Rapid Communication

First discovery of Holocene Alaskan and Icelandic tephra in Polish peatlands

E. J. WATSON,1* P. KOLACZEK,2 M. SLOWINSKI,3 G. T. SWINDLES,1 K. MARCISZ,2,4 M. GALKA2 and M. LAMENTOWICZ2,4
1School of Geography, University of Leeds, Leeds LS2 9JT, UK
2Department of Biogeography and Paleoenecology, Adam Mickiewicz University in Poznan, Krygowskiego 10, Poznań, 61-680, Poland
3Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organisation, Polish Academy of Sciences, Twarda 51/55, Warszawa, 00-818, Poland
4Laboratory of Wetland Ecology and Monitoring, Adam Mickiewicz University in Poznań, Krygowskiego 10, Poznań, 61-680, Poland
5Institute of Plant Sciences and Eoscher Centre for Climate Change Research, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland

Received 8 July 2016; Revised 4 February 2017; Accepted 20 February 2017

ABSTRACT: Despite the discovery of cryptotephra layers in over 100 peatlands across northern Europe, Holocene cryptotephra layers have not previously been reported from Polish peatlands. Here we present the first Holocene tephra findings from two peatlands in northern Poland. At Bagno Kusowo peatland we identify the most easterly occurrence of the AD 860 B tephra, recently correlated to the White River Ash (WRAe) derived from Mount Churchill, Alaska. A shorter core from Linje peatland contains tephra from the Askja 1875 eruption, extending the spatial distribution and regional importance of this Icelandic tephra in Eastern Europe. Our research indicates the potential of cryptotephra layers to date and correlate the growing number of palaeoenvironmental studies being conducted on Polish peatlands and contributes towards the development of a regional Holocene teprostratigraphy for Poland. Copyright © 2017 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd.

KEYWORDS: Askja; cryptotephra; Eastern Europe; Mount Churchill.

Introduction

Microscopic layers of volcanic ash, ‘cryptotephra’ have been identified in over 100 peatlands in Northern Europe (e.g. van den Bogard and Schmincke, 2002; Dugmore et al., 1995; see summary in Lawson et al., 2012). The individual shards which constitute cryptotephra layers can be extracted and geochemically analysed. When combined with stratigraphic information, the analysis of glass shard geochemistry may allow for the assignment of a cryptotephra layer to a given volcano or eruption. Well-dated cryptotephra layers provide valuable isochrons for the dating and correlation of palaeoenvironmental research (e.g. Lowe, 2011).

Intact peatlands provide ideal archives for the examination of environmental change and human influence over the Holocene. Polish peatlands are increasingly being exploited for their palaeoenvironmental records, which span much of the Holocene and have the potential to provide high-resolution records of both climatic change and human influence (Lamentowicz et al., 2015a; Marcisz et al., 2015; Kajukalo et al., 2016; Galka et al., 2017). Furthermore, Polish peatlands span important environmental gradients providing opportunities to bridge the gap between records in Western Europe (influenced strongly by oceanic climate) and those in Boreal Russia (Lamentowicz et al., 2015b).

Despite the discovery of cryptotephra layers in multiple sites across northern Europe (Lawson et al., 2012), and a report of the Lateglacial Laacher See tephra (of German origin) in lake sediments underlying peat in north-west Poland (Juviné et al., 1995), no tephra layers have previously been reported from Polish peatlands. The discoveries of multiple tephra layers of Icelandic origin (Hässeldalen, Askja-S, Askja 1875 and two unknown potential Icelandic tephra) in Lake Czechowskie (northern Poland) (Ott et al., 2016; Wulf et al., 2016), and the Askja 1875 tephra in Lake Zabirsiekie, north-east Poland (Tylmann et al., 2016), indicate that tephra fell over Poland during the Lateglacial and Holocene and may also be present in peatlands. The recent identification of tephra shards with a geochemistry compatible with the Askja volcanic system in sand deposits dated to 2.3 ± 0.1 ka BP (Housley et al., 2014) provides further evidence for the long-distance transport of Icelandic tephras towards Poland. Cryptotephra layers could provide valuable chronological markers allowing for the correlation of palaeoenvironmental reconstructions across multiple sites both within and beyond Poland. Tephra layers which correspond to environmental or human events may be particularly valuable (Stivrins et al., 2016). The aim of this study is to evaluate whether historical cryptotephra layers are preserved in peatlands in north-central Poland and therewith to add to the teprostratigraphy for this region.

Study sites and methods

Linje mire

Linje mire is a poor fen located near Bydgoszcz city, in northern Poland (53°11′N, 18°18′E) (Fig. 1). A 2.5-m core was extracted...
from the central part of the mire (Marcisz et al., 2015). The peatland is located at 91 m a.s.l. and lies along the border of oceanic and continental air masses, with mean annual precipitation of 500–550 mm (Halas et al., 2008). The vegetation on Linje mire indicates a poor fen, but areas of ombrotrophic vegetation are present in the centre of the site (Kucharski and Kloss, 2005).

Bagno Kusowo

Bagno Kusowo (Kusowo) is a Baltic bog in northern Poland (53˚48′N, 16˚35′E). A core of 8 m, thought to coincide with the deepest peat at the site, was extracted (Lamentowicz et al., 2015a). The altitude of the site averages between 150 and 160 m a.s.l. (Galka et al., 2017). Kusowo is influenced much more by the oceanic climate than Linje. Total annual precipitation is in the region of 650 mm.

Methods

A peat monolith was sampled from Linje mire using a Wardenaar sampler (Wardenaar, 1987), while a long core from Kusowo was extracted with a 1-m-long, 8-cm-diameter INSTORF corer. Continuous samples (increments of 1 cm at Linje and 10 cm at Kusowo) were ashed at 550 °C, washed with 10% HCl, mounted onto slides and examined at a magnification of 200× (Pilcher and Hall, 1992; Swindles et al., 2010). Where tephra shards were recognized, new samples were extracted for geochemical analysis. Extraction for geochemical analysis followed the acid digestion method (Dugmore et al., 1992). Samples were treated with hot concentrated HNO3 and H2SO4 acids, diluted with water and sieved at 10 μm. The coarse residue was rinsed thoroughly with clean water. Recent work has shown that tephra shards extracted using the acid digestion method and then analysed using electron probe microanalysis (EPMA) are geochemically indistinguishable from shards extracted using density separation (Roland et al., 2015; Watson et al., 2016).

Samples were mounted onto glass slides using EpoThin resin (Dugmore et al., 1992) and polished to a 0.25-μm finish. EPMA was conducted on a Cameca SX100 at the University of Edinburgh. All analyses were conducted with a

Figure 1. The location of Linje and Bagno Kusowo peatlands within Northern Poland. Globe indicates the location of the source volcanoes for tephras identified in this study, Mount Churchill in Alaska, and the Askja volcano in Iceland. The locations of sites mentioned in the text are included as follows: Lake Czechowskie (LC) and Lake Zabińskie (LZ).
beam diameter of 5 μm, 15 kV and beam currents of 2 nA (Na, Mg, Al, Si, K, Ca, Fe) or 80 nA (P, Ti, Mn) (Hayward, 2012). Secondary glass standards, rhyolite (Lipari) and basalt (BCR-2G) were analysed before and after EPMA runs of unknown glass shard analyses. Raw EPMA data are supplied in the Supplementary Information, Table S1.

Two radiocarbon dates were obtained on above-ground vegetation macrofossils (Sphagnum leaves and stems) extracted from peat bounding the tephra layer identified at Bagno Kusowo. Samples were submitted to Poznań/C19 radio-carbon Laboratory, Poznań, Poland, for 14C dating. Samples were pre-treated using standard acid–alkali–acid treatment and rinsed thoroughly with de-ionized water between each acid/alkali stage. All dates were calibrated using OxCal v 4.2.4 (Bronk Ramsey, 2009) and the IntCal13 atmospheric curve (Reimer et al., 2013). An age model for the Linje core was developed based on 210Pb and 14C chronologies and is reported elsewhere (Marcisz et al., 2015).

Results and tephra assignments

Linje mire

The top 70 cm of peat at Linje mire contained only one tephra layer (Linje-1, 29 shards cm−3) at a depth of 59–60 cm; no tephra shards were identified elsewhere in the core. The largest shard identified in the Linje-1 tephra layer had a length of 190 mm, and median shard length was 75 mm. The major element geochemistry of glass shards from Linje-1 is rhyolitic, with a high MgO content typical of the Askja 1875 tephra (AD 1875) (e.g. Larsen et al., 1999) (Fig. 2). The assignment of Linje-1 to the eruption of Askja 1875 is further supported by both the 210Pb and the 14C age–depth models from the same core (Marcisz et al., 2015), which suggest that the age of the Linje-1 tephra is ca. AD 1830–1860 (Fig. 3).

Bagno Kusowo

Two tephra layers were identified in 8 m of peat at Bagno Kusowo. Glass shards were detected at a depth of 412–415 cm (Kusowo-1, peak concentration at 413–414 cm). The largest shard identified in the Kusowo-1 layer was 95 mm, and median shard length was 35 mm. The age of the tephra layer was calculated based on linear interpolation between two closely spaced radiocarbon dates to be ca. AD 690–850 (Table S2; Fig. 4). The analyses of major elements of glass shards from Kusowo-1 indicate geochemical similarity to glass shards from the AD 860 B tephra (AD 846–848) (Fig. 2). Given stratigraphic and geochemical constraints we correlate the Kusowo-1 to the AD 860 B tephra. One glass shard has a different major element geochemistry to most shards in Kusowo-1 and shows similarity to shards from the MOR-T4 tephra (ca. AD 1000).

A small concentration of shards (<5 shards cm−3) was identified at a depth of 670–680 cm in the Kusowo core. However, due to the small shard size and low concentrations of shards, tephra from this depth was not viable for geochemical analysis.

Discussion and conclusions

Tephrostratigraphy of historical times in northern central Poland

The eruption of the Icelandic volcano, Askja, began on 28 March 1875 and had an estimated volcanic explosivity index of 5 (Carey et al., 2010). Tephra was dispersed towards the east and has been identified widely in Scandinavia.
(Wastegård, 2005), at two sites in Germany (van den Bogaard and Schmincke, 2002; Wulf et al., 2016) and most recently in one peatland and two lakes in Latvia (Stivrins et al., 2016).

The identification of Askja 1875 in Linje mire represents the first identification of this tephra in a Polish peatland, although it was recently reported in the laminated sediments of two lakes: Lake Czechowskie, some 80 km due north of Linje (Wulf et al., 2016) and Lake Zabiškis, north-east Poland (Tylmann et al., 2016). We did not detect any trace of shards which might be derived from the Askja 1875 eruption in the top of the core from Kusowo peatland some 100 km due west of Lake Czechowskie.

The AD 860 B (AD 846–847: Coulter et al., 2012) tephra has been identified at 20 sites in Ireland, Great Britain, Scandinavia and Germany (Pilcher et al., 1995; van den Bogaard and Schmincke, 2002; Langdon and Barber, 2004). The tephra has recently been correlated to the White River Ash east (WRAe) tephra, derived from an eruption of the Churchill volcano in Alaska (Jensen et al., 2014). The identification of the AD 860 B tephra at Kusowo represents the most easterly occurrence of this tephra. Tephra shards from the AD 860 B layer were transported some 7000 km across the Atlantic, before fallout onto Kusowo mire. One shard from the Kusowksie-1 tephra layer showed geochemical similarity to the MOR-T4 tephra (ca. 1000 AD) (Chambers et al., 2004). The MOR-T4 tephra has not previously been recorded outside of Great Britain and Ireland. Given that only one shard was identified, we are unable to conclusively say whether the MOR-T4 tephra was deposited over Poland. However, given that this tephra is geochemically quite distinct, and fell out around the same time as AD 860 B, there is a possibility that the fallout

![Figure 3](image-url) The Askja tephra layer versus 210Pb chronology and the age–depth model based on 14C dates (Marcisz et al., 2015). The model was calculated using the OxCal 4.2.4 program (Bronk Ramsey, 2008, 2009).
range for the MOR-T4 tephra is much larger than previously thought.

Based on the depth at which the AD 860 B tephra was identified at Kusowo, the estimated age of the sparse concentration of shards between 670 and 680 cm is ca. AD 250. Therefore, it cannot be discounted that these shards correspond to one of the ‘Unknown Icelandic tephras’, two cryptotephra layers (JC09_B2_170-173_T and JC09_BC_155-158_T) of identical composition with an age of 10 BC ± 20 (varve years) and AD 60 ± 20 (varve years), which were reported in Lake Czechowskie by Wulf et al. (2016). However, given the extremely low concentrations of shards identified in Lake Czechowskie (2 and 6 shards cm−1) fallout from these events might have been concentrated into detectable levels in some areas of the lake basin, but might be below detection levels in Polish peatlands (Watson et al., 2016).

Tephra shard size

The discovery of shards of 190 and 95 μm in length at fallout sites ~2500 and 7000 km from their volcanic sources indicates the potential for the long-distance transport of relatively large volcanic ash particles. The median shard size for the Askja 1875 tephra at Linje (75 μm) suggests that this tephra was not at the end of its range, and shards of an analysable size may well have been transported further east and south-east to sites in Belarus or the Ukraine.

Conclusions

Supplementary information

Table S1. Raw EPMA data for Kusowo-1 and Linje-1.

Table S2. Radiocarbon dates obtained on samples from Kusowo Bagno peatland.

Abbreviations. EPMA, electron probe micro analysis.

References

Watson EJ, Swindles GT, Lawson IT et al. 2016. Do peatlands or lakes provide the most comprehensive distal tephra records? Quaternary Science Reviews 139: 110–128.