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Abstract

Background: Assessment of the microcirculation is a promising target for the
hemodynamic management of critically ill patients. However, just as the sole reliance
on macrocirculatory parameters, single static parameters of the microcirculation may
not represent a sufficient guide. Our hypothesis was that by serial topical application
of acetylcholine (ACH) and nitroglycerin (NG), the sublingual microcirculation can be
challenged to determine its endothelial cell-dependent and smooth muscle-
dependent physiological reserve capacity.

Methods: In 41 healthy subjects, sublingual capillary microscopy was performed
before and after topical application of ACH and NG. Total vessel density (TVD) was
assessed in parallel using manual computer-assisted image analysis as well as a fully
automated analysis pathway utilizing a newly developed computer algorithm. Flow
velocity was assessed using space-time diagrams of the venules as well as the
algorithm-based calculation of an average perfused speed indicator (APSI).

Results: No change in all measured parameters was detected after sublingual topical
application of ACH. Sublingual topical application of NG however led to an increase
in TVD, space-time diagram-derived venular flow velocity and APSI. No difference
was detected in heart rate, blood pressure, and cardiac output as measured by
echocardiography, as well as in plasma nitric oxide metabolite content before and
after the topical application of ACH and NG.

Conclusions: In healthy subjects, the sublingual microcirculatory physiological
reserve can be assessed non-invasively by topical application of nitroglycerin without
affecting systemic circulation.

Keywords: Microcirculation, Hemodynamic monitoring, Video microscopy,
Endothelial cell function, Vasodilator, Incident dark field

Background
The primary goal of hemodynamic management in critically ill patients in shock is to

ensure adequate oxygen delivery to the tissue. Currently intervention protocols are

mostly targeting global oxygen delivery by optimizing intravascular blood volume, vas-

cular tone, cardiac output, and hematocrit [1–4], but there is an increasing awareness
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that global hemodynamic targets may not be adequate to achieve this goal at the

level of organs and cells [5]. The assessment of the microcirculation is being

proposed as a more promising target for hemodynamic management, potentially

enabling optimization of oxygen delivery on a local level, and possibly also of

oxygen extraction [6–9].

Multiple approaches for the assessment of the microcirculation have been suggested.

These range from clinical parameters such as skin mottling [10], toe temperature [11],

or near-infrared spectroscopy [12] to the direct measurement of the flow of blood cells

through the venules and capillaries through laser Doppler measurements [13] and more

recently, capillary microscopy [14–17]. Many of these methods have been applied to

the skin, sublingual mucosa, or the surface of internal organs. The demonstration of an

association between the alteration of these parameters to patient mortality in condi-

tions of critical illness such as septic shock underscores the importance of the state of

the microcirculation [10, 18]. Since the introduction of capillary microscopy, several pa-

rameters have been identified that could potentially serve as treatment targets for the

hemodynamic management, such as the density of the capillary network consisting of

vessels with a diameter below 25 μm (total vessel density, TVD) and flow velocity in

individual capillaries. However, all these parameters bear a common weakness as they

are static, rather than dynamic, and so far failed to contribute to an improved outcome

in clinical practice [8, 19]. We therefore propose to introduce the concept of physio-

logical microcirculatory reserve, corresponding to the amount of transfer capacity that

can be gained by maximization of microcirculatory flow (convection reserve) and,

through recruitment, TVD (diffusion reserve). Acetylcholine (ACH) through a G

protein-coupled mechanism leads to the expression of endothelial nitric oxide synthase

to produce nitric oxide [20–22]. In contrast, nitroglycerin (NG) enzymatically releases

nitric oxide [23, 24] and thus bypasses the involvement of the endothelial cells. Nitric

oxide in turn leads to relaxation of the smooth muscle cells in the walls of arterioles

and venules through activation of a cGMP-regulated pathway [25]. Thus, direct ligand-

receptor interaction would lend insight into endothelial cell and smooth muscle func-

tion with respect to the regulation of vascular tone. Some previous attempts have been

made to assess endothelial cell function using intra-arterial application of acetylcholine

(ACH) and nitroglycerin (NG) [26, 27], and also through reactive hyperemia [28]. How-

ever, both of these methods are hardly applicable in a clinical setting. The topical appli-

cation of ACH and NG, on the other hand, has been demonstrated on the skin of the

forehead to increase blood flow velocity as measured by laser Doppler [13]. In a small

number of patients in septic shock [29] and heart failure [30], the sublingual topical ap-

plication of ACH reversed some of the microcirculatory alterations caused by the clin-

ical condition as measured by sidestream dark field imaging. The aim of the present

study was to expand on this previous research and derive a non-invasive method to

assess physiological microcirculatory reserve. Our hypothesis was that (I) using serial

topical application of ACH and NG, the microcirculation can be challenged to deter-

mine its endothelium cell-dependent and smooth muscle-dependent physiological

reserve capacity by increasing TVD and microcirculatory flow velocity and that (II)

topical application of ACH and NG in doses needed for local microcirculatory stimula-

tion do not cause measurable effects in the systemic circulation. As a secondary aim,

we have tested whether (III) the intervention induced changes in TVD and
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microcirculatory flow velocity can be detected both by manual computer-assisted video

analysis representing the current gold standard, as well as a newly developed, fully auto-

mated algorithm for microcirculatory video analysis. In order to test our hypothesis, we

have examined 41 healthy subjects using incident dark field video microscopy and

assessed TVD and microcirculatory flow velocity before and after the topical application

of ACH and NG both by manual computer-assisted video analysis and by a newly devel-

oped, fully automated algorithm.

Methods
This study was approved by the Ethics Committee of the University of Bern (KEK 226/

12, ClinicalTrials.gov identifier NCT01953198) and conducted in accordance with the

declaration of Helsinki.

Study population and design

Fourty-one healthy Caucasian persons (age 45.8 ± 1.9 years, 22/41 (54%) male, weight

69.0 ± 1.8 kg, height 174 ± 1 cm, BMI 23.1 ± 0.8 kg/m2) were included in the study. All

were physically active but not involved in elite sport. All subjects underwent examin-

ation of the sublingual microcirculation by capillary microscopy before and after topical

application of ACH and NG. According to a predetermined study time plan, clinical

and echocardiography examinations as well as blood sampling were performed before

the examination of the microcirculation in one group of subjects (n = 30), and less than

1 h afterwards in the remaining subjects (n = 11).

Clinical and laboratory examination

Heart rate as well as systemic arterial blood pressure were obtained non-invasively

using the oscillometric technique. Venous blood was sampled from an antecubital vein

into heparinized containers and was immediately centrifuged and deep frozen on site.

Plasma nitric oxide metabolite content was then measured following ethanol-induced

protein precipitation and centrifugation using a vanadium(III) assay to reduce nitrate,

S-nitrosothiol and nitrite to nitric oxide that was then detected in a helium driven,

ozone/I3-based chemiluminescent nitric oxide analyzer (Sievers, Model 280 NO

analyzer, Boulder, CO, USA). The method is described in more detail elsewhere [31].

Arterial blood was sampled from a radial artery after successful completion of Allen’s

test. Blood gas analysis on arterial blood samples was performed on site without delay

(Epoc System, Alere, Waltham, MA, USA).

Echocardiography examination

Echocardiography examinations were performed using a portable device with tissue

Doppler imaging capability (Vivid i Ultrasound System, GE Healthcare, Chicago, IL,

USA). Stroke volume was measured by multiplying left ventricular outflow tract vel-

ocity time integral as recorded in the parasternal short axis by pulsed wave Doppler

and left ventricular outflow tract area derived from its diameter. Cardiac output was

obtained by multiplication of stroke volume and heart rate derived from the peak-to-

peak distance of the outflow tract Doppler signal. All measurements were performed in

triplicates and recorded digitally for offline assessment which was performed after

Hilty et al. Intensive Care Medicine Experimental  (2017) 5:26 Page 3 of 13



removal of subject identifiable by a single operator. The means of the three respective

measurements are reported.

Assessment of the microcirculation

High-resolution capillary microscopy was performed using the incident dark field (IDF)

technique [16] with a CytoCam handheld microscope (Braedius Medical, Huizen, The

Netherlands) connected to a portable computer via a custom built camera controller.

Videos were recorded to a solid state storage device at a rate of 25 frames per second

and a resolution of 2208 × 1648 pixels covering 1.78 mm2. Each video clip was recorded

at a length of 10 s. All examinations in this study were performed by a single operator

with the subject in supine position and at rest. Four video clips of a random sublingual

area were digitally recorded. Additionally, two video recordings were obtained after

topical application of ACH and a futher two after topical application of NG in order to

test endothelium-dependent and endothelium-independent physiological mirocircula-

tory reserve, respectively. All measured parameters are reported as the mean of ob-

tained video clips in order to compensate for changes in microscope field of view in

between measurements in compliance with the international consensus [32]; however,

two instead of three post-intervention video clips for the ACH and NG measurements

were acquired in order to limit total examination time. ACH was applied to the sublin-

gual area to be analyzed as one drop (0.05 ml) of 1% (6.8·10−2 M) ACH solution imme-

diately after reconstitution of ACH lyophilisate (Miochol E, Bausch & Lomb Swiss,

Zug, Switzerland) using distilled water, yielding a dose of 0.5 mg (3.4 μmol) per applica-

tion. Following the recording of the two ACH video sequences, NG was applied to the

sublingual area to be analyzed as one drop (0.05 ml) of 1% (4.4·10−2 M) NG solution

(Perlinganit isotonic infusion solution, UBC Pharma, Bulle, Switzerland) diluted 1:102

with 0.9% sodium chloride, yielding 0.005 mg (2.2·10−2 μmol) per dose.

Analysis of the microcirculatory microscopy video data

In each of the 10-s video clips recorded a stable sequence of ≥150 frames, correspond-

ing to 6 s, was identified. The resulting video clips were graded using Massey’s scoring

system [33], and analysis was performed in clips with a Massey score <10. The video

files were analyzed in parallel using manual computer-assisted image analysis represent-

ing the current gold standard [34], as well as a fully automated analysis pathway utiliz-

ing a newly developed computer algorithm.

For manual video analysis, the digital video files were converted to a format and reso-

lution compatible with previous microscopy hardware and presented in a blinded fash-

ion. TVD was measured using software-assisted manual vessel detection (AVA 3.2;

Automated Vascular Analysis, Academic Medical Center, University of Amsterdam)

[34] in line with the international consensus [32] by four experienced operators that

were randomly assigned to the video clips in order to prevent inter-operator bias dur-

ing analysis. In order to directly characterize the intervention’s effect given the direct

effect of NG on the smooth muscle cells of the venular wall, the effect of the interven-

tion on microcirculatory flow velocity was estimated by the slope of space-time dia-

grams [35] generated within the center section of venules in video clips containing

suitable venular anatomy. The generation of two space-time diagrams per video file

Hilty et al. Intensive Care Medicine Experimental  (2017) 5:26 Page 4 of 13



was targeted; their slope was determined as the mean of three to five manually identi-

fied contrast lines representing the movement of the erythrocytes. The mean of all

space-time diagrams within a video clip is reported as space-time diagram-based flow

velocity.

For automated video analysis, TVD was calculated from the video files using

CytoCam Tools 1.7.12 (Braedius Medical, Huizen, The Netherlands), employing an

automated vessel detection algorithm based on Frangi’s multiscale vessel enhancement

filtering algorithm described in detail elsewhere [36]. The algorithm was implemented

using the National Library of Medicine Insight Segmentation and Registration Toolkit

[37]. Vessels detected with a diameter over 25 μm were not classified as capillaries and

were discarded by the software according to current guidelines [32], since larger vessels

such as arterioles and venules are functionally separate from the capillary network and

may be more prone to pressure artifacts. TVD was calculated by adding the lengths of

all detected capillaries calibrated to a pixel size of 2.8 μm given by the microscopy

hardware configuration used, divided by the area of the field of view of 1.78 mm2.

Thereafter, a “speed image” was calculated along the centerline of all detected capillar-

ies using a Gaussian convolution kernel, yielding not an absolute measure of speed but

rather a relative speed based on intensity variation, called the speed indicator. A spatial

average of the speed indicator is reported as an index of the average microcirculatory

flow velocity of all perfused vessels (average perfused speed indicator (APSI)).

Statistical analysis

Comparisons of microcirculatory parameters before and after interventions were per-

formed using one-way analysis of variance (ANOVA). Pairwise analysis was performed

using pairwise two-sample tests with Benjamini and Hochberg’s correction algorithm

[38] applied. Comparisons of hemodynamic status and plasma nitric oxide metabolite

content before and after interventions were performed using the Mann-Whitney U test.

Categorical population attributes were compared using Fisher’s exact test. For correl-

ation of TVD between manual and algorithm-based video analysis, Pearson’s product-

moment correlation coefficient and Bland-Altman analysis [39, 40] were used. A two-

sided p < 0.05 was considered statistically significant. For all statistical analysis, a fully

scripted data management pathway was created within the R environment for statistical

computing, version 3.3.0 [41]. Graphical output was generated using the R library

ggplot2, version 2.1.0 [42]. Values are given as mean ± SEM.

Results
Hemodynamic status and systemic effects of the topical vasodilator application

Heart rate, systemic arterial blood pressure, and cardiac output as measured by echo-

cardiography were within the normal range and were similar whether measured before

or after the sublingual application of ACH and NG (Table 1). The groups of subjects

where measurements of hemodynamic status and blood sampling were performed be-

fore and after the sublingual application of ACH and NG also had similar respiratory

and metabolic status as measured by oxygen partial pressure, saturation, blood oxygen

content, and lactate levels. Systemic venous plasma nitric oxide metabolite content as a

direct measure of possible NG absorption via the sublingual capillaries was not
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increased in the blood samples taken after sublingual application of NG as compared

to before (Table 1, Fig. 1).

Effects of the topical vasodilator application on the sublingual microcirculation

Three hundred twenty-eight video clips of the sublingual microcirculation were graded,

325 of which presented with a Massey score <10 and were provisioned to further ana-

lysis. The analyzed video clips were of good quality with a mean Massey score of 1.3 ±

0.1 (illumination 0.2 ± 0.0, duration 0.2 ± 0.0, focus 0.4 ± 0.0, content 0.3 ± 0.0, stability

Table 1 Hemodynamic status and plasma nitric oxide metabolite content before and after the
sublingual topical application of acetylcholine and nitroglycerin

Before topical application of
acetylcholine and nitroglycerin
(n = 30)

After topical application of
acetylcholine and nitroglycerin
(n = 11)

p

Plasma nitric oxide metabolite content
[μmol/l]

15.82 ± 1.28 14.35 ± 1.59 0.66

Heart rate [1/min] 59 ± 1 61 ± 5 >0.99

Systolic arterial pressure [mmHg] 119 ± 2 126 ± 6 0.38

Mean arterial pressure [mmHg] 89 ± 2 93 ± 5 0.48

Diastolic arterial pressure [mmHg] 73 ± 2 77 ± 5 0.68

Cardiac output [l/min] 7.9 ± 0.3 7.8 ± 0.5 0.65

DO2 [ml/min] 1531 ± 74 1544 ± 111 0.61

SaO2 [kPa] 97.7 ± 0.1 97.1 ± 0.4 0.18

PaO2 [kPa] 12.9 ± 0.2 12.1 ± 0.5 0.21

CaO2 [ml O2/l] 193 ± 2 197 ± 3 0.24

PaCO2 [kPa] 5.0 ± 0.1 5.2 ± 0.1 0.24

Hb [g/l] 14.7 ± 0.2 15.1 ± 0.2 0.18

Hematocrit [%] 43.2 ± 0.5 44.4 ± 0.7 0.21

Lactate [mmol/l] 0.9 ± 0.1 0.8 ± 0.1 0.96

Values are given as mean ± SEM
Pa systemic arterial pressure, DO2 delivery of oxygen, CaO2 arterial oxygen content, Hb hemoglobin concentration
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Fig. 1 Plasma nitric oxide metabolite content (p = 0.66) (a) and mean arterial pressure (p = 0.48) (b) before
and after topical vasodilator application (intervention). Boxplots represent median, interquartile range, and
range. NO nitric oxide
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0.2 ± 0.0, pressure 0.2 ± 0.0). Venular anatomy favorable for the calculation of space-

time diagram-based venular flow velocity was present in 23, 27, and 14 out of 41

subjects during the native, ACH, and NG condition, respectively. Manual computer-

assisted video analysis revealed no influence of topical application of ACH to the

sublingual mucosa on TVD or the blood flow velocity within the venules as quantified

by space-time diagrams. Topical application of NG to the sublingual mucosa however

led to an increase in TVD as well as space-time diagram-based flow velocity (Table 2,

Fig. 2a). Algorithm-based video analysis revealed comparable results, also demonstrat-

ing no change in TVD and APSI after the ACH intervention, and an increase in TVD

as well as APSI after the NG intervention (Table 2, Fig. 2b). A moderate correlation

was found between TVD as measured manually and utilizing the algorithm over all an-

alyzed videos (r = 0.42, p < 0.001), Bland-Altman analysis revealed a bias of 2.1 mm/

mm2 and a precision of 4.8 mm/mm2. Representative still images of the microcircula-

tion before and after the application of an ACH and NG challenge are shown in Fig. 3.

Discussion
Our study demonstrates that (I) nitroglycerin but not acetylcholine applied topically to

the sublingual mucosa increases both total vessel density and local capillary flow vel-

ocity in healthy volunteers, (II) without causing measurable systemic effects. Thus, the

topical sublingual application of nitroglycrine in combination with microcirculatory

video microscopy provides a means to quantify the sublingual physiological microcircu-

latory reserve. In addition, we have employed manual computer-assisted video analysis

as well as introduced an objective and reproducible algorithm for the analysis of capil-

lary microscopy videos, (III) yielding moderately comparable results.

Assessment of the physiological microcirculatory reserve using a nitroglycerin challenge

Previous studies have demonstrated NG to increase sublingual microvascular flow

velocity in septic shock after systemic application [43–45]. The same has been demon-

strated for regional perfusion after local intravascular application of NG into the arter-

ial circulation of the arm [27] and leg [26], as well as microvascular flow velocity after

transdermal application to the forehead [13]. In concordance with this data, the present

study demonstrates that a relaxation of the microcirculatory smooth muscle cells can

Table 2 Properties of the microcirculation before and after the sublingual topical application of
acetylcholine and nitroglycerin, as measured using manual video analysis and algorithm-based
video analysis

Native Acetylcholine Nitroglycerin p

TVD (manual)
[mm/mm2]

14.81 ± 0.65 15.72 ± 0.49 20.32 ± 0.50a, b <0.0001

Space-time diagram-based venular flow velocity [μm/s] 242 ± 21 358 ± 62 496 ± 22a <0.01

TVD (algorithm-based)
[mm/mm2]

18.80 ± 0.61 18.69 ± 0.66 21.06 ± 0.57a, b <0.01

APSI [1] 1.33 ± 0.06 1.43 ± 0.08 1.64 ± 0.08a 0.02

Values are given as mean ± SEM. Pairwise analysis is represented by a, b where p < 0.05 versus nativea, and
acetylcholineb. Analysis was performed in n = 41 subjects for TVD (manual), TVD (algorithm-based) and APSI, and in
n = 23, n = 27, and n = 14 subjects in the native, acetylcholine, and nitroglycerin condition for space-time diagram-based
venular flow velocity, respectively
TVD total vessel density, APSI average perfused speed index
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be achieved in a similar way using topical application of NG to the sublingual mucosa,

leading to the measurable recruitment of both microcirculatory diffusion and convec-

tion reserve as demonstrated by the increase in TVD and microcirculatory flow

velocity, respectively. Furthermore, the same effect was detected using manual video

analysis, representing the current “gold standard” [32, 34], as well as employing

automated algorithm-based video analysis. Potential implications of automated video

a

b

Fig. 2 Properties of the sublingual microcirculation before (native) and after the topical sublingual application of
acetylcholine and nitroglycerin. a Total vessel density (TVD) and space-time diagram-based flow velocity of the
venules as determined using manual video analysis. ANOVA p < 0.0001 for TVD and p< 0.01 for space-time
diagram-based flow velocity; asterisk denotes values differing from native examination in pairwise analysis
(p < 0.05), dagger denotes values differing to acetylcholine stimulation in pairwise analysis (p < 0.05). b Total
vessel density and average perfused speed index (APSI) as determined using algorithm-based video analysis.
ANOVA p< 0.01 for TVD and p= 0.02 for APSI; asterisk denotes values differing from native examination in pairwise
analysis (p < 0.05), dagger denotes values differing to acetylcholine stimulation in pairwise analysis (p < 0.05).
Boxplots represent median, interquartile range, and range. Horizontal scattering is applied to the individual data
points in order to avoid superimposition

a b c

Fig. 3 Representative still images and space-time diagrams of the venules depicting the native sublingual
microcirculation (a) as well as after the topical sublingual application of acetylcholine (b) and nitroglycerin
(c). Stimulation with nitroglycerin leads to an increase of total vessel density through recruitment of
capillaries and an increase in flow velocity in the capillaries and venules
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analysis are the elimination of inter-observer bias, as well as representing a requirement

for enabling the assessment of the microcirculation in a clinical setting.

Assessment of the endothelium cell-dependent physiological microcirculatory reserve

using an acetylcholine challenge

A previous study examining patients in cardiogenic shock has found that in a subgroup

of ten patients, topical application of ACH to the sublingual mucosa led to an increase

in the proportion of perfused capillaries, but no change in TVD [30]. Later, the same

group described the reversal of a decrease in TVD and the proportion of perfused ca-

pillaries caused by septic shock induced by topical application of ACH in subgroup of

their study [29], suggesting that local activation of the endothelial cells’ nitric oxide

synthase can lead to measurable effects in the microcirculation in patients in shock. In

our study, applying a similar challenge to healthy subjects does not lead to measurable

changes in the microcirculation, suggesting that in healthy subjects, an ACH challenge

does not add to the information obtained in unchallenged microcirculatory analysis.

These results may however be influenced by the choice of local ACH application

method in the present study, namely, the application of drops of ACH solution versus the

placement of a tissue saturated with ACH solution as used in previous studies [29, 30]

and the dose applied in the present study. The fact that Schonberger et al. have described

an increase in microvascular flow velocity as measured by laser Doppler flowmetry after

transdermal application of ACH to the forehead [13] may prompt the use of a different

method of application or a higher dose, respectively dose-response series in future studies

in healthy subjects, but foremost, it would be of interest to repeat the sublingual ACH

challenge in subjects with altered microcirculation. The lack of signal in the venular

space-time diagrams may further be propagated by the lack of direct effect of ACH on the

smooth muscle cells within the venules’ tunica media as is expected for NG. As in both

the settings of the native microcirculation as well as the NG challenge, the manual

analysis and the analysis based on the automated algorithm yielded comparable results in

the ACH challenge.

Systemic effects of sublingual topical vasodilators

During topical application of 0.5 mg of ACH and 0.005 mg of NG to the sublingual

mucosa in the present study, systemic arterial blood pressure, heart rate, and cardiac

output as well as hematological and metabolic status remained unchanged. This corre-

sponds to previous data reporting effects limited to the area of application after intra-

ocular injection of much higher doses (5–20 mg) of the ACH preparation used in this

study, Miochol E [46]. NG as used to achieve systemic effects is typically applied in

sublingual application with a dose of 0.4–0.8 mg per application and in intravenous ap-

plication with a dosage of 0.01–0.6 mg/min [47]. It has been previously demonstrated

that systemic effects are not detected with intravenous concentrations <0.0001 mg/ml

[48], and according to the relationship between sublingual and intravenous concentra-

tions, this is equivalent to a sublingual application of 0.01 mg [49], again corresponding

to our observation of the absence of a systemic effect after application of half the

amount of NG in the present study. Plasma nitric oxide metabolites observed in this

study before the application of NG correspond to values previously reported in patients
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with ischemic heart disease at rest [50] and are the same compared to after the applica-

tion of NG. It is expected from previous data regarding the kinetics of nitric oxide me-

tabolites in plasma [51, 52] that an elevation if present would have been detected

within the time frame of the sample collection. The hemodynamic measurements per-

formed after the sublingual application of nitroglycerin in this study further indicate no

lasting systemic effect, even though they have to be interpreted with caution due to the

variability in timing of the measurements.

Limitations

The use of a nitroglycerin challenge to test physiological microcirculatory reserve

allows the identification of the capillaries recruitable by maximal relaxation of the

vascular smooth muscle cells; however, it cannot be ruled out that some unrecruited

vessels remain. Further, the observation of the isolated effect of NG application is

overlapped by the stepwise approach consisting of the stimulation of endogenous NO

release by the application of ACH followed by the provision of excess exogenous NO

by the application of NG as employed in the present study. Additionally, technical limi-

tations regarding the assessment of the microcirculation in the present study include

three main points. First, the use of a frame rate of 25 frames per second during video

capture, potentially leading to the inability to identify individual erythrocytes under

conditions of high flow velocity. Future hardware should aim at a higher frame rate of

at least 60 frames per second in order to avoid aliasing effects in the determination of

microcirculatory flow velocity when used in combination with stimulation tests such as

the topical application of vasodilators. Second, only two video clips were recorded after

the topical application of both ACH and NG in order to limit total examination time

and minimize confounding factors such as changes in the macrocirculation over time.

Nevertheless, three video clips should be recorded per measurement in future studies if

the clips are not recorded at the exact same mucosal location in order to limit selection

bias and fully comply with the international consensus [32]. The impact of this limita-

tion is partly mitigated by the larger field of view per location of the IDF camera setup

used in the present study as compared to the equipment used in developing current

recommendations. Third, in space-time diagrams of venules consisting of a parallel

flow pattern, some lateral movement of erythrocytes out of the plane of velocity meas-

urement cannot be excluded, potentially reducing the precision of the latter measure-

ment. Furthermore, the screening for macrocirculatory hemodynamic effects of the

study intervention is supported in part by the comparison of measurements in two

groups of subjects. While it is preferable to compare measurements performed in the

same subjects before and after the intervention, given the results of the present study,

the conclusion is valid that a relevant effect of the intervention on the macrocirculation

is unlikely.

Conclusions

Our data demonstrates that in healthy subjects, the sublingual physiological microcir-

culatory reserve can be assessed non-invasively by topical application of nitroglycerin

without affecting systemic circulation, through the mobilization of both the microcircu-

latory diffusion and convection reserve. Such measurements may be conducted in
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critically ill patients in a future study to test the microcirculatory response to resuscita-

tion. It remains to be seen if stimulation with acetylcholine enables the differentiation of

the physiological microcirculatory reserve into endothelium cell-dependent and smooth

muscle-dependent fractions in subjects with altered microcirculation. Further, automated

algorithm-based analysis has been found to reasonably approximate manual analysis of

microcirculatory video for assessment of the physiological microcirculatory reserve.
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