Siegl, Petr

Up a level
Export as [feed] RSS
Group by: Date | Item Type | Refereed | No Grouping
Jump to: 2016 | 2015 | 2014

2016

Ibrogimov, Orif; Siegl, Petr; Tretter, Christiane (2016). Analysis of the essential spectrum of singular matrix differential operators. Journal of differential equations, 260(4), pp. 3881-3926. Elsevier 10.1016/j.jde.2015.10.050

Mityagin, B.; Siegl, Petr (2016). Root system of singular perturbations of the harmonic oscillator type operators. Letters in Mathematical Physics, 106(2), pp. 147-167. Springer 10.1007/s11005-015-0805-7

2015

Krejčiřík, D.; Siegl, Petr; Tater, M.; Viola, J. (2015). Pseudospectra in non-Hermitian quantum mechanics. Journal of mathematical physics, 56(10), p. 103513. American Institute of Physics 10.1063/1.4934378

Hussein, A.; Krejčiřík, D.; Siegl, Petr (2015). Non-self-adjoint graphs. Transactions of the American Mathematical Society, 367(4), pp. 2921-2957. American Mathematical Society 10.1090/S0002-9947-2014-06432-5

Bureš, M.; Siegl, Petr (2015). Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law. Annals of physics, 354, pp. 316-327. Elsevier 10.1016/j.aop.2014.12.017

2014

Freitas, Pedro; Siegl, Petr (2014). Spectra of graphene nanoribbons with armchair and zigzag boundary conditions. Reviews in mathematical physics, 26(10), 1450018, 32. World Scientific 10.1142/S0129055X14500184

Bögli, Sabine; Siegl, Petr (2014). Remarks on the convergence of pseudospectra. Integral equations and operator theory, 80(3), pp. 303-321. Birkhäuser 10.1007/s00020-014-2178-1

Siegl, Petr; Železný, Jakub; Krejčiřík, David (2014). On the similarity of Sturm-Liouville operators with non-Hermitian boundary conditions to self-adjoint and normal operators. Complex analysis and operator theory, 8(1), pp. 255-281. Birkhäuser 10.1007/s11785-013-0301-y

Provide Feedback