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Abstract The shape of the bedrock underneath alpine glaciers bears vital information on the erosional
mechanism related to the flow of ice. So far, several geophysical exploration methods have been proposed
to map the bedrock topography though with limited accuracy. Here we illustrate the first results from a
technology, called cosmic ray muon radiography, newly applied in glacial geology to investigate the bedrock
geometry beneath the Aletsch Glacier situated in the Central Swiss Alps. For this purpose we installed new
cosmic muon detectors made of emulsion films at three sites along the Jungfrau railway tunnel and
measured the shape of the bedrock under the uppermost part of Aletsch Glacier (Jungfraufirn). Our results
constrain the continuation of the bedrock‐ice interface up to a depth of 50 m below the surface, where the
bedrock underneath the glacier strikes NE‐SW and dips at 45° ± 5°. This documents the first successful
application of this technology to a glaciated environment.

1. Introduction

In mountainous landscapes such as the Central Alps of Europe the bedrock topography is one of the most
prominent surfaces as it separates the geological substratum—the bedrock—from the overlying unconsoli-
dated units, which are commonly assigned to the Quaternary [Preusser et al., 2010]. In low‐elevated regions
this surface has been sculpted by glaciers during past glaciations [e.g., Horberg and Anderson, 1956]. In the
highly elevated regions of the European Alps, however, glacial processes are still actively modulating the
bedrock topography mainly above the Equilibrium Line Altitude. Accordingly, the geometry of the bedrock
topography sets tight constraints on the erosional mechanisms at work underneath a glacier [e.g., Cook
and Swift, 2012]. This is the major motivation why several efforts have been undertaken toward exploring
the bedrock topography surrounding formerly and still actively glaciated areas using drilling [Dürst Stucki
and Schlunegger, 2013] and several geophysical techniques, including seismic surveys and multibeam bathy-
metry [Duchesne et al., 2010; Dürst Stucki et al., 2012], gravity measurements [Adams and Hinze, 1990; Barnaba
et al., 2010], and radio‐echo soundings [Fisher et al., 1989; Shean and Marchant, 2010]. Despite the progress
achieved through the application of these geophysical surveys, the accuracy of bedrock maps varies greatly
because of the assumption on which the reconstruction relies. For instance, bedrock surfaces with steep
slopes and/or an overlying medium with a high fluid pressure ratio lower the resolution of seismic and radar
surveys and set limits to the penetration depth of the related waves [Murray et al., 2007; Schrott and Sass,
2008]. In addition, most of the previous investigations have been conducted either on landscapes where
glaciers have disappeared after the termination of the last glacial epoch circa 20,000 years ago or on active
glaciers where the surrounding landscape is flat.

In this paper we introduce a technology referred to as emulsion film muon radiography to investigate the
bedrock geometry beneath active glaciers in a steep alpine environment. This detector technique relies on
the high‐penetration power of muon components in natural cosmic rays, where the attenuation rate of
the intensity of muons mainly depends on the density of the crossed material. Accordingly, this method
provides a suitable alternative to other approaches because of the large‐density contrasts between the
bedrock and the overlying glacier. In addition, the passive nature of the detecting device, not requiring
electric power, computing support or radio data transmission, is an added value to the currently available
geophysical tools. We demonstrated the performance of muon radiography through an experiment in the
Jungfrau region, Switzerland. We benefit from the railway tunnel of the Jungfraubahn situated in the
Jungfrau region. This tunnel crosses the bedrock at typically 50 m depth from the uppermost part of
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Aletsch Glacier (Jungfraufirn). We installed emulsion films at three sites along this tunnel and mapped the
shape of the bedrock under the glacier. We then used the patterns of detected muons to map the orientation
of the bedrock underneath this glacier, thereby documenting the first successful application of muon radio-
graphy in a steep and glaciated environment.

2. Muon Radiography

Muon radiography is a technology that has been developed to investigate the internal density structures of
geological targets. It relies on the high‐penetration power of the muon particles, a component of the natural
cosmic rays [Patrignani et al., 2016]. The absorption rate of the muon flux can be used to derive the density
length, i.e., the density integrated along the muon trajectories. This technique has been applied for noninva-
sive inspection purposes where the survey targets were volcanoes [Tanaka et al., 2007; Lesparre et al., 2010;
Carbone et al., 2014; Ambrosino et al., 2015; Jourde et al., 2016], nuclear reactors [Fujii et al., 2013], seismic faults
[Tanaka et al., 2011], and caves [Oláh et al., 2013]. One requirement is that muon detectors must be placed at
altitudes lower than survey targets because of downward going nature of cosmic ray muons. At sites where
the interface between a glacier and the bedrock is the survey target, the muon radiography technology bears
the potential to return the related densities as a result. Accordingly, because of the anticipated large‐density
contrasts in such an environment, this technology provides information pertinent for mapping the shape of
the bedrock at high resolution.

There are several types of particle detectors suitable for muon radiography, such as scintillation trackers [e.g.,
Lesparre et al., 2010; Anastasio et al., 2013], gaseous chambers [e.g., Cârloganu et al., 2013; Oláh et al., 2013],
and emulsion films [e.g., Tanaka et al., 2007; Nishiyama et al., 2017]. We adopt emulsion films for the observa-
tions of glaciers. Emulsion films are special photographic films, which record trajectories of charged particles
[Ereditato, 2013; De Lellis et al., 2011]. Themicroscope analysis of these trajectories then allows to measure the
position and direction of incident muons with the unbeatable resolutions. The spatial and angular resolutions
are 1 μm and a few milliradians, respectively. Contrary to other types of particle detectors, emulsion films are
suitable for exposure in remote and harsh environments because they do not require power supply or any
electronic device for operation.

3. Setting

The Aletsch Glacier, situated in the Central Alps of Switzerland, is the largest glacier in the Central Swiss Alps.
It has a length of 23 km, a volume of 15 km3, and covers an area of 81 km2 (Figure 1). The glacier is fed by
three tributary glaciers (Ewigschneefeld, Jungfraufirn, and Grosser Aletschfirn). The target region of our
observation is the uppermost part of Jungfraufirn, which sits on the southeastern flank of Mount Jungfrau
(4158 m above sea level (asl)) and Mount Moench (4107 m asl). It has a length of 4 km and a width of
about 2 km.

The Aletsch Glacier has shortened by about 5 km during the past 100 years in response to global warming
[Hock et al., 1999; Huss et al., 2008]. In the target region a rapid drop of the ice surface in the order of several
meters per year has been reported by the local authorities, which is ultimately linked with the shrinkage of
the Aletsch Glacier. As the Jungfraujoch, which represents the pass between the Mönch and the Jungfrau,
hosts infrastructure buildings (train and research stations, communication, and tourist facilities) that were
constructed on top of the bedrock above the Jungfraufirn (Figure 1a), a shrinking of the ice volume and
the related drop of the ice surface have large consequences on themechanical stability of the bedrock under-
lying these constructions. Accordingly, attention has been paid by local authorities for predicting potential
collapse failures of the bedrock, where the vanishing ice decreases the stability of the bedrock. A precise
understanding of the shape of the bedrock beneath the glacier would thus help to predict future potential
risks for the occurrence of those events.

4. Experimental Design and Methods

The muon detectors were installed at three sites along the Jungfrau railway tunnel facing the Aletsch Glacier.
Installation took place on 16 February 2016 and removal on 4 April 2016, thereby collecting data during
47 days. The sites (D1‐D3) are located ~100 m apart from each other (Figure 1b) at altitudes of 3381 m asl
for D1, 3401 m asl for D2, and 3414 m asl for D3. The individual detector (Figure 2a) consists of a stack of
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eight layers of emulsion films with 1 mm thick lead plates between each one (Figure 2b). The emulsion film is
made of a 200 μm thick plastic base and a 50 μm thick sensitive gel poured on both sides. The gel production
and assembling have been done at Nagoya University, Japan [Nishio et al., 2015], and at the University of
Bern, respectively. This design yields to a total effective detection area of 250 cm2 for each site.

After completion of the measurements, the films were chemically developed and automatically scanned at
the University of Bern bymeans of optical microscopes. Themicroscope scanning facility consists of commer-
cially available optics and stages [Arrabito et al., 2006] that are complemented with algorithms for image
processing and track recognition that we developed for these purposes [Ariga and Ariga, 2014]. Tracks that

Figure 2. (a) The detector frame is fixed on the wall of the Jungfrau railway tunnel, inclined 45° with respect to the zenith.
(b) The detector consists of eight emulsion films interleaved with 1 mm thick lead plates. It is covered by ~15 mm thick
stainless plates to shield environmental radioactive particles.

Figure 1. (a) The uppermost part of Aletsch Glacier (Jungfraufirn). The blue arrows indicate the direction of glacier flow.
(b) View of the survey region. The detectors were installed along the Jungfrau railway (stars D1, D2, and D3). The solid black
lines from the detector indicate the view range of each detector. Basemap: SWISSIMAGE (digital color orthophotomosaic,
0.25 m ground pixel size) draped with a semitransparent hillshade based on SwissAlti3D reproduced by permission of
swisstopo (BA17061).
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are straightly aligned in consecutive films are identified as muon trajectories, here defined by at least four
tracks within the total of eight films. This selection assures a detection efficiency >97% and a low contamina-
tion of low‐energy background particles (< ~1 GeV/c; see Nishiyama et al. [2016] for details). We scanned 13%
of the total detection area (32 cm2 × eight consecutive layers for each detector site). The number of detected
muons were then counted for each bin in a polar coordinate histogram (Figure 3a) and converted into the
particle flux (cm−2 s−1 sr−1, Figure 3b) by normalizing with respect to the scanned area (32 cm2), the exposure
time (4.12 × 106 s), and the solid angle.

The comparison of the observed muon flux Fobs and the simulated one for various densities Fsim(ρ) returns a
density value that gives the best agreement. The simulated flux is calculated by using the muon energy
spectrum and the digital elevation models (supporting information S1). The agreement between the
observed and simulated flux is assessed with a chi‐square test:

χ2 ρð Þ≡
Xbins

i

Fobsi −Fsimi ρð Þ�� ��2

σ2i
;

where the error σi is a combination of the statistical fluctuations and the systematic errors with flux simulation
(15%; see supporting information S1).

Figure 3. (a) Angular distribution of muons detected in 47 days at D1 (left), D2 (middle), and D3 (right). Each dot
corresponds to a single muon event. (b) Muon flux converted for each polar bin by normalizing the number of muon
events with respect to the detector size, solid angle, and exposure time. The regions enclosed by the black solid lines are
not covered with ice and used for estimation of bedrock density. (c) Obstacle thicknesses (rock + ice), traversed by muons
before reaching the detectors. The muon intensity is clearly anticorrelated with the thickness. The white contour curves in
the middle plot indicate the zenith angle of incoming muons.
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Finally, we mapped the shape of the bedrock using all not empty bins of flux data. We determined the
fraction of rock x from the average density values <ρ> estimated for each bin (Figure 4a). Considering the
bulk density of bedrock component ρrock = 2.68 g/cm3 (see next section) and that of ice component
ρice = 0.85 g/cm3 [Huss, 2013], x is determined via a relationship:

<ρ> ¼ ρrock∙x þ ρice∙ 1−xð Þ:

Once x is obtained for each bin, the boundary position can be plotted at a distance Lx from the detector posi-
tion (L is the total thickness of overlying material including bedrock and ice). We only considered those
muons within a zenith angle between 0° and 70° because the systematic uncertainty affecting the flux simu-
lation is larger than the statistical fluctuation for nearly horizontal muons (see supporting information S1).
The bedrock shape estimated from muon flux analysis was displayed using the Environmental Systems
Research Institute ArcScene software licensed to the Institute of Geological Sciences of University of Bern.

5. Results and Discussion

Figure 3a shows the angular distribution of muon events reconstructed in a 32 cm2 area of the three detec-
tors. Each dot in the plot corresponds to a detected muon. During 47 days of exposure we observed a total of
4655 (D1), 9348 (D2), and 10606 muons (D3) within the viewing range. The intensity of muon events is clearly
anticorrelated with the thickness of the obstacles (rock + ice) along the muon trajectories (Figure 3c). For
instance, the shadows of muons where the dots are sparsely distributed coincide with the regions where
the bedrock thicknesses are greater than 1 km. This indicates that most of the muons in these directions were
absorbed in the thick bedrock edifices of the Jungfrau and the Mönch Mountains.

Figure 4b illustrates the resultant χ2(ρ) function for 74 bins covering the rock part (5 bins from D1, 31 from D2,
and 38 from D3, indicated by the black solid lines in Figure 3b). The minimum χ2 value of 41.68 yields the best
density value of 2.68 ± 0.04 (g/cm3, 1σ). This estimation is in good agreement with the bulk density indepen-
dently measured for rock samples taken near the detectors along the Jungfrau railway tunnel and on the sur-
face (2.65–2.74 g/cm3, Figure 4b; see also supporting information S2). We thus applied a uniform density
ρrock = 2.68 g/cm3 for the calculation of the bedrock shape. Figure 5a shows the position of the bedrock
reconstructed from each bin of muon flux data. For visualization, we rasterized these point data using
2 m × 2 m grids (Figure 5b). The reconstructed bedrock can be approximated as a plane with a strike angle
of 225°N and a dip angle of 45° up to 50 m depth below the glacier’s surface. The cross‐sectional view from
the middle detector (D2) is represented in Figure 5c. The bedrock shapes reconstructed for two extreme ice
densities (0.50 and 0.90 g/cm3) are also displayed. Taking into account the uncertainty on the bulk density of
ice, the dip angle has a systematic error of ±5°. This uncertainty is mainly related to (i) the selection of the
muon energy spectrum model, (ii) unknown density variations of ice, and (iii) seasonal variations of the ice
surface. As a first major source of errors, the calculation of muon flux has a systematic uncertainty of 15%.
This results in a density estimation error of ~5%. The second source of errors, related to the poorly

Figure 4. (a) Schematic illustration of (i) bedrock density analysis and (ii) bedrock shape analysis. (b) The χ2 statistics test is
performed to determine the rock density. A total of 74 bins covering the hillslope are used for the test, which are indicated
by the black solid lines in Figure 3b. The minimum value of the chi‐square is 41.68 (open red circles), giving the best bulk
density of 2.68 ± 0.04 (g/cm3, 1σ, red boxes). It agrees with the bulk density measured for rock samples taken near the
detectors along the Jungfrau railway tunnel (blue boxes).

Geophysical Research Letters 10.1002/2017GL073599

NISHIYAMA ET AL. MUON RADIOGRAPHY FOR GLACIAL GEOLOGY 6248



constrained depth dependence of ice density, is addressed here through the use of two mentioned extreme
ice density values, thereby considering these as systematic uncertainties and thus deviations from amean ice
density value of 0.85 g/cm3 that we applied as default for the calculation of the bedrock‐ice interface
illustrated in Figure 5c. The implementation of a more realistic depth dependency of ice densities would
significantly reduce the uncertainties of the inferred bedrock orientation. The third factor, i.e., the seasonal
variation of the ice surface represented here through a digital elevation model (DEM), is not a problem for
the present work because the DEM used in the analysis was recently taken and the annual snow
accumulation at the research site is merely a few meters.

Most importantly, our survey shows that the dip and strike angles of the reconstructed bedrock surface agree
with those of the hillslope exposed above the glacier. In addition, the orientation of the bedrock is parallel to
the glacier’s flow direction estimated from the topography of the glacier surface (Figure 1a). These morpho-
metric data indicate that the ice, at least within 50 m depth below the surface, has passively slid on the pre-
existing hillslope. This suggests that the ice has not exerted a strong erosional power along this reach.
However, because of the steep dip of the bedrock‐ice interface, a further lowering of the ice surface in
response to ongoing warming will strongly increase the risk for bedrock failure in the area surrounding the
research station (Figure 1a).

6. Conclusions

We demonstrated a successful application of muon radiography performed with emulsion film detectors. The
results suggest that the uppermost part of Aletsch Glacier (Jungfraufirn) is underlain by a bedrock with a
steep flank that dips at 45° ± 5° and strikes at 225°N. These values have been measured up to a depth of
50 m below the ice surface. The parallel orientation of the bedrock with respect to the glaciers’ flow direction
implies that the ice has passively on the bedrock without sculpting it. Muon radiography can be a comple-
mentary method for determination of the bedrock topography in a steep glaciated environment if under-
neath tunnels or suitable detector sites are available.

Figure 5. (a) The three‐dimensional reconstructed bedrock points under the surface, determined from muon flux attenua-
tion analysis. (b) The point data are rasterized with 2 m × 2m grids into the bedrock surface. The locations of rock sampling
are also indicated with blue points along the railway tunnel. Basemap: SWISSIMAGE (digital color orthophotomosaic,
0.25 m ground pixel size) reproduced by permission of swisstopo (BA17061). (c) The cross‐sectional view from the middle
detector site (D2) along the steepest direction of the bedrock. The blue and grey bands are the 68% confidence level due to
statistical fluctuations and the systematic uncertainty due ice density ambiguity.
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