Determination of multi-GNSS pseudo-absolute code biases and verification of receivers tracking technology

A. Villiger¹, S. Schaer¹², R. Dach¹, L. Prange¹, A. Jäggi¹

¹Astronomical Institute, University of Bern, Bern, Switzerland
²swisstopo, Wabern, Switzerland

(arturo.villiger@aiub.unibe.ch)

EGU, 27. April 2017
Outline

Pseudo-Absolute Observable-Specific Code Biases
 Introduction
 OSB Estimation
 Results

Receiver Tracking Technology Verification
 Multipliers
 Results

Conclusion
What are code biases?

Code biases are time delays within satellites and receiver caused by their hardware.

$$P_{1k}^i = \rho_k^i + I_k^i + T_k^i + c(\Delta \delta_k + B_{1k}) - c(\Delta \delta^i + B_{1k}^k)$$
What are code biases?

Code biases are time delays within satellites and receiver caused by their hardware.

\[P_{1k}^i = \rho_k^i + I_k^i + T_k^i + c(\Delta \delta_k + B_{1k}) - c(\Delta \delta^i + B_1^k) \]

Code biases are dependent on (but not only):
- Frequency
- Signal type
- Receiver tracking technologies
- GNSS system
What are code biases?

Code biases are time delays within satellites and receiver caused by their hardware.

$$P_{1k}^i = \rho_k^i + I_k^i + T_k^i + c(\Delta\delta_k + B_{1k}) - c(\Delta\delta^i + B_1^k)$$

Observable-specific Signal Biases (OSB)

Code biases are dependent on (but not only):

- Frequency
- Signal type
- Receiver tracking technologies
- GNSS system
How to estimate code biases?

Methods

- Direct estimation (using ionosphere model)
- Clock analysis (ionosphere-free linear combination)
- Ionosphere analysis (geometry-free linear combination)
How to estimate code biases?

Methods

- Direct estimation (using ionosphere model)
- Clock analysis (ionosphere-free linear combination)
- Ionosphere analysis (geometry-free linear combination)
How to estimate code biases?

Methods

- Direct estimation (using ionosphere model)
- Clock analysis (ionosphere-free linear combination)
- Ionosphere analysis (geometry-free linear combination)
How to estimate code biases?

Methods

- Direct estimation (using ionosphere model)
- Clock analysis (ionosphere-free linear combination)
- Ionosphere analysis (geometry-free linear combination)

→ pseudo-absolute Observable-specific Signal Biases (OSB)
GPS/GLO/GAL/BDS OSB’s

Input data

- Estimation based on over 250 IGS and MGEX stations
- RINEX3 favored over RINEX2
- Analyzed data period: November 2016
GPS/GLO/GAL/BDS OSB’s

Input data

- Estimation based on over 250 IGS and MGEX stations
- RINEX3 favored over RINEX2
- Analyzed data period: November 2016

Observables

<table>
<thead>
<tr>
<th>System</th>
<th>C1C</th>
<th>C1W</th>
<th>C2C</th>
<th>C2W</th>
<th>C2L</th>
<th>C2S</th>
<th>C5Q</th>
<th>C5X</th>
<th>C7Q</th>
<th>C8Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td></td>
</tr>
<tr>
<td>GLONASS</td>
<td>C1C</td>
<td>C1P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GALILEO</td>
<td>C1C</td>
<td>C1X</td>
<td></td>
<td>C5Q</td>
<td>C5X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEIDOU</td>
<td>C2I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C7I</td>
<td></td>
</tr>
</tbody>
</table>

Astronomical Institute, University of Bern
GPS Code Biases (OSB)

![Graph showing GPS Code Biases (OSB)](image-url)
GLONASS Code Biases (OSB)

![Graph showing GLONASS Code Biases](image)
GLONASS Code Biases (OSB)

GLONASS OSB: Sorted according to their frequency number
GLONASS OSB: Sorted according to their launch date
GALILEO Code Biases (OSB)

![Graph showing GALILEO Code Biases](image URL)
Comparison of differential code biases

- DLR bias solution (MGEX) for Jan-Mar 2016 [Montenbruck et. al, 2014]
- CODE solution for November 2016
- CODE DCB aligned to DLR solution
BeiDou Code Biases (OSB)

- Code Bias [ns]
 - C405
 - C407
 - C408
 - C409
 - C410
 - C412
 - C413
 - C415
 - C417
 - C2I
 - C6I
 - C7I

- Formal Error [ps]
 - C405
 - C407
 - C408
 - C409
 - C410
 - C412
 - C413
 - C415
 - C417
Code pseudo-range equations:

\[P_{1k}^i = \rho_k^i + I_k^i + T_k^i + c(\Delta \delta_k + B_{1k}) - c(\Delta \delta^i + B_{1k}^i) \]

\[P_{2k}^i = \rho_k^i + \frac{f_1^2}{f_2^2} I_k^i + T_k^i + c(\Delta \delta_k + B_{2k}) - c(\Delta \delta^i + B_{2k}^i) \]
Receiver Tracking Technology Verification

Code pseudo-range equations:

\[P_{1k}^i = \rho_k^i + I_k^i + T_k^i + c(\Delta \delta_k + B_{1k}) - c(\Delta \delta^i + B_{1k}^k) \]

\[P_{2k}^i = \rho_k^i + \frac{f_1^2}{f_2^2} I_k^i + T_k^i + c(\Delta \delta_k + B_{2k}) - c(\Delta \delta^i + B_{2k}^k) \]

Geometry free linear combination (L1-L2):
Receiver Tracking Technology Verification

Code pseudo-range equations:

\[
P_{1k}^i = \rho_k^i + I_k^i + T_k^i + c(\Delta \delta_k + B_{1k}) - c(\Delta \delta_i + B_{1k}^i)
\]

\[
P_{2k}^i = \rho_k^i + \frac{f_1^2}{f_2^2} I_k^i + T_k^i + c(\Delta \delta_k + B_{2k}) - c(\Delta \delta_i + B_{2k}^i)
\]

Geometry free linear combination (L1-L2): known unknown

\[
P_{LCk}^i = \left(1 - \frac{f_1^2}{f_2^2}\right) I_k^i + 1 \cdot B_{C1W_k} - 1 \cdot B_{C2W_k} - 1 \cdot B_{C1W} + 1 \cdot B_{C2W}
\]
Receiver Tracking Technology Verification

Code pseudo-range equations:

\[
P_{1k}^i = \rho_k^i + I_k^i + T_k^i + c(\Delta \delta_k + B_{1k}) - c(\Delta \delta^i + B_1^k)
\]

\[
P_{2k}^i = \rho_k^i + \frac{f_1^2}{f_2^2} I_k^i + T_k^i + c(\Delta \delta_k + B_{2k}) - c(\Delta \delta^i + B_2^k)
\]

Geometry free linear combination (L1-L2): known unknown

\[
P_{LCk}^i = \left(1 - \frac{f_1^2}{f_2^2}\right) I_k^i + 1 \cdot B_{C1Wk} - 1 \cdot B_{C2Wk} - 1 \cdot B_{C1W} + 1 \cdot B_{C2W}
\]
Code pseudo-range equations:

\[P_{1k}^i = \rho_k^i + I_k^i + T_k^i + c(\Delta \delta_k + B_{1k}) - c(\Delta \delta^i + B_{1k}^k) \]

\[P_{2k}^i = \rho_k^i + \frac{f_1^2}{f_2^2} I_k^i + T_k^i + c(\Delta \delta_k + B_{2k}) - c(\Delta \delta^i + B_{2k}^k) \]

Geometry free linear combination (L1-L2): known unknown

\[P_{LCk}^i = \left(1 - \frac{f_1^2}{f_2^2} \right) I_k^i + 1 \cdot B_{C1W_k} - 1 \cdot B_{C2W_k} - 1 \cdot B_{C1W} + 1 \cdot B_{C2W} \]

Multiplier (one multiplier per observation type and system → \(m_{C1W}^S \))
Code pseudo-range equations:

\[P_{1k}^i = \rho_k^i + I_k^i + T_k^i + c(\Delta \delta_k + B_{1k}) - c(\Delta \delta^i + B_{1}^k) \]

\[P_{2k}^i = \rho_k^i + \frac{f_1^2}{f_2^2} I_k^i + T_k^i + c(\Delta \delta_k + B_{2k}) - c(\Delta \delta^i + B_{2}^k) \]

Geometry free linear combination (L1-L2): known unknown

\[P_{LCk}^i = \left(1 - \frac{f_1^2}{f_2^2}\right) I_k^i + 1 \cdot B_{C1W_k} - 1 \cdot B_{C2W_k} - 1 \cdot B_{C1W}^i + 1 \cdot B_{C2W}^i \]

Multiplier (one multiplier per observation type and system → \(m_{C1W}^S \))

\[P_{LCk}^i = \cdots - m_{C1W}^S \cdot B_{C1W}^i - m_{C1C}^S \cdot B_{C1C}^i + m_{C2W}^S \cdot B_{C2W}^i + m_{C2C}^S \cdot B_{C2C}^i \]
GPS Multipliers

\[\kappa_1 \]

\[\kappa_2 \]
BDS Multipliers

![Graph showing BDS Multipliers](image)
Conclusion

Multi-GNSS Code Biases

- Combination on NEQ level, clock and ionosphere analyzes and long time combination
- One set of biases for all purposes
- Fully compatible with differential mode
- Very flexible
Conclusion

Multi-GNSS Code Biases

- Combination on NEQ level, clock and ionosphere analyzes and long time combination
- One set of biases for all purposes
- Fully compatible with differential mode
- Very flexible

Receiver Tracking Technology Verification

- Based on OSB multiplier estimation (multi-GNSS capable)
- Multiplier estimation operationally done by CODE
- Multiplier depend on the satellite patterns
- GALILEO C5X patterns need further investigations, results show that they are not pure C5Q signal (RINEX3: $C_{5X} = C_{5Q} + C_{5I}$)