Probst, Dieter

Up a level
Export as [feed] RSS
Group by: Date | Item Type | Refereed | No Grouping
Jump to: 2016 | 2015 | 2011 | 2009 | 2008 | 2006

2016

Buchholtz, Ulrik Torben; Jäger, Gerhard; Strahm, Thomas Adrian (2016). Theories of proof-theoretic strength ψ(ΓΩ+1). In: Probst, Dieter; Schuster, Peter (eds.) Concepts of Proof in Mathematics, Philosophy, and ComputerScience. Ontos Mathematical Logic: Vol. 6 (pp. 115-140). De Gruyter 10.1515/9781501502620-007

Probst, Dieter; Schuster, Peter (eds.) (2016). Concepts of Proof in Mathematics, Philosophy, and Computer Science. Ontos Mathematical Logic: Vol. 6. De Gruyter 10.1515/9781501502620

2015

Jäger, Gerhard; Probst, Dieter (2015). A Proof-Theoretic Analysis of Theories for Stratified Inductive Definitions. In: Kahle, Reinhard; Kahle, Reinhard; Rathjen, Michael (eds.) Gentzen's Centenary - The Quest for Consistency (pp. 425-454). Springer 10.1007/978-3-319-10103-3_15

2011

Probst, Dieter (2011). The provably terminating operations of the subsystem (PETJ) of explicit mathematics. Annals of pure and applied logic, 162(11), pp. 934-947. Amsterdam: Elsevier 10.1016/j.apal.2011.04.004

Probst, Dieter; Strahm, Thomas (2011). Admissible closures of polynomial time computable arithmetic. Archive for mathematical logic, 50(5-6), pp. 643-660. Berlin: Springer International 10.1007/s00153-011-0238-7

2009

Mericske-Stern, Regina; Probst, Dieter; Fahrländer, Fritz-Marc; Schellenberg, Marc (2009). Within-subject comparison of two rigid bar designs connecting two interforaminal implants: patients' satisfaction and prosthetic results. Clinical implant dentistry and related research, 11(3), pp. 228-237. Oxford: Blackwell 10.1111/j.1708-8208.2008.00109.x

2008

Brünnler, Kai; Probst, Dieter; Studer, Thomas (2008). On contraction and the modal fragment. Mathematical logic quarterly, 54(4), pp. 345-349. Weinheim: Wiley-VCH 10.1002/malq.200710043

2006

Probst, Dieter (2006). The proof-theoretic analysis of transfinitely iterated quasi least fixed points. Journal of symbolic logic, 71(3), pp. 721-746. Champaign, Ill.: Association for Symbolic Logic 10.2178/jsl/1154698573

Provide Feedback