for all l,m ∈ {1, . . . , k}, for all F ∈ F and almost all x ∈ int(A), where h

is the matrix-valued function appearing at (3.2). In particular, (3.3) holds for
x = T (F ) ∈ int(A).

Theorem 3.2 and Corollary 3.3 establish necessary conditions for strictly F -
consistent scoring functions on the level of the expected scores. If the class F is
rich enough and the scoring and identification function smooth enough in the fol-
lowing sense, we can also deduce a necessary condition for S which holds point-
wise.

ASSUMPTION (F1). For every y ∈ O, there exists a sequence (Fn)n∈N of dis-
tributions Fn ∈ F that converges weakly to the Dirac-measure δy such that the
support of Fn is contained in a compact set K for all n.

ASSUMPTION (VS1). Suppose that the complement of the set

C := {
(x, y) ∈ A × O| V (x, ·) and S(x, ·) are continuous at the point y

}
has (k + d)-dimensional Lebesgue measure zero.

PROPOSITION 3.4. Assume that int(A) ⊆ R
k is a star domain and let

T :F → A be a surjective, elicitable and identifiable functional with a strict F -
identification function V : A×O →R

k and a strictly F -consistent scoring function
S: A × O → R. Suppose that assumptions (V1), (V2), (S1), (F1) and (VS1) hold.
Let h be the matrix valued function appearing at (3.2). Then the scoring function
S is necessarily of the form

S(x, y) =
k∑

r=1

k∑
m=1

∫ xr

zr

hrm(x1, . . . , xr−1, v, zr+1, . . . , zk)

(3.4)
× Vm(x1, . . . , xr−1, v, zr+1, . . . , zk, y)dv + a(y)
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for almost all (x, y) ∈ A × O, for some star point z = (z1, . . . , zk) ∈ int(A) and
some F -integrable function a: O →R. On the level of the expected score S̄(x,F ),
equation (3.4) holds for all x ∈ int(A), F ∈F .

While Theorem 3.2, Corollary 3.3 and Proposition 3.4 only establish necessary
conditions for strictly F -consistent scoring functions for some functional T , often
they guide a way how to construct strictly F -consistent scoring functions starting
with a strict F -identification function V for T .

For the one-dimensional case, one can use the fact that, subject to some mild
regularity conditions, if V is a strict F -identification function, then either V or
−V is oriented; see Remark 4.1. Supposing that V is oriented, we can choose any
strictly positive function h: A → R to get the derivative of a strictly F -consistent
scoring function. Then integration yields the desired strictly F -consistent scoring
function.

Establishing sufficient conditions for scoring functions to be strictly F -
consistent for T is generally more involved in the case k > 1. First of all, working
under assumption (S2), the symmetry of the Hessian ∇2S̄(x,F ) imposes strong
necessary conditions on the functions hlm; see, for example, Proposition 4.2 which
treats the case where all components of the functional T = (T1, . . . , Tk) are elic-
itable and identifiable. The example of spectral risk measures is treated in Sec-
tion 5. Second, (3.2) and (3.3) are necessary conditions for S̄(x,F ) having a local
minimum in x = T (F ), F ∈ F . Even if we additionally suppose that the Hessian
∇2S̄(x,F ) is strictly positive definite at x = T (F ), this is a sufficient condition
only for a local minimum at x = T (F ), but does not provide any information con-
cerning a global minimum. Consequently, even if the functions hlm satisfy (3.3),
one must verify the strict consistency of the scoring function on a case by case ba-
sis. This can often be done by showing that the one-dimensional functions R →R,
s �→ S̄(t + sv,F ), with t = T (F ), have a global minimum in s = 0 for all v ∈ Sk−1

and for all F ∈F .

4. Functionals with elicitable components. Suppose that the functional T =
(T1, . . . , Tk):F → A ⊆ R

k consists of 1-elicitable components Tm. As prototypical
examples of such 1-elicitable components, we consider the functionals given in
Table 1 where we implicitly assume that O ⊆ R if a quantile or an expectile are a
part of T . If Vm are strict F -identification functions for Tm then V : A × R → R

k

with

V (x1, . . . , xk, y) = (
V1(x1, y), . . . , Vk(xk, y)

)
(4.1)

is a strict F -identification function for T . Under (V3), the partial derivatives of
V̄ (x,F ), x ∈ A and F ∈ F exist, and if the class F is sufficiently rich T (or some
subset of its components) often fulfills the following assumption.
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TABLE 1
Strict identification functions for k = 1; see Gneiting (2011), Table 9

Functional Strict identification function

Ratio EF [p(Y )]/EF [q(Y )] V (x, y) = xq(y) − p(y)

α-Quantile V (x, y) = 1{y ≤ x} − α

τ -Expectile V (x, y) = 2|1{y ≤ x} − τ |(x − y)

ASSUMPTION (V4). Let assumption (V3) hold. For all r ∈ {1, . . . , k} and for
all t ∈ int(A) ∩ T (F) there are F1,F2 ∈ T −1({t}) such that

∂lV̄l(t,F1) = ∂lV̄l(t,F2) ∀l ∈ {1, . . . , k} \ {r}, ∂r V̄r (t,F1) �= ∂r V̄r (t,F2).

The following proposition gives a characterization of the class of strictly F -
consistent scoring functions under (V4). In particular, the result covers vectors
of different quantiles and/or different expectiles (with the exception of the 1/2-
expectile), thus answering a question raised in Gneiting and Raftery (2007),
page 370.

One relevant exception when (V4) is not satisfied is when T is a ratio of expec-
tations with the same denominator, that is, qm = q for all m. We treat this case in
Proposition 4.4 below.

REMARK 4.1. Steinwart et al. (2014) introduced the notion of an oriented
strict F -identification function for the case k = 1 and d = 1. They say that V : A ×
O → R is an oriented strict F -identification function for the functional T :F → A
if V is a strict F -identification function for T and, moreover, V̄ (x,F ) > 0 if and
only if x > T (F ) for all F ∈ F and for all x ∈ A.

PROPOSITION 4.2. Let Tm:F → Am ⊆ R be 1-elicitable and 1-identifiable
functionals with oriented strict F -identification functions Vm: Am × O → R for
m ∈ {1, . . . , k}. Define T = (T1, . . . , Tk) with identification function V as at (4.1)
and a strictly F -consistent scoring function S: A × O → R with A := T (F) ⊆
A1 × · · · × Ak . Suppose that int(A) is a star domain, and assumptions (V1), (V3),
(V4), (S2) hold. Define A′

m := {xm:∃(z1, . . . , zk) ∈ int(A), zm = xm}.
(i) Let h : int(A) → R

k×k be the function given at (3.2). Then there are func-
tions gm: A′

m → R, gm > 0, such that hmm(x1, . . . , xk) = gm(xm) for all m ∈
{1, . . . , k} and (x1, . . . , xk) ∈ int(A) and

hrl(x) = 0(4.2)

for all r, l ∈ {1, . . . , k}, l �= r , and for all x ∈ int(A).
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(ii) Assume that (F1) and (VS1) hold. Then S is strictly F -consistent for T if
and only if it is of the form

S(x1, . . . , xk, y) =
k∑

m=1

Sm(xm, y),(4.3)

for almost all (x, y) ∈ A × O, where Sm: Am × O →R, m ∈ {1, . . . , k}, are strictly
F -consistent scoring functions for Tm.

REMARK 4.3. Lambert, Pennock and Shoham (2008), Theorem 5, show that
a scoring function is accuracy-rewarding if and only if it is the sum of strictly con-
sistent scoring functions for each component. Their assumptions are different from
Proposition 4.2(ii). For example, they assume that all distributions in F have finite
support, and that scoring functions are twice continuously differentiable. There-
fore, despite the same form of the characterization in (4.3), neither result implies
the other. However, the key components of the proofs of both results is to show
that the cross-derivatives of the expected scoring functions are zero. This implies
then a decomposition as in (4.3). The converse is trivial in both cases.

If T is a ratio of expectations with the same denominator, it is well known that
the class of strictly F -consistent scoring functions is bigger than the one given in
Proposition 4.2(ii).

PROPOSITION 4.4. Let T :F → A ⊆ R
k be a ratio of expectations with the

same denominator, that is, T (F ) = EF [p(Y )]/EF [q(Y )] for some F -integrable
functions p: O → R

k , q: O → R. Assume that q̄(F ) > 0 for all F ∈ F and let
V : A × O → R

k , V (x, y) = q(y)x − p(y). Let S: A × O → R be a strictly F -
consistent scoring function for T and h : int(A) → R

k×k be the function given
at (3.2). Suppose that T is surjective, and assumptions (V1), (V3), (S2) hold.

(i) It holds that

∂lhrm(x) = ∂rhlm(x), hrl(x) = hlr(x)(4.4)

for all r, l,m ∈ {1, . . . , k}, l �= r , where the first identity holds for almost all
x ∈ int(A) and the second identity for all x ∈ int(A). Moreover, the matrix
(hrl(x))r,l=1,...,k is positive definite for all x ∈ int(A).

(ii) Let int(A) be a star domain and assume that (F1) and (VS1) hold. Then S

is strictly F -consistent for T if and only if it is of the form

S(x, y) = −φ(x)q(y) +
k∑

m=1

(
q(y)xm − pm(y)

)
∂mφ(x) + a(y),(4.5)

with

φ(x) =
k∑

r=1

∫ xr

zr

∫ v

zr

hrr (x1, . . . , xr−1,w, zr+1, . . . , zk)dw dv,(4.6)
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for almost all (x, y) ∈ A × O, where (z1, . . . , zk) ∈ int(A) is some star point and
a: O →R is F -integrable. Moreover, φ has Hessian h and is strictly convex.

Part (ii) of this proposition recovers results of Abernethy and Frongillo (2012),
Banerjee, Guo and Wang (2005), Osband and Reichelstein (1985) if q ≡ 1, which
show that all consistent scoring functions for vectors of expectations are so-called
Bregman functions, that is, functions of the form (4.5) with q ≡ 1 and a convex
function φ. Frongillo and Kash (2015), Theorem 13, also treat the case of more
general functions q .

REMARK 4.5. One might wonder about necessary conditions on the matrix-
valued function h in the flavor of Propositions 4.2(i) and 4.4(i) if the k components
of the functional T can be regrouped into (a) a new functional T ′

1:F → A′
1 ⊂ R

k′
1

with an oriented strict F -identification function V ′
1: A′

1 × O → R
k′

1 which satis-
fies assumption (V4), and (b) several, say l, new functionals T ′

m:F → A′
k′
m

⊆R
k′
m ,

m ∈ {2, . . . , l + 1} which are ratios of expectations with the same denominator,
and k′

1 + · · · + k′
l+1 = k. We can apply the propositions to obtain necessary condi-

tions for each of the (k′
m × k′

m)-valued functions h′
m, m ∈ {1, . . . , l + 1}. Applying

Lemma 2.6, we get a possible choice for a strictly F -consistent scoring function S

for T . On the level of the k × k-valued function h associated to S this means that h

is a block diagonal matrix of the form diag(h′
1, . . . , h

′
l+1). But what about the ne-

cessity of this form? Indeed, if we assume that the blocks in (b) have maximal size
(or equivalently that l is minimal) then one can verify that h must be necessarily
of the block diagonal form described above.

5. Spectral risk measures. Risk measures are a common tool to measure the
risk of a financial position Y . A risk measure is usually defined as a mapping ρ

from some space of random variables, for example, L∞, to the real line. Arguably,
the most common risk measure in practice is Value at Risk at level α (VaRα) which
is the generalized α-quantile F−1(α), that is,

VaRα(Y ) := F−1(α) := inf
{
x ∈ R:F(x) ≥ α

}
,

where F is the distribution function of Y . An important alternative to VaRα is Ex-
pected Shortfall at level α (ESα) (also known under the names Conditional Value
at Risk or Average Value at Risk). It is defined as

ESα(Y ) := 1

α

∫ α

0
VaRu(Y )du, α ∈ (0,1],(5.1)

and ES0(Y ) = ess infY . Since the influential paper of Artzner et al. (1999) intro-
ducing coherent risk measures, there has been a lively debate about which risk
measure is best in practice, one of the requirements under discussion being the
coherence of a risk measure. We call a functional ρ coherent if it is monotone,
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meaning that Y ≤ X a.s. implies that ρ(Y ) ≤ ρ(X); it is super-additive in the
sense that ρ(X + Y) ≥ ρ(X) + ρ(Y ); it is positively homogeneous which means
that ρ(λY ) = λρ(Y ) for all λ ≥ 0; and it is translation invariant which amounts
to ρ(Y + a) = ρ(Y ) + a for all a ∈ R. In the literature on risk measures, there
are different sign conventions which co-exist. In this paper, a positive value of Y

denotes a profit. Moreover, the position Y is considered the more risky the smaller
ρ(Y ) is. Strictly speaking, we have chosen to work with utility functions instead
of risk measures as, for example, in Delbaen (2012). The risk measure ρ is called
comonotonically additive if ρ(X + Y) = ρ(X) + ρ(Y ) for comonotone random
variables X and Y . Coherent and comonotonically additive risk measures are also
called spectral risk measures [Acerbi (2002)]. All risk measures of practical in-
terest are law-invariant, that is, if two random variables X and Y have the same
law F , then ρ(X) = ρ(Y ). As we are only concerned with law-invariant risk mea-
sures in this paper, we will abuse notation and write ρ(F ) := ρ(X), if X has dis-
tribution F .

One of the main criticisms on VaRα is its failure to fulfill the super-additivity
property in general [Acerbi (2002)]. Furthermore, it fails to take the size of losses
beyond the level α into account [Daníelsson et al. (2001)]. In both of these as-
pects, ESα is a better alternative as it is coherent and comonotonically additive,
that is, a spectral risk measure. However, with respect to robustness, some au-
thors argue that VaRα should be preferred over ESα [Cont, Deguest and Scandolo
(2010), Kou, Peng and Heyde (2013)], whereas others argue that the classical sta-
tistical notions of robustness are not necessarily appropriate in a risk measurement
context [Krätschmer, Schied and Zähle (2012, 2015, 2014)]. Finally, ESα fails to
be 1-elicitable [Gneiting (2011), Weber (2006)], whereas VaRα is 1-elicitable for
most classes of distributions F of practical relevance. In fact, except for the ex-
pectation, all spectral risk measures fail to be 1-elicitable [Ziegel (2014)]; further
recent results on elicitable risk measures include [Kou and Peng (2014), Wang
and Ziegel (2015)] showing that distortion risk measures are rarely elicitable and
[Bellini and Bignozzi (2015), Delbaen et al. (2016), Weber (2006)] demonstrating
that convex risk measures are only elicitable if they are shortfall risk measures.

We show in Theorem 5.2 (see also Corollaries 5.4 and 5.5) that spectral risk
measures having a spectral measure with finite support can be a component of a
k-elicitable functional. In particular, the pair (VaRα,ESα):F → R

2 is 2-elicitable
for any α ∈ (0,1) subject to mild conditions on the class F . We remark that our
results substantially generalize the result of Acerbi and Székely (2014) as detailed
below.

DEFINITION 5.1 (Spectral risk measures). Let μ be a probability measure on
[0,1] (called spectral measure) and let F be a class of distribution functions on R

with finite first moments. Then the spectral risk measure associated to μ is the
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functional νμ:F →R defined as

νμ(F ) :=
∫
[0,1]

ESα(F )μ(dα).

Jouini, Schachermayer and Touzi (2006), Kusuoka (2001) have shown that law-
invariant coherent and comonotonically additive risk measures are exactly the
spectral risk measures in the sense of Definition 5.1 for distributions with com-
pact support. If μ = δα for some α ∈ [0,1], then νμ(F ) = ESα(F ). In particular,
νδ1(F ) = ∫

y dF(y) is the expectation of F .
In the following theorem, we show that spectral risk measures whose spectral

measure μ has finite support in (0,1) are k-elicitable for some k. The key to find-
ing the form of the strictly consistent scoring functions at (5.2) is the observation
that spectral risk measures jointly with the correct quantiles are identifiable with
identification function given at (5.4). It is possible to extend the result to spectral
measures with finite support in (0,1]; see Corollary 5.4.

THEOREM 5.2. Let F be a class of distribution functions on R with finite first
moments. Let νμ:F →R be a spectral risk measure where μ is given by

μ =
k−1∑
m=1

pmδqm,

with pm ∈ (0,1], ∑k−1
m=1 pm = 1, qm ∈ (0,1) and the qm’s are pairwise distinct.

Define the functional T = (T1, . . . , Tk):F → R
k , where Tm(F ) := F−1(qm), m ∈

{1, . . . , k − 1}, and Tk(F ) := νμ(F ). Then the following assertions are true:

(i) If the distributions in F have unique qm-quantiles, m ∈ {1, . . . , k−1}, then
the functional T is k-elicitable with respect to F .

(ii) Let A ⊇ T (F) be convex and set A′
r := {xr :∃(z1, . . . , zk) ∈ A, xr = zr},

r ∈ {1, . . . , k}. Define the scoring function S: A ×R→R by

S(x, y) =
k−1∑
r=1

(
1{y ≤ xr} − qr

)
Gr(xr) − 1{y ≤ xr}Gr(y)

+ Gk(xk)

(
xk +

k−1∑
m=1

pm

qm

(
1{y ≤ xm}(xm − y) − qmxm

))
(5.2)

− Gk(xk) + a(y),

where a:R → R is F -integrable, Gr : A′
r → R, r ∈ {1, . . . , k}, Gk: A′

k → R with
G′

k = Gk and for all r ∈ {1, . . . , k} and all xr ∈ A′
r the functions 1(∞,xr ]Gr are

F -integrable.
If Gk is convex and for all r ∈ {1, . . . , k − 1} and xk ∈ A′

k , the function

A′
r,xk

→R, xr �→ xr

pr

qr

Gk(xk) + Gr(xr)(5.3)
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with A′
r,xk

:= {xr : ∃(z1, . . . , zk) ∈ A, xr = zr , xk = zk} is increasing, then S is F -
consistent for T . If additionally the distributions in F have unique qm-quantiles,
m ∈ {1, . . . , k −1}, Gk is strictly convex and the functions given at (5.3) are strictly
increasing, then S is strictly F -consistent for T .

(iii) Assume the elements of F have unique qm-quantiles, m ∈ {1, . . . , k − 1}
and continuous densities. Define the function V : A ×R→R

k with components

Vm(x1, . . . , xk, y) = 1{y ≤ xm} − qm, m ∈ {1, . . . , k − 1},
(5.4)

Vk(x1, . . . , xk, y) = xk −
k−1∑
m=1

pm

qm

y1{y ≤ xm}.

Then V is a strict F -identification function for T satisfying assumption (V3).
If additionally the interior of A := T (F) ⊆ R

k is a star domain, (V1) and (F1)
hold, and (V1, . . . , Vk−1) satisfies (V4), then every strictly F -consistent scoring
function S: A × R → R for T satisfying (S2), (VS1) is necessarily of the form
given at (5.2) almost everywhere. Additionally, Gk must be strictly convex and the
functions at (5.3) must be strictly increasing.

REMARK 5.3. According to Theorem 5.2, the pair (VaRα(F ),ESα(F )),
and more generally (F−1(q1), . . . ,F

−1(qk−1), νμ(F )), admits only nonseparable
strictly consistent scoring functions. This result gives an example demonstrating
that Osband (1985), Proposition 2.3, cannot be correct as it states that any strictly
consistent scoring function for a functional with a quantile as a component must
be separable in the sense that it must be the sum of a strictly consistent scoring
function for the quantile and a strictly consistent scoring function for the rest of
the functional.

Using Theorem 5.2 and the revelation principle, we can now state one of the
main results of this paper.

COROLLARY 5.4. Let F be a class of distribution functions on R with finite
first moments and unique quantiles. Let νμ:F → R be a spectral risk measure.
If the support of μ is finite with L elements and contained in (0,1], then νμ is a
component of a k-elicitable functional where:

(i) k = 1, if μ is concentrated at 1 meaning μ({1}) = 1;
(ii) k = 1 + L, if μ({1}) < 1.

In the special case of T = (VaRα,ESα), the maximal sensible action domain
is A0 := {x ∈ R

2 : x1 ≥ x2} as we always have ESα(F ) ≤ VaRα(F ). For this ac-
tion domain, the characterization of consistent scoring functions of Theorem 5.2
simplifies as follows.



HIGHER ORDER ELICITABILITY 1697

COROLLARY 5.5. Let α ∈ (0,1). Let F be a class of distribution functions on
R with finite first moments and unique α-quantiles. Let A0 = {x ∈ R

2 : x1 ≥ x2}.
A scoring function S: A0 ×R→R of the form

S(x1, x2, y) = (
1{y ≤ x1} − α

)
G1(x1) − 1{y ≤ x1}G1(y)

+ G2(x2)

(
x2 − x1 + 1

α
1{y ≤ x1}(x1 − y)

)
(5.5)

− G2(x2) + a(y),

where G1,G2,G2, a:R → R, G′
2 = G2, a is F -integrable and 1(−∞,x1]G1 is F -

integrable for all x1 ∈ R, is F -consistent for T = (VaRα,ESα) if G1 is increasing
and G2 is increasing and convex. If G2 is strictly increasing and strictly convex,
then S is strictly F -consistent for T .

Under the conditions of Theorem 5.2(iii) all strictly F -consistent scoring func-
tions for T are of the form (5.5) almost everywhere.

Acerbi and Székely (2014) also give an example of a scoring function for the
pair T = (VaRα,ESα):F → A ⊆ R

2. They use a different sign convention for
VaRα and ESα than we do in this paper. Using our sign convention, their proposed
scoring function SW : A ×R→R reads

SW(x1, x2, y) = α
(
x2

2/2 + Wx2
1/2 − x1x2

)
(5.6)

+ 1{y ≤ x1}(−x2(y − x1) + W
(
y2 − x2

1
)
/2

)
,

where W ∈ R. The authors claim that SW is a strictly F -consistent scoring function
for T = (VaRα,ESα) provided that

ESα(F ) > WVaRα(F )(5.7)

for all F ∈ F . This means that they consider a strictly smaller action domain
than A0 in Corollary 5.5. They assume that the distributions in F have contin-
uous densities, unique α quantiles, and that F(x) ∈ (0,1) implies f (x) > 0 for
all F ∈ F with density f . Furthermore, in order to ensure that S̄W (·,F ) is finite,
one needs to impose the assumption that

∫ x
−∞ y2 dF(y) is finite for all x ∈ R and

F ∈ F . This is slightly less than requiring finite second moments. As a matter
of fact, they only show that ∇S̄W (t1, t2,F ) = 0 for F ∈ F and (t1, t2) = T (F )

and that ∇2S̄W (t1, t2,F ) is positive definite. This only shows that S̄W (x,F ) has
a local minimum at x = T (F ) but does not provide a proof concerning a global
minimum; see also the discussion after Corollary 3.3. However, we can use Theo-
rem 5.2(ii) to verify their claims with G1(x1) = −(W/2)x2

1 , G2(x2) = (α/2)x2
2 and

a = 0. Hence, G2 is strictly convex, and the function x1 �→ x1G2(x2)/α + G1(x1)

is strictly increasing in x1 if and only if x2 > Wx1 as at (5.7).
The scoring function SW has one property which is potentially relevant in

applications. If x1, x2 and y are expressed in the same units of measurement,
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then SW(x1, x2, y) is a quantity with these units squared. If one insists that we
should only add quantities with the same units, then the necessary condition that
x1 �→ x1G2(x2)/α + G1(x1) is strictly increasing enforces a condition of the
type (5.7). The action domain is restricted for SW and the choice of W may not be
obvious in practice. Similarly, for the maximal action domain A0, an open question
of practical interest is the choice of the functions G1 and G2 in (5.5). We would like
to remark that S remains strictly consistent upon choosing G1 = 0 and G2 strictly
increasing and strictly convex.

6. Discussion. We have investigated necessary and sufficient conditions for
the elicitability of k-dimensional functionals of d-dimensio nal distributions. In or-
der to derive necessary conditions, we have adapted Osband’s principle for the case
where the class F of distributions does not necessarily contain distributions with
finite support. This comes at the cost of certain smoothness assumptions on the ex-
pected scores S̄(·,F ). For particular situations, for example, when characterizing
the class of strictly F -consistent scoring functions for ratios of expectations, it is
possible to weaken the smoothness assumptions; see Frongillo and Kash (2015).
While moving away from distributions with finite support is not a great gain in the
case of linear functionals or ratios of expectations, it comes in handy when con-
sidering spectral risk measures. Value at Risk, VaRα , being defined as the smallest
α-quantile, is generally not elicitable for distributions where the α-quantile is not
unique. Therefore, we believe that it is also not possible to show joint elicitability
of (VaRα,ESα) for classes F of distributions with nonunique α-quantiles. How-
ever, we can give consistent scoring functions which become strictly consistent
as soon as the elements of F have unique quantiles. Fortunately, the classes F
of distributions that are relevant in risk management usually consist of absolutely
continuous distributions having unique quantiles.

Emmer, Kratz and Tasche (2015) have remarked that ESα is conditionally
elicitable. Slightly generalizing their definition, a functional Tk:F → Ak ⊆ R

is called conditionally elicitable of order k, k ≥ 1, if there are k − 1 elicitable
functionals Tm:F → Am ⊆ R, m ∈ {1, . . . , k − 1}, such that Tk is elicitable re-
stricted to the class Fx1,...,xk−1 := {F ∈ F :T1(F ) = x1, . . . , Tk−1(F ) = xk−1} for
any (x1, . . . , xk−1) ∈ A1 × · · · × Ak−1. Mutatis mutandis, one can define a no-
tion of conditional identifiability by replacing the term “elicitable” with “identi-
fiable” in the above definition. It is not difficult to check that any conditionally
identifiable functional Tk of order k is a component of an identifiable functional
T = (T1, . . . , Tk). Spectral risk measures νμ with spectral measure μ with finite
support in (0,1) provide an example of a conditionally elicitable functional of
order L + 1, where L is the cardinality of the support of μ; see Theorem 5.2.
However, we would like to stress that it is generally an open question whether any
conditionally elicitable and identifiable functional Tk of order k ≥ 2 is always a
component of a k-elicitable functional.
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Slightly modifying Lambert, Pennock and Shoham (2008), Definition 11, one
could define the elicitability order of a real-valued functional T as the smallest
number k such that the functional is a component of a k-elicitable functional. It is
clear that the elicitability order of the variance is two, and we have shown that the
same is true for ESα for reasonably large classes F . For spectral risk measures νμ,
the elicitability order is at most L + 1, where L is the cardinality of the support;
see Corollary 5.4.

In the one-dimensional case, Steinwart et al. (2014) have shown that convex
level sets in the sense of Osband (1985), Proposition 2.5 [see also Gneiting (2011),
Theorem 6] is a sufficient condition for the elicitability of a functional T under
continuity assumptions on T . Without such continuity assumptions, the converse
of Osband (1985), Proposition 2.5, is generally false; see Heinrich (2014) for the
example of the mode functional. It is an open (and potentially difficult) question
under which conditions a converse of Osband (1985), Proposition 2.5, is true for
higher order elicitability.

7. Proofs.

PROOF OF THEOREM 3.2. Let x ∈ int(A). The identifiability property of V

plus the first-order condition stemming from the strict F -consistency of S yields
the relation V̄ (x,F ) = 0 �⇒ ∇S̄(x,F ) = 0 for all F ∈ F . Let l ∈ {1, . . . , k}. To
show (3.2), consider the composed functional

B̄(x, ·):F →R
k+1, F �→ (

∂lS̄(x,F ), V̄ (x,F )
)
.

By construction, we know that

V̄ (x,F ) = 0 ⇐⇒ B̄(x,F ) = 0(7.1)

for all F ∈ F . Assumption (V1) implies that there are F1, . . . ,Fk+1 ∈ F such
that the matrix V= mat(V̄ (x,F1), . . . , V̄ (x,Fk+1)) ∈ R

k×(k+1) has maximal rank,
meaning rank(V) = k. If rank(V) < k, then the space span{V̄ (x,F1), . . . , V̄ (x,

Fk+1)} would be a linear subspace such that the interior of conv({V̄ (x,F1), . . . ,

V̄ (x,Fk+1)}) would be empty. Let G ∈ F . Then still 0 ∈ int(conv({V̄ (x,G), V̄ (x,

F1), . . . , V̄ (x,Fk+1)})), so rank(VG) = k where VG = mat(V̄ (x,G), V̄ (x,F1),

. . . , V̄ (x,Fk+1)) ∈R
k×(k+2). Define the matrix

BG =
(

∂lS̄(x,G) ∂lS̄(x,F1) · · · ∂lS̄(x,Fk+1)

VG

)
∈ R

(k+1)×(k+2).

We use (7.1) to show that ker(BG) = ker(VG). First, observe that the relation
ker(BG) ⊆ ker(VG) is clear by construction. To show the other inclusion, let
θ ∈ ker(VG) be an element of the simplex. Then (7.1) and the convexity of F
yields that θ ∈ ker(BG). By linearity, the inclusion holds also for all θ ∈ ker(VG)

with nonnegative components. Finally, let θ ∈ ker(VG) be arbitrary. Assump-
tion (V1) implies that there is θ∗ ∈ ker(VG) with strictly positive components.
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Hence, there is an ε > 0 such that θ∗ + εθ has nonnegative components. Since
VG(θ∗ + εθ) = VGθ∗ + εVGθ = 0, we know that θ∗ + εθ ∈ ker(BG). Again using
linearity and the fact that θ∗ ∈ ker(BG), we obtain that θ ∈ ker(BG).

With the rank-nullity theorem, this gives rank(BG) = rank(VG) = k. Hence,
there is a unique vector (hl1(x), . . . , hlk(x)) ∈ R

k such that one has ∂lS̄(x,G) =∑k
m=1 hlm(x)V̄m(x,G). Since G ∈ F was arbitrary, the assertion at (3.2) follows.
The second part of the claim can be seen as follows. For x ∈ int(A), pick

F1, . . . ,Fk ∈ F such that V̄ (x,F1), . . . , V̄ (x,Fk) are linearly independent and
let V(z) be the matrix with columns V̄ (z,Fi), i ∈ {1, . . . , k} for z ∈ int(A). Due
to assumption (V2) or (V3), V(z) has full rank in some neighborhood U of x.
Let r ∈ {1, . . . , k} and let er be the r th standard unit vector of R

k . We define
λ(z) := V(z)−1er for z ∈ U . Taking the inverse of a matrix is a continuously dif-
ferentiable operation, so it is in particular locally Lipschitz continuous. Therefore,
the vector λ inherits the regularity properties of V̄ (z,Fi), that is, under (V2) λ

is continuous, and under (V3) λ is locally Lipschitz continuous. Therefore, these
properties carry over to h because for l ∈ {1, . . . , k}, z ∈ U

hlr(z) =
k∑

i=1

λi(z)

k∑
m=1

hlm(z)V̄m(z,Fi) =
k∑

i=1

λi(z)∂lS̄m(z,Fi)

using the assumptions on S. �

PROOF OF PROPOSITIONS 4.2 AND 4.4. We show parts (i) of the two propo-
sitions simultaneously. We have that ∂lV̄r (x,F ) = 0 for all l, r ∈ {1, . . . , k}, l �= r ,
and x ∈ int(A), F ∈ F . Equation (3.3) evaluated at x = t = T (F ) yields

hrl(t)∂lV̄l(t,F ) = hlr(t)∂r V̄r (t,F ).(7.2)

If (V4) holds, then (7.2) implies that hrl(t) = 0 for r �= l, hence we obtain (4.2)
with the surjectivity of T . On the other hand, if Vr(x, y) = q(y)xm − pm(y), (7.2)
implies that hrl(t) = hlr(t), whence the second part of (4.4) is shown, again using
the surjectivity of T . In both cases, (3.3) is equivalent to

k∑
m=1

(
∂lhrm(x) − ∂rhlm(x)

)
V̄m(x,F ) = 0.(7.3)

Using assumption (V1), there are F1, . . . ,Fk ∈ F such that the vectors V̄ (x,F1),

. . . , V̄ (x,Fk) are linearly independent. This yields that ∂lhrm(x) = ∂rhlm(x) for
almost all x ∈ int(A). For Proposition 4.2, we can conclude that ∂lhrr (x) =
∂rhlr (x) = 0 for r �= l for almost all x ∈ int(A). Consequently, invoking that A
is connected, the functions hmm only depend on xm and we can write hmm(x) =
gm(xm) for some function gm: A′

m → R. By Lemma 2.4(i), for v ∈ S
k−1, t =
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T (F ) ∈ int(A), the function s �→ S̄(t + sv,F ) has a global unique minimum at
s = 0, hence

v
∇S̄(t + sv,F ) =
k∑

m=1

gm(tm + svm)V̄m(tm + svm,F )vm

vanishes for s = 0, is negative for s < 0 and positive for s > 0, where s is in some
neighborhood of zero. Choosing v as the lth standard basis vector of Rk we obtain
that gl > 0 exploiting the orientation of Vl and the surjectivity of T .

For Proposition 4.4(i) to show the assertion about the definiteness of h, ob-
serve that for v ∈ S

k−1, t = T (F ) ∈ int(A) we have V̄ (t + sv,F ) = q̄(F )sv where
q̄(F ) > 0. Hence, v
∇S̄(t + sv,F ) = q̄(F )sv
h(t + sv)v, which implies the
claim using again the surjectivity of T .

For part (ii) of Proposition 4.2, the sufficiency is immediate; see the proof of
Lemma 2.6. For necessity, we apply Proposition 3.4 and part (i) such that

S(x, y) =
k∑

m=1

∫ xm

zm

gm(v)Vm(v, y)dv + a(y),

for almost all (x, y) ∈ A × O, where z ∈ int(A) is a star point of int(A) and a is
an F -integrable function. Let t = T (F ) and xm �= tm. The strict consistency of S

implies that S̄(t,F ) < S̄(t1, . . . , tm−1, xm, tm+1, . . . , tm). This means S̄m(tm,F ) <

S̄m(xm,F ) with Sm(xm, y) := ∫ xm
zm

gm(v)Vm(v, y)dv + (1/k)a(y).
For part (ii) of Proposition 4.4, observe that due to part (i) h is the Hessian of φ,

and thus, φ is strictly convex. For the sufficiency of the form (4.5), let x �= t =
T (F ) for some F ∈ F . Then

S̄(x,F ) − S̄(t,F ) = q̄(F )
(
φ(t) − φ(x) + 〈∇φ(x), x − t

〉)
> 0

due to the strict convexity of φ and q̄(F ) > 0. For the necessity of the form (4.5),
apply Proposition 3.4 and use partial integration. �

PROOF OF THEOREM 5.2. (i) The second part of Theorem 5.2(ii) implies the
k-elicitability of T .

(ii) Let S: A × R → R be of the form (5.2), Gk be convex and the functions
at (5.3) be increasing. Let F ∈ F , x = (x1, . . . , xk) ∈ A and set t = (t1, . . . , tk) =
T (F ), w = min(xk, tk). Then we obtain

S(x, y) = −Gk(xk) + Gk(w)(xk − y) + a(y)

+
k−1∑
r=1

(
1{y ≤ xr} − qr

)(
Gr(xr) + pr

qr

Gk(w)(xr − y)

)

− 1{y ≤ xr}Gr(y) + (
Gk(xk) − Gk(w)

)

×
(
xk +

k−1∑
m=1

pm

qm

(
1{y ≤ xm}(xm − y) − qmxm

))
.
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This implies that S̄(x,F ) − S̄(t,F ) = R1 + R2 with

R1 =
k−1∑
r=1

(
F(xr) − qr

)(
Gr(xr) + pr

qr

Gk(w)xr

)

−
∫ xr

tr

(
Gr(y) + pr

qr

Gk(w)y

)
dF(y),

R2 = (
Gk(xk) − Gk(w)

)(
xk +

k−1∑
m=1

pm

qm

(∫ xm

−∞
(xm − y)dF(y) − qmxm

))

− Gk(xk) + Gk(tk) + Gk(w)(xk − tk).

We denote the r th summand of R1 by ξr and suppose that tr < xr . Due to
the assumptions, the term Gr(y) + (pr/qr)Gk(w)y is increasing in y ∈ [tr , xr ]
which implies that ξr ≥ (F (xr) − qr)(Gr(xr) + (pr/qr)Gk(w)xr) − (F (xr) −
F(tr))(Gr(xr) + (pr/qr)Gk(w)xr) = 0. Analogously, one can show that ξr ≥ 0
if xr < tr . If F has a unique qr -quantile and the term Gr(y) + (pr/qr)Gk(w)y is
strictly increasing in y, then we even get ξr > 0 if xr �= tr .

Now consider the term R2. Splitting the integrals from ∞ to xm into integrals
from −∞ to tm and from tm to xm and partially integrating the latter, we obtain

R2 = (
Gk(xk) − Gk(w)

)

×
(
xk +

k−1∑
m=1

pm

(
tm − xm − 1

qm

∫ tm

−∞
y dF(y) + 1

qm

∫ xm

tm

F (y)dy

))

− Gk(xk) + Gk(tk) + Gk(w)(xk − tk)

= (
Gk(xk) − Gk(w)

)(
xk − tk +

k−1∑
m=1

pm

(
tm − xm + 1

qm

∫ xm

tm

F (y)dy

))

− Gk(xk) + Gk(tk) + Gk(w)(xk − tk)

≥ (
Gk(xk) − Gk(w)

)
(xk − tk) − Gk(xk) + Gk(tk) + Gk(w)(xk − tk)

= Gk(tk) − Gk(xk) − Gk(xk)(tk − xk) ≥ 0.

The first inequality is due to the fact that (i) Gk is increasing and (ii) for xm �= tm
we have (1/qm)

∫ xm
tm

F (y)dy ≥ xm − tm with strict inequality if F has a unique
qm-quantile. The last inequality is due to the fact that Gk is convex. The inequality
is strict if xk �= tk and if Gk is strictly convex.

(iii) If f denotes the density of F , it holds that

ESα(F ) = 1

α

∫ F−1(α)

−∞
yf (y)dy, α ∈ (0,1].(7.4)

We first show the assertions concerning V given at (5.4). Let F ∈ F with den-
sity f = F ′ and let t = T (F ). Then we have for m ∈ {1, . . . , k − 1}, x ∈ A, that
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V̄m(x,F ) = F(xm) − qm which is zero if and only if xm = tm. On the other hand,
using the identity at (7.4)

V̄k(t1, . . . , tk−1, xk,F ) = xk −
k−1∑
m=1

pm

qm

∫ tm

−∞
yf (y)dy = xk − tk.

Hence, it follows that V is a strict F -identification function for T . Moreover, V

satisfies assumption (V3), and we have for m ∈ {1, . . . , k − 1}, l ∈ {1, . . . , k} and
x ∈ int(A) that ∂lV̄m(x,F ) = 0 if l �= m and ∂mV̄m(x,F ) = f (xm), ∂mV̄k(x,F ) =
−(pm/qm)xmf (xm) and ∂kV̄k(x,F ) = 1.

From now on, we assume that t = T (F ) ∈ int(A). Let S be a strictly F -
consistent scoring function for T satisfying (S2). Then we can apply Theorem 3.2
and Corollary 3.3 to get that there are locally Lipschitz continuous functions
hlm: int(A) → R such that (3.2) and (3.3) hold. If we evaluate (3.3) for l = k,
m ∈ {1, . . . , k − 1} at the point x = t , we get

hkm(t)∂mV̄m(t,F ) + hkk(t)∂mV̄k(t,F ) = hmk(t)∂kV̄k(t,F ),

which takes the form hkm(t)f (tm) − hkk(t)(pm/qm)tmf (tm) = hmk(t). Invok-
ing assumption (V4) for (V1, . . . , Vk−1), we get that necessarily hmk(t) = 0 and
hkm(t) = (pm/qm)tmhkk(t). So with the surjectivity of T , we get for x ∈ int(A)

that

hmk(x) = 0, hkm(x) = pm

qm

xmhkk(x) for all m ∈ {1, . . . , k − 1}.(7.5)

Now, we can evaluate (3.3) for m, l ∈ {1, . . . , k − 1}, m �= l, at x = t and use
the first part of (7.5) to get that hml(t)f (tl) = hlm(t)f (tm). Using again the same
argument, we get for x ∈ int(A) that

hml(x) = 0 for all m, l ∈ {1, . . . , k − 1}, l �= m.(7.6)

At this stage, we can evaluate (3.3) for l ∈ {1, . . . , k − 1}, m ∈ {1, . . . , k}, m �= l,
for some x ∈ int(A). Using (7.5) and (7.6), we obtain

k∑
i=1

(
∂lhmi(x) − ∂mhli(x)

)
V̄i(xi,F ) = 0.

Invoking assumption (V1) and using (7.5) and (7.6), we can conclude that for
almost all x ∈ A,

∂lhmm(x) = 0 for all l ∈ {1, . . . , k − 1},m ∈ {1, . . . , k}, l �= m(7.7)

and

∂khll(x) = pl

ql

hkk(x) for all l ∈ {1, . . . , k − 1}.(7.8)

Equation (7.7) for m = k shows that there is a locally Lipschitz continuous func-
tion gk: A′

k → R such that for all (x1, . . . , xk) ∈ int(A), we have hkk(x1, . . . , xk) =
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gk(xk). Equation (7.8) together with (7.7) gives that for l ∈ {1, . . . , k − 1}, and
(x1, . . . , xk) ∈ int(A), we obtain hll(x1, . . . , xk) = (pl/ql)Gk(xk) + gl(xl), where
gl: A′

l →R is locally Lipschitz continuous and Gk: A′
k →R is such that G′

k = gk .
Knowing the form of the matrix-valued function h, we can apply Proposi-

tion 3.4. Let z ∈ int(A) be some star point. Then there is some F -integrable func-
tion b:R →R such that

S(x, y) =
k−1∑
r=1

∫ xr

zr

(
pr

qr

Gk(zk) + gr(v)

)(
1{y ≤ v} − qr

)
dv

+ (
Gk(xk) − Gk(zk)

) k−1∑
m=1

pm

qm

(
xm

(
1{y ≤ xm} − qm

) − y1{y ≤ xm})(7.9)

+ Gk(xk)xk − Gk(xk) + b(y),

for almost all (x, y) where Gk: A′
k → R is such that G′

k = Gk . One can check by
a straightforward computation that the representation of S at (7.9) is equivalent to
the one at (5.2) upon choosing a suitable F -integrable function a:R →R.

It remains to show that Gk is strictly convex and that the functions given at (5.3)
are strictly increasing. To this end, we use Lemma 2.4. Let D = {s ∈ R: t + sv ∈
int(A)}, and let v = (v1, . . . , vk) ∈ S

k−1 and without loss of generality assume
vk ≥ 0. We define ψ :D →R by ψ(s) := S̄(t + sv,F ), that is,

ψ(s) =
k−1∑
r=1

∫ s̄r

zr

(
pr

qr

Gk(zk) + gr(v)

)(
F(v) − qr

)
dv

+ (
Gk(s̄k) − Gk(zk)

) k−1∑
m=1

pm

qm

(
s̄m

(
F(s̄m) − qm

) −
∫ s̄m

−∞
yf (y)dy

)

+ s̄kGk(s̄k) − Gk(s̄k) + b̄(F ),

where we use the notation s̄ = t + sv. The function ψ has a minimum at s = 0.
Hence, there is ε > 0 such that ψ ′(s) < 0 for s ∈ (−ε,0) and ψ ′(s) > 0 for s ∈
(0, ε). If vk = 0, then

ψ ′(s) =
k−1∑
r=1

(
F(s̄r ) − qr

)
vr

(
gr(s̄r ) + pr

qr

Gk(s̄k)

)
.

Choosing v as the r th standard basis vector of Rk for r ∈ {1, . . . , k − 1}, we obtain
that gr(s̄r ) + (pr/qr)Gk(s̄k) > 0. Exploiting the surjectivity of T we can deduce
that the functions at (5.3) are strictly increasing. On the other hand, if v is the kth
standard basis vector, we obtain that ψ ′(s) = gk(s̄k)s. Again using the surjectivity
of T , we get that gk > 0 which shows the strict convexity of Gk . �

PROOF OF COROLLARY 5.5. The sufficiency follows directly from Theo-
rem 5.2. We will show that G2 is necessarily bounded below. Suppose the contrary.
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For the action domain A0, we have A′
1,x2

= [x2,∞), therefore, for x2 ≤ x1 < x′
1

(5.3) yields −∞ < G1(x1)−G1(x
′
1) ≤ (1/α)G2(x2)(x

′
1 −x1). Letting x2 → −∞,

one obtains a contradiction. Let C2 = limx2→−∞ G2(x2) > −∞. Then, by (5.3),
we obtain that G1(x1) + (C2/α)x1 is increasing in x1 ∈R. We can write S at (5.5)
as

S(x1, x2, y) = (
G2(x2) − C2

)( 1

α
1{y ≤ x1}(x1 − y) − (x1 − x2)

)

+ (
1{y ≤ x1} − α

)(
G1(x1) + C2

α
x1

)

− 1{y ≤ x1}
(
G1(y) + C2

α
y

)

− (
G2(x2) − C2x2

) + a(y).

The last expression is again of the form at (5.5) with increasing functions G̃1(x1) =
G1(x1) + (C2/α)x1 and G̃2(x2) = G2(x2) − C2 ≥ 0. �
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SUPPLEMENTARY MATERIAL

Supplement to “Higher order elicitability and Osband’s principle” (DOI:
10.1214/16-AOS1439SUPP; .pdf). The proofs of Proposition 3.4 and Corollary 5.4
are deferred to this supplement.
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