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Abstract

Analogue methods provide a statistical precipitation prediction based on syn-
optic predictors supplied by general circulation models or numerical weather
prediction models. The method samples a selection of days in the archives that
are similar to the target day to be predicted, and consider their set of corre-
sponding observed precipitation (the predictand) as the conditional distribution
for the target day. The relationship between the predictors and predictands re-
lies on some parameters that characterize how and where the similarity between
two atmospheric situations is defined.

This relationship is usually established by a semi-automatic sequential proce-
dure that has strong limitations: (i) it cannot automatically choose the pressure
levels and temporal windows (hour of the day) for a given meteorological vari-
able, (ii). it cannot handle dependencies between parameters, and (iii) it cannot
easily handle new degrees of freedom. In this work, a global optimization ap-
proach relying on genetic algorithms was able to optimize all parameters jointly
and automatically.

The global optimization was applied to some variants of the analogue method
for the Rhone catchment in the Swiss Alps. The performance scores increased

compared to reference methods, especially for days with high precipitation to-
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tals. The resulting parameters were found to be relevant and coherent between
the different subregions of the catchment. Moreover, they were obtained au-
tomatically and objectively, which reduces the effort that needs to be invested
in exploration attempts when adapting the method to a new region or for a
new predictand. For example, it obviates the need to assess a large number
of combinations of pressure levels and temporal windows of predictor variables
that were manually selected beforehand. The optimization could also take into
account parameter inter-dependencies. In addition, the approach allowed for
new degrees of freedom, such as a possible weighting between pressure levels,
and non-overlapping spatial windows.

Keywords: precipitation prediction, analogue method, optimization, genetic

algorithms, Alpine climate

1. Introduction

The analogue method (AM) is a downscaling technique based on the idea

expressed by [Lorenz| (1956,/1969) that similar situations in terms of atmospheric

circulation are likely to lead to similar local weather (Duband) 1970). It uses

predictor variables describing the synoptic atmospheric circulation in order to

predict local-scale predictands of interest. It is often used to predict daily pre-
cipitation, either in an operational forecasting context (e.g.
[Bontron and Obled], [2005; [Hamill and Whitaker], [2006} [Bliefernicht] [2010; Marty]|
let al.k12012; [Horton et al., [2012; Hamill et al 2015} [Ben Daoud et al.l 2016))

or a climate downscaling context (e.g. [Radanovics et al., 2013; |Chardon et al.,

12014; Dayon et al.l 2015; Raynaud et al., [2016). Other predictands are also con-

sidered, such as precipitation radar images (Panziera et al., [2011} [Foresti et al.,
2015)), temperature (Radinovic, [1975; [Woodcock] [1980} Kruizinga and Murphy),
11983; [Delle Monache et al., 2013; |Caillouet et al., 2016; Raynaud et al., 2016),
wind (Gordon, [1987; [Delle Monache et al., 2013, 2011} [Vanvyve et al.| [2015;
|Alessandrini et al., 2015b; [Junk et al., 2015bla), and solar radiation or power
production (Alessandrini et al., 2015a} Bessa et al.,|2015; Raynaud et al.,|2016).
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In real-time forecasting, it is used mainly by practitioners, notably hy-
dropower companies or flood forecasting services, that need to anticipate water
yields or issue early flood warnings several days in advance. The classical fore-
casting chain consists of using limited area models (e.g. AROME, or COSMO)
forced by global NWP (numerical weather prediction) models with a lower. res-
olution. However, their use requires very important processing capacities, and
the resulting forecast still presents large uncertainties and biases. Although
these outputs are essential, they can be supplemented by other sources of fore-
casts providing useful information. In contrast to local NWP models, AMs
can transform at low cost the synoptic-scale information provided by the global
NWP model into precipitation forecasts. They rely on the inherent relationship
between the synoptic-scale influences and the related local weather that can be
exploited from the archive of observed precipitation. Running an AM approach
is fast enough that it can search for ‘analogues for each day, up to ten days
ahead, in a matter of seconds to minutes. It can eventually use the different
members of an ensemble forecast and/or those issued by different NWP models
(e.g. NOAA-GFS or ECMWF-IES).

In climate studies; AMs are used to downscale the outputs of a general circu-
lation model (GCM) or regional climate model (RCM) simulation runs (Dayon
et al.l 2015]) or to reconstruct past weather conditions (Caillouet et al., 2016f). In
future climate studies, RCMs are often used to dynamically downscale precipi-
tation to a local scale. However, even though the relevance of RCMs’ outputs
increases, a bias correction of the outputs is often still required, particularly in
complex terrain. Moreover, their application is computer-intensive, which makes
it difficult to cover all combinations of climate scenarios and GCMs. Therefore,
the idea is to bypass the small-scale simulations and to go from the large-scale
situation to the end variables such as precipitation by statistical downscaling
(Maraun et al., |2010).

The spatial transferability of AMs is analysed in |(Chardon et al.| (2014) and
Radanovics et al.| (2013), and their temporal transferability in |Dayon et al.
(2015) and |Caillouet et al.| (2016). The physical consistency of multivariate
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predictions is presented in Raynaud et al.| (2016]).

The method can be designed with multiple successive subsampling steps, or
analogy levels, each of them relying on different meteorological variables. A
certain number of parameters define the relationship between predictors and
predictands, such as the choice of the predictor variable, its pressure level and
temporal window (hour of the day) to consider, the spatial domain to use for
the comparison, as well as the analogy criterion itself, and finally, the number
of analogue situations to keep at each subsampling level. These parameters are
usually calibrated by means of a semi-automatic sequential procedure (Bontron,
2004; Radanovics et al.;|2013)), i.e. by optimizing each single parameter, one at a
time, in an arbitrarily chosen order, with no or little reassessment. This sequen-
tial approach therefore has strong limitations: (i) it cannot automatically choose
the optimal pressure levels and the temporal windows for a given meteorologi-
cal variable, (ii) it cannot handle dependencies between the parameters within
a level of analogy, and even less between them, and (iii) it cannot easily han-
dle new degrees of freedom, such as a possible weighting between the pressure
levels. Thus, even if the processing involved is relatively fast, the sequential
approach requires laborious assessments of predictor combinations (variables,
pressure levels, temporal ' windows). Moreover, it presents a high risk of ending
in a local optimum because of subjective initial choices and lack of consideration
of parameter inter-dependencies. Other calibration methods exist for specific
applications, such as radar images (Panziera et al.| |2011; [Foresti et al., [2015)).

Aiming to overcome these limitations, a global optimization by genetic al-
gorithms (GAs) was introduced. An intensive assessment resulted in recom-
mendations to parametrize GAs in order to optimize AMs successfully (Horton
et al.,[2017). The present paper is based on these recommendations, and applies
them to precipitation prediction for the upper Rhone catchment in the Swiss
Alps, using AMs of varying complexity. It aims at illustrating the relevance of
a fully automatic, objective, and global, optimization technique for AMs. The
applications are indeed numerous, as AMs have to be adapted to every new

location they are applied, or to any new predictand they should predict.
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The data, AMs, and optimization techniques (sequential and GAs) are pre-
sented in Section The results are first given for the optimization of the
analogy of atmospheric circulation only (Section , before being extended to
a method adding a second level of analogy on moisture variables (Section .

General discussions (Section [f)) and conclusions (Section [6]) follow.

2. Data and methods

2.1. Description of study area

The study area is the alpine upper Rhone catchment in Switzerland (Fig.
1). The altitude ranges from 372 to 4634 m.a.s.l. and the area is 5524 km?.
This region is the target of the MINERVE (Modélisation des Intempéries de
Nature Extréme sur les Rivieres Valaisannes et de leurs Effets) project, which
aimed at real-time flood management on the upper Rhone catchment (Garcia
Hernéndez et al.| 2009)). Even though the region is rather small, the meteorolog-
ical influences related to extreme weather conditions vary substantially within
it (see Horton et al.l [2012)).-Tndeed, a high spatial variability of precipitation
climatology exists, which is due to the complex orography of the region, and
the mix of various meteorological influences. Based on different climatological
analyses, the precipitation gauge stations in the catchment were clustered in ten

subregions (Fig. [1)):
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2.2. Data

AMs rely on two types of data: predictors, which are atmospheric variables
describing the state of the atmosphere at a synoptic scale, and the predictand,
which is the local weather variable one wants to predict.

Predictors are generally extracted from reanalysis datasets. The NCEP-
NCAR reanalysis I (6-hourly, 17 pressure levels at a resolution of 2.5°, see
Kalnay et al., [1996) was used here, but it could have been any other reanalysis
dataset.

The predictand (which is to be predicted) is here the daily precipitation
(6 am. to 6 a.m. the next day) measured at the MeteoSwiss network sta-
tions, for the period 1961-2008. The time series from every available gauge
station were averaged over the ten subregions (Fig. , which were approxi-
mately 500 km? each, in order to smooth local effects (Obled et al., [2002; Marty,
et al.,|2012)). This helps accounting for local variability, mainly when convective
processes are involved, which slightly increases the prediction skill.

It must be stressed that the predictand here is a temporally cumulated vari-
able, compared to the meteorological predictors, which may be considered in-
stantaneous. Depending on the duration of the accumulation period (here 24 h,
but could have been 6 h; 12 h, or more than 24 h), the choice of predictors will
vary.

The 48-yr precipitation dataset was divided into a calibration period (CP)
and-a validation period (VP). Using data independent of the CP to validate
the results is very important in order to assess the robustness of the proposed
improvements and to avoid over-parametrization of the method.

In order to reduce potential biases related to trends linked to climate change
or to the evolution in measurement techniques, the selection of the VP was
evenly distributed over the entire series (Ben Daoud, 2010). Thus, one out of
every six years was selected for validation, which represents a total of 8 years
for the VP and 40 for the CP. This choice of sequence was made in order to

have similar statistical characteristics between the CP and VP.
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2.3. The analogue method

Multiple variations of the analogue method exist, most of which are not
detailed here (see Ben Daoud et all [2016] for a more comprehensive listing).
However, there are mainly two parameterizations that are most often used for
precipitation prediction and that are considered as reference: one that relies on
an analogy of the atmospheric circulation, and another that adds a second level
of analogy on moisture variables (Obled et al. 2002; Bontron and Obled} 2005;
Marty et al.l |2012).

The method based on the analogy of synoptic circulation consists of the
following steps (Table: the similarity of the atmospheric circulation of a target
date with every day of the archive is assessed by processing the S1 criterion
(Eq. Teweles and Wobus, (1954} |Drosdowsky and Zhang), 2003)), which is a
comparison of gradients, over a certain spatial window:

Do Az — Azl

S1 =100 — - (1)
Zmaw{|A2i\7\Azi|}

where AZ; is the difference in geopotential height between the i-th pair of adja-
cent points of gridded data describing the target situation, and Az; is the cor-
responding observed geopotential height difference in the candidate situation.
The differences are processed separately in both North and East directions over
the selected spatial domain. The smaller the S1 values, the more similar the
pressure fields.

Bontron and Obled| (2005 showed that the geopotential height at 500 hPa
(Z500) and 1000 hPa (Z1000) are the best first predictors of the NCEP/NCAR
reanalysis I dataset, and that the S1 criterion performs better than scores based
on absolute distances. The reason for such better results is that the S1 criterion
allows comparison of the circulation patterns, by means of the gradients, rather
than the absolute value of the geopotential height, which better represent the
flow direction. To cope with seasonal effects, candidate dates are extracted

within a period of four months centred around the target date, for every year
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of the archive. This method using two geopotential heights is named here 27Z.

The N7 dates with the lowest values of S1 are considered as analogues to the
target day. The number of analogues, N7, is a parameter to calibrate. Then,
the daily observed precipitation amount for the Ny selected dates provide the
empirical conditional distribution, considered as the probabilistic prediction for
the target day.

The other most well-known parametrization adds a second level of analogy
on the moisture variables (method 2Z-2MI, Table . The predictor that Bon-
tron| (2004) found optimal for France is a moisture index made of the product
of the total precipitable water (TPW) with the relative humidity at 850 hPa
(RHS850). Horton| (2012)) confirmed that this index is also better for the Swiss
Alps than any other variable from the NCEP/NCAR reanalysis I considered
independently. When adding a second level of analogy, N> dates are subsam-
pled within the N; analogues of the atmospheric circulation, to end up with
a smaller number of analogue situations. When this second level of analogy is
added, a higher number of analogues N; is kept on the first level. Prediction
of moisture fields by NWP models are more model-dependent and more uncer-
tain than pressure variables. This implies that the 2Z-2MI method, when used
in real-time forecasting,is very dependent on the skill of the NWP model in
predicting moisture fields. Therefore its use is often restricted to the first lead

times.

2.4. Performance assessment

The performance assessment in the present context consists of verifying the
prediction of an ensemble probabilistic technique. The set of precipitation values
collected with each analogue can be considered as a sample drawn from the
conditional distribution associated with the current circulation. The score that
is most often used to assess an AM performance is the CRPS (Continuous
Ranked Probability Score,|Brownl, [1974; Matheson and Winkler}, 1976 [Hersbach|,
2000)). It allows evaluating the predicted cumulative distribution functions F'(y),

for example, of the precipitation values y from analogue situations, compared
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to the observed value y°. The better the prediction, the smaller the score. The

mean CRPS of a prediction series of length n can be written as:

CRPS = % f: ( / +OO [Fi(y) — Hily — )] dy) (2)

i=1 \ T
where H (y —?) is the Heaviside function that is null when y — ¢ < 0, and has
the value 1 otherwise.
In order to compare the value of the score relative to a reference, one often
considers its skill score expression, and uses the climatological distribution of
precipitation from the entire archive as the reference. The CRPSS (Continuous

Ranked Probability Skill Score) is thus defined as follows:

CRPS—CRPS, _  CRPS )
CRPS,— CRPS, -~ CRPS,

where CRPS, is the CRPS value for the reference and CRPS, would be the

CRPSS =

one for a perfect prediction (which implies CRPS, = 0). A better prediction
is characterized by an increase in CRPSS.

Note, however, that the choice of reference does not matter so much when
assessing potential improvements of the method, since we consider more its

relative increase or decrease rather than the CRPSS absolute value.

2.5. Sequential calibration

AMs are usually calibrated by a semi-automatic sequential procedure, as
elaborated by Bontron| (2004) (see also Radanovics et al., [2013; [Ben Daoud
et al., 2016)). The calibration technique optimizes the spatial windows in which
the predictors are compared and the number of analogues for every level of
analogy, by maximizing the performance score (CRPSS). However, the differ-
ent analogy levels are calibrated sequentially, and the meteorological variables,
pressure levels, and temporal windows are chosen manually. The procedure, as

defined by Bontron| (2004]), consists of the following steps:

1. Manual selection of the following parameters:

(a) Meteorological variable
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(b) Pressure level

(¢) Temporal window (hour of the day)

(d) Number of analogues

2. For every level of analogy:

(a) Identification, for the analogy level considered, of the most skilled
unitary cell of all predictors jointly, over a large domain, by a full
scanning of the grid.

(b) From this most skilled cell, the spatial window is expanded by suc-
cessive iterations in the direction of greater performance gain until
no improvement is reached.

(¢) The number of analogue situations N; is then reconsidered and op-
timized for the current level of analogy.

3. A new level of analogy can then be added, based on other variables (such as
the moisture index) with some chosen pressure levels, temporal windows,
and initial number of analogues N5. The procedure starts again from step
2 (calibration of the spatial window and the number of analogues) for the
new level. The parameters calibrated on the previous analogy levels are
fixed and do not change.

4. Finally, the number of analogues N; and Ny for the different levels of
analogy ‘are reassessed. This is done iteratively by varying the number of

analogues of each level in a systematic way.

The calibration is done in successive steps with a limited number of param-
eters. Previously calibrated parameters are generally not reassessed (except for
the number of analogues).

This procedure was used to calibrate the methods that were here considered
as references to further assess the ability of genetic algorithms to outperform

the classic approach.

2.6. Genetic algorithms

Genetic algorithms (GAs) were developed by [Holland| (1992)) and |Goldberg
(1989). They are part of the Evolutionary Algorithms (Back and Schwefel, |1993;

10
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Schwefel, [1993)), which were inspired by some mechanisms in biological evolution,
such as reproduction, genetic mutations, chromosomal crossovers, and natural
selection. GAs seek the global optimum on a complex surface, theoretically
without restriction. This is of interest for AMs, which are characterized by a
complex high-dimensional error function having multiple local optima. Prac-
tically, GAs allow rapidly approaching satisfactory solutions, but they are not
guaranteed to provide the optimum solution (Zitzler et al., 2004). Tt is indeed
mainly a matter of time. When the optimizer gets closer to the global optimum,
any new improvement takes more time to appear, and the final adjustment of
the parameters can be very time consuming (Béck, [1993)). For problems that
require a significant amount of time to evaluate the objective function, as in the
case of AMs (because it needs to make a prediction for every day of the CP),
the number of generations has to be limited in order to ensure a reasonable pro-
cessing time. Thus, different acceptable solutions can result from one or more
optimization runs (Holland} [1992). This is both a strength and a weakness of
GAs: they are very good at_exploring complex parameter spaces in order to
identify the most promising areas, but they will not necessarily always find the
best solution with the optimal values for all parameters (Holland} [1992).

The optimizations here were performed based on the recommended GA
parametrization for AMs as described in Horton et al.| (2017). As the opti-
mization is mostly sensitive to the mutation operator (that randomly changes
some values in the parameter sets), parallel optimizations are considered with

variantsof this operator, according to |Horton et al.| (2017)):

e 3x non-uniform mutation (Michalewicz, [1996)) with varying parameters
e 1x multi-scale mutation (Horton et al., [2017)

e 2x chromosome of adaptive search radius (Horton et al., [2017)).

A population size of 500 individuals (i.e. parameter sets of the AM) was

considered, and the optimization was stopped when the best individual (with

11



280

285

290

295

300

305

the highest CRPSS performance score) did not evolve for 20 generations (cycles

of optimization).

3. Optimization of the circulation analogy

The analogy of the atmospheric circulation was optimized for the ten sub-
regions (Section independently. We started from the simplest-AM, and
increased the complexity in order to identify the degrees of freedom that are
of particular interest. Thus, the tested parametrization evolved iteratively in
complexity. The detailed results of the intermediate stages are not provided in
this paper (see Hortonl [2012} for the details).

The reference method for the analogy of the atmospheric circulation (2Z,
Table , based on Z500 and Z1000, was first.considered. The optimizer had to
choose simultaneously the number of analogues, both spatial windows with no
overlapping constraint (i.e. they can differ from one pressure level to another), as
well as the temporal windows (hours of observation of the geopotential height),
which cannot be achieved with the sequential calibration technique. The per-
formance score (CRPSS) was slightly improved, with these limited degrees of
freedom, relative to the 2Z reference method calibrated with the sequential
procedure. Some tests showed that most of the gains were due to the non-
overlapping spatial windows. This demonstrated that the optimizer was able to
obtain relevant parameters for a simple method.

Then, an additional degree of freedom was provided to the GAs by letting
them choose the pressure levels along with the other parameters (number of ana-
logues, spatial and temporal windows), which is also a non-automated process
in the sequential calibration. This degree of freedom increased the optimization
time, and might decrease the number of simulations that converge to a single
solution. However, most solutions were very close in terms of the performance
score, which was further improved. The selected pressure levels were Z500 or
Z700 for the upper level, and Z925 or Z1000 (most often) for the lower level.

Parallel analyses showed that the analogy of circulation is incomplete, and

12
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that geopotential heights still contain relevant information that can improve
the statistical relationship. Therefore, a third, followed by a fourth circulation
predictor were added (still only geopotential heights). There was no constraint
on the predictors, so that the same pressure level could be selected more than
once. Further improvements were found in the performance score, both for the
CP and the VP, confirming that this additional information was beneficial for
the quality of the prediction.

Finally, a weighting of the analogy criteria values per pressure level was
proposed, again optimized by GAs. The weighting operates in the combination
of the S1 criteria processed on every level, which were previously averaged with
equal weights. The role of this new degree of freedom is to give more weight to
the levels with greater predictive capacity, and to consider the differences in the
geopotential height variability with altitude.

The number of circulation predictors (still only geopotential heights) was
then successively increased up to ten, considering the weighting of the analogy
criteria values. The addition of circulation predictors substantially improved
the prediction skill (for both the CP and the VP) only up to four predictors
(Figure . Afterwards, the score on the VP was more variable, eventually
even showing a decrease, which revealed an over-parametrization of the method,
and thus a lack of robustness. The score for the CP might also present local
decreases' when many predictors are involved, due to increasing difficulty for
the optimizer to converge. Selecting four circulation predictors (geopotential
heights) was considered optimal for this case study, since the gain in CRPSS
was significant, and the model remained relatively simple. It cannot be ruled
out that another number would prevail in a region other than the upper Rhone
catchment, under other meteorological conditions, or with another reanalysis

dataset.

3.1. Which parameters are optimized?

The chosen method for the atmospheric circulation analogy, based on four

circulation predictors (geopotential heights), and which is here named 4Zo (o

13
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for optimized), was based on the following degrees of freedom:

e selection of pressure levels (4 degrees)

e temporal windows (4 degrees)

spatial windows (4 x 4 degrees)

weights (4 degrees)

number of analogues (1 degree).

This adds up to 29 degrees of freedom that were optimized simultaneously.

3.2. Results for the 4Zo method

The resulting optimized parameters for 4Zo vary from one subregion to an-
other. The optimized spatial windows are given for every subregion in Figure
and the selected pressure levels in Table

The resulting CRPSS scores are provided in Figure [4] and were on average
35.8% for the CP and 35.5% for the VP, compared to 31.1% and 32.3%, respec-
tively, for the reference method 27 on the atmospheric circulation (optimized by
the sequential procedure): The score was also calculated for three precipitation
thresholds: P > 1 mm, P-> 0.1-P10, and P > 0.5-P10, P10 being the daily pre-
cipitation with a 10 year return period (Table . The gain in score increased
with the precipitation threshold: the relative improvement of the CRPSS was,
on average, for the different thresholds, 13.3%, 15.4%, and 29.1% for the CP
and 7.9%, 11.1%, and 34.5% for the VP. The optimization thus improved the
prediction even more for days with significant precipitation than for the usual
days.

To assess the parameters cross-compatibility and the spatial coherence of
the resulting parameters, those optimized for one subregion were applied to the

others. The resulting losses or gains of the CRPSS are displayed in Figure

8.8. Analysis

The automatic selections of pressure levels (Table [3)) and temporal windows

(not shown) for the analogy of circulation showed a great homogeneity and were

14
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spatially consistent. First of all, the level Z1000 was always selected twice (the
first time at 6 or 12 h, and the second always at 30 h) and Z700 was selected once
for every subregion (always at 24 h). The level that varied from one subregion
to another, albeit in a spatially consistent way, was the upper level (always
at 12 h), which was Z300 for the north-west part of the catchment, Z500 for
most of the other subregions, and Z600 for the Conches Valley. The optimizer
thus provided consistent selections of pressure levels and temporal windows.
The automatic selection of pressure levels is a big advantage in favour of global
optimization.

The resulting spatial windows (Figure [3)) may look very diverse first, but
there are significant similarities for subregions located within the same vicinity.
The first four subregions were characterized by a large spatial window on the
upper level, whereas it was smaller elsewhere. For most subregions, the second
level (Z700) was characterized by thin‘and longitudinally extended spatial win-
dows. The third level (21000 at 6 or 12 h) also had longitudinally extended
domains, which were slightly larger. The last one (Z1000 at 30 h) had rather
large and squared windows. Subregions number 5 (southern valleys) and 6
(southern ridges) had exactly the same spatial windows, which suggests that
they behave in a similar way and thus could have been merged. This similarity
is a good sign for the accuracy of the optimized parameters.

The performance scores showed non-negligible improvements for both the
CP and VP (Figure [4)) compared to the 27 reference method optimized by the
sequential procedure. Even more interestingly, the results for higher precipita-
tion thresholds (Table |4)) showed the largest improvements. This is of particular
interest in the framework of flood forecasting. The further improvement of days
with higher precipitation totals is likely related to the fact that larger values
contribute more to the CRPS score, which means that better predicting these
days results in significant increase in the global performance score.

The analysis of the parameters cross-compatibility showed that the param-
eters were obviously optimal on the CP for the subregion for which they were

optimized (Figure [5| top). However, the losses in CRPSS when exchanging the

15
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parameters were not of the same magnitude among the different subregions.
Indeed, the Upper Rhone Valley (7) and, moreover, the southeast ridges (8)
seemed to behave differently. These two regions have different climatic proper-
ties than the others, as they are particularly sensitive to southerly flows. Indeed,
almost all heavy precipitation events occurred under a southerly regime, such
as in the Liguria, Piedmont, and Aosta regions in Italy, whereas the other sub-
regions of the catchment had extreme events mainly under a westerly regime
(Horton et al., 2012)). Thus, as the performance score is significantly influenced
by heavy precipitation values, the parameters for the different subregions are
likely optimized to better predict these days. It can then be expected that the
optimal parameters differ between these two subregions and the others. This
points at the importance of taking into account leading meteorological influences
during precipitation station clustering, which are not always best represented
by geographical distance.

Globally, the same cross-compatibility structure could be observed for the
VP (Figure [5| bottom), but in this case, minor improvements were occasionally
observed when switching the parameters, because of the presence of other events
in the VP that might be better predicted by a different parameter set. The
relatively small differences in scores between parameterizations indicated that
even though the parameters might differ significantly, the performance might
not be drastically affected. Even a change in the pressure level did not mean
a radical drop in the score value. A different parametrization may lead to a
distinct selection of analogue days, and thus to an improvement of the prediction

under certain weather conditions at the expense of others.

4. Optimization of the analogy with moisture information

It is known that moisture variables as a second level of analogy do provide
improvements to the method (section [2.3)). The moisture index, which is a
combination of the relative humidity and precipitable water, has thus also to be

optimized. In order to do so, a constraint on the optimizer had to be introduced,
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so as to select the same temporal window (hour of the day) for both variables.

Two methods were assessed: one with two moisture predictors (moisture
index on two pressure levels or at two different hours), named 4Zo-2MIo, and
one with four moisture predictors, named 4Zo-4MIo. When introducing two
predictors for the moisture analogy, the number of degrees of freedom increased
to 42, and to 54 with four predictors. However, there was no substantial differ-
ence in the performance scores between both 4Zo-2Mlo and 4Zo-4Mlo methods,
which suggests that considering four moisture predictors is not necessary. For
this reason, only the results of 4Zo-2Mlo are presented.

The optimization was processed on both levels of-analogy simultaneously.
This implies that the analogy of the atmospheric circulation could change be-

cause of the new moisture information.

4.1. Results for the 4Zo-2MIo method

As previously, the optimized parameters differed from one subregion to an-
other, but to an even greater extent. The resulting spatial windows are displayed
in Figure [6] for 4Zo-2Mlo, along with the selected pressure levels for both the
circulation and moisture analogy (Table .

The CRPSS scores of the optimized 4Zo0-2MIo method are provided in Figure
and amounted on average to 40% (CP) and 40.3% (VP), compared to 35.2%
(CP) and-36.2% (VP) for the reference method 2Z-2MI on the moisture analogy
optimized with the sequential procedure. The parameters cross-compatibilities
are shown in Figure [§] As for 4Zo, the 4Zo-2MIo method presented larger

improvements in the prediction of significant rainfall (Table @

4.2. Analysis

When optimizing a method consisting of two levels of analogy, the introduc-
tion of moisture variables in the second level has an influence on the parameter
values of the first level. This means that the two levels of analogy bring com-
plementary information, and are thus not independent. This is first visible in

the number N; of analogues to be selected on the first level, and in the selection
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of the pressure levels for the circulation analogy. A change in the optimal value
of N1 was already known and taken into account in the 2Z-2MI method (Table
2). However, a change in the optimal pressure levels for the circulation analogy
is a new result that has never been highlighted before.

As for the sequential procedure, the optimal value of N; increased when
adding a second level of analogy (Figure E[) One can also see that the optimal
number of analogues N5 for the second level of analogy of 4Zo-2Mlo/was slightly
inferior to Ny from 4Zo, but very close. There is a globally common tendency
between the optimal number of analogues of both methods: Nj of the 4Zo
method, and N; and Ny of 4Zo-2MlIo tend to be higher or lower together for a
given subregion.

The optimal final number of analogues did not vary much: 23 < N; < 33 for
470 and 21 < N, < 28 for 4Z0-2MIo. However, the optimal number of the Ny
analogues of the first level of 4Zo-2MIowvaried to a greater extent: 48 < N7 < 84.
In this latter method, it may be problematic to consider a fixed and unique value
for all regions.

As for the pressure levels, Z1000, which was previously systematically se-
lected twice (Table [3|) was here less often chosen (once or even not at all) for
4Z0-2MIo (Table5|). There was indeed a vertical shift in the previously selected
71000 for lower pressure levels that was even slightly stronger with four moisture
predictors than with two (not shown). This change is likely due to the fact that
when considering only the circulation analogy, the method tried to take into
accountinformation that can serve as a proxy for moisture assessment, whereas
it did not need it with the moisture index. This can only be assessed by a global
optimization technique that can work jointly on both levels of analogy.

The selected pressure levels for the analogy of the moisture index were
strongly centred around 700 hPa and 600 hPa. No other value was selected
when considering two moisture predictors (Table . It was sometimes more ef-
ficient, in terms of prediction performance, to consider the moisture at 700 hPa
twice, but at different hours, rather than selecting another pressure level. Be-

sides, the optimizer never chose the same pressure level at the same hour for
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any variable, even though it was allowed to do so. The selected pressure levels
for the moisture analogy differed from the reference method (Tables [2[ and
last row).

The selection of temporal windows for atmospheric circulation was similar
to the preceding optimization (in order of increasing pressure: 12 h, 24/30 h,
12 h, 30 h), but sometimes with some variability. When it comes to the moisture
analogy, there was a clear tendency to select 12 h and 24 h.

The optimized spatial windows for the atmospheric circulation have also
changed (Figure @ The very large domains on the upper level of the first four
subregions were not present anymore, and more variability could be observed.
The selected points for the moisture analogy were always located near the catch-
ment, including at least one of the nearest points from the reanalysis dataset,
and the spatial windows were relatively small. Thus, for this case study, there
is no need to look for distant moisture information, and the search could be
reduced to a smaller domain.

The CRPSS scores were improved by considering the moisture information
(Figure |Z| to be compared with Figure 4). The optimized method also per-
formed significantly better than the 2Z-2MI reference method optimized by the
sequential procedure. When it comes to improvements for days with precipi-
tation above the three thresholds (P>1 mm, P > 0.1-P10, and P > 0.5-P10),
the conclusion is the same as before, that is, a significant improvement in the
prediction compared to the reference method, mainly for heavy rainfall.

The analysis of the parameters cross-compatibility (Figure [8)) was also very
similar to the one of the circulation analogy only. The same pattern could
be observed, with a drop of performance for the subregions characterized by
different meteorological influences. However, the losses in performance were
globally more important than before, suggesting that more complex methods
with moisture variables are less transposable to another subregion (consistent
with the observations of |Chardon et al.| (2014)), even though both were located
within the same grid cell of the reanalysis dataset. Moisture fields have greater

variability than pressure fields, and thus a change in the spatial windows can
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have a greater impact on the method performance. Indeed, the two regions with
the lowest cross-compatibility with the others were the upper Rhone Valley (7)
and the southeast ridges (8), which had similar optimal pressure levels and
temporal windows to other regions, but had rather different spatial windows on
the moisture predictor.

Predictors based on moisture variables do significantly increase the predic-
tion skill, and are thus recommended, as long as they are reliable. In real-time
forecasting, their reliability depends on the lead time: for lead times superior
to 3—4 days, the uncertainties related to moisture variables from NWP models
become fairly high, which reduces the relevance of methods relying on this in-
formation. In climate downscaling studies, it mainly depends on the coherence
of the climatologies between the archive and the GCM model outputs. One
should, however, not establish an AM with moisture variables for too large a
region, as the transferability is reduced (see (Chardon et al., {2014} for alternative

approaches).

5. Discussion

The optimization of the AM by means of GAs has been undertaken in suc-
cessive stages by releasing progressively new degrees of freedom. This approach
allowed us to differentiate the contributions to performance gains, as well as to
identify possible over-parametrization. The main improvements obtained in the

present case study are due to the following elements:

e Using four pressure levels for the circulation analogy seemed to be an
optimal number for the studied region, length of archive available, and
target predictand considered. Beyond four, the validation score was more

variable, revealing a loss in robustness due to over-parametrization.

e The automatic and joint optimization of all parameters: the number of
analogues, selection of pressure levels, temporal and spatial windows.

These parameters are highly interdependent, so one needs to optimize
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them jointly in order to identify optimal combinations. Indeed, there is a
strong interdependence between space and time in the atmospheric circu-
lation, so that, e.g. the spatial window should move upstream the main

atmospheric flow for earlier temporal windows.

The introduction of distinct spatial windows between pressure levels. The
synoptic circulation is characterized by features with very different scales
depending on the height, and important information for predicting pre-
cipitation is not necessarily located in the same area from one level to

another.

The weighting of the analogy criteria between different pressure levels.
This can be influenced by the variability of the geopotential height with
altitude, or the levels of significance in regards to the meteorological pro-
cesses specific to a region. Theredis a trend in the weighting of circulation
predictors to decrease with the increase in pressure, as one can see in Fig-
ure [I0] for the three optimized methods. However, the values remained
approximately equal. This may not be the most influencing factor, and
we may suggest removing it first when trying to reduce the degrees of

freedom.

The joint optimization of the circulation and moisture analogy levels,
which are usually calibrated successively. We were able to demonstrate
that there is a dependency between the analogy levels, and that in order

to find the optimal parameters, one must consider them jointly.

GAs have proved very useful to optimize complex variants of the AM, and
to assess new degrees of freedom that were not available so far. However, it can
be dangerous to add too many parameters to optimize. Indeed, the optimizer
will probably use them to successfully improve the calibration score, so the
validation control remains very important in order to determine if one is actually
improving the method, or if it is being over-parametrized. Moreover, it might

not always be desirable to increase the degrees of freedom, and some constraints
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(e.g. same weighting of the analogy criteria between different pressure levels)
can be justified. However, one should first assess the consequence of a constraint
before establishing it. In this sense, even though not all degrees of freedom are
useful, GAs allow us to assess their influence. Finally, GAs could be used to
identify, among other things, the best pairs of spatial and temporal windows, in
order to later create a simpler regional method.

The convergence of parallel optimizations decreased when the AM to opti-
mize became more and more complex. The optimizer did not-always converge
to the exact global optimum, but to its surroundings. This is related to the fact
that the optimization slows down when it gets closer to the global optimum,
and that one has to stop it before the end, because of the required processing
time (see for example the slow-down of the improvements over generations in
Figure . The resulting parameters might sometimes present non-negligible
differences, even though the score is similar.. Through Monte-Carlo analyses of
the parameter space properties of the AM, [Horton| (2012)) showed that some
parameters of the method have a wide range of acceptable values. The spatial
windows, for example, can be larger than the optimal size without much impact
on the score, while they cannot be smaller (see also |Bontron| [2004). We also
observed that the selection of pressure levels is not a parameter as discrete as we
would have thought; as sometimes choosing another level had reduced impact
on the performance. This is particularly true for levels at higher altitude, but
can be more critical for lower layers. It was thus interesting to sometimes obtain
several sets of near-optimal parameters, but with some nuances, in order to get
an idea of the sensitivity of the parameters for a given region, and to compare
the score for the VP. In this regard, a cross-validation technique may be ad-
visable. However, as solutions identified in different regions of the parameter
space might provide sufficiently good performance, an ensemble of these could
be used, instead of a unique solution. These could account for the parameters
uncertainty in the AM, and could also increase the sample size contributing to
the empirical distribution of precipitation values. An approach that can also

be recommended is to first explore a wide range of the parameter space with
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some optimizations, and to narrow it according to the results for more targeted
optimizations that are likely to go faster and to perform better.

We tried to optimize the length of the preselection period (i.e. the seasonal
stratification, which is a 4-month window) jointly with the other parameters,
but no improvement was observed. Optimizing the moisture flux, which is
composed of the moisture index multiplied by the wind flux, was also assessed.
However, the results were not better than when considering the moisture index
alone. This may be related to the fact that the optimizer tries to provide the
best analogy of the atmospheric circulation in the first place, which makes the
wind information less relevant in the second level of analogy:.

Methods with higher complexity that integrate moisture predictors are less
transposable than simpler ones. It was also noticed in another unpublished
work, that it is by far better to optimize for two subregions jointly than to
optimize on one and to apply its parametrization to the other. Finally, the
discretization in subregions is an important process and should be handled with
care. Indeed, the physical distance is not always the leading factor to define
a subregion. For example; the southeast ridges subregion does not behave like
its surroundings, and differs in its parametrization because of different leading
meteorological influences.

GAs are relatively heavy on processing and require an I'T infrastructure capa-
ble of performing thousands of hours of calculations (Here, a single optimization
over 100 generations took almost 300 h CPU on a small Intel Xeon based high-
performance computing cluster — with Xeon 5670, 2.97 GHz, 12 cores — running
Linux RedHat). However, they automatically optimize all parameters of the
AM, which is not possible with the sequential calibration. Therefore, much hu-
man time, previously required to successively assess numerous combinations of
parameters (particularly the selection of pressure levels and temporal windows),
is saved. The ability to jointly optimize all parameters is important given the
strong dependencies between them and between the levels of analogy.

Furthermore, AMs optimized with GAs showed an improvement in predic-

tions for days with heavier precipitation, including extremes. Even though no
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new extreme value was added to the existing precipitation archive, the distri-
bution of analogue precipitation values for a target situation can move towards
the targeted extreme by sampling better candidate situations. Then, the sub-
set of precipitation values collected on the analogue dates can be considered
as a sample of the conditional distribution of precipitation associated with this
situation. A truncated exponential or a gamma distribution model can be fit
and extrapolated to extreme values not contained in the sample or'evenin the
whole precipitation archive (Obled et al., [2002)). Another possible approach is
to combine AMs with other methods (e.g. |(Chardon et al.,[2014).

6. Conclusions and perspectives

AMs are usually calibrated by a semi-automatic sequential procedure that
has strong limitations: (i) it cannot automatically choose the pressure levels
and temporal windows for a given meteorological variable, (ii) it cannot handle
dependencies between parameters, and (iii) it cannot easily handle new degrees
of freedom. Here, a global optimization approach relying on genetic algorithms
was able to optimize all'parameters jointly and automatically. It allowed objec-
tive selection of some parameters that were manually assessed beforehand.

The parameters resulting from the optimization by GAs were very consistent
in terms of the selection of pressure levels and temporal and spatial windows.
There was a good coherence and even identical results for subregions under
similar meteorological influences, which confirm that the optimized parameters
were coherent, despite an eventual first impression of great variability in the
spatial windows. When adding moisture variables, the results showed a higher
variability, but remained highly acceptable and coherent.

Strong dependencies between the parameters of the AM were observed.
Thus, the sequential calibration, which optimizes the parameters successively,
may not lead to the optimal combination. Moreover, it contains several manual
systematic assessments, such as the selection of pressure levels and temporal

windows. GAs, however, can automatically select pressure levels and tempo-
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ral windows, which can save a considerable amount of human time. A great
advantage of a global optimization is its ability to approach or reach optimal
parameter values when they are considered jointly.

A dependence in the selected parameters between the circulation analogy
and moisture variables was identified. When the two analogy levels are consid-
ered together, the optimal parameters of the circulation analogy changed. This
complexity can only be exploited in a suitable manner by global eptimization
methods.

For the present case study, there seemed to be an optimum number of pres-
sure levels to consider for the circulation analogy, which was four, before losing
consistency of the real gains. The circulation analogy was improved by intro-
ducing a weighting between pressure levels, and considering independent spatial
windows between pressure levels.

GAs provided parameterizations of AMs that exceeded the performance of
the sequential calibration. In addition, it has been observed that the prediction
for days with strong precipitation were improved to a greater extent, which is
clearly interesting in a hydrological context.

This work is by no means exhaustive, and is meant to open a door to new
explorations of AMs with GAs or other global optimization techniquess. It is
even possible to let the optimizer chose the meteorological variable to be used as
a predictor, as well as the analogy criteria, which is the topic of work in progress.
Moreover, the AM has been explored for decades for precipitation prediction,
but not as intensively for other predictands. A global optimizer, such as a GAs,

can speed up this assessment significantly.
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Figure 1: Location of the alpine Rhone catchment erland and its discretization into

ten subregions. (source: Swisstopo)
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Figure 2: Performance score (CRPSS) for CP and VP for three subregions (1 - Swiss Chablais;
5 - Southern valleys; 8 - Southeast ridges) when varying the number of geopotential height

predictors available to the optimizer.
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34
Figure 3: Optimized spatial windows for each region for the 4Zo method (analogy of the

atmospheric circulation). The spatial windows, on which the S1 analogy criterion is processed,

are different from a pressure level to another.
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Figure 4: Performance score (CRPSS) of the reference metho ) and the optimized

4Zo method for the CP and VP for every subregion.
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Figure 5: Losses or gains (in %) in CRPSS from applying optimized parameters for the series

in columns to those in rows. Method 4Zo, calibration and validation periods.
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Figure 6: Same as Fig. E but for the 4Zo-2MIo method (analogy of atmospheric circulation

and of the moisture index).
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Figure 7: Performance score (CRPSS) of the reference metho I (Table [2) and the

optimized 4Zo-2MIo method for the CP and VP for eve
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Figure 8: Losses or gains (in %) of the CRPSS from applying optimized parameters for the

series in columns to those in rows. Method 4Zo-2MIo, calibration and validation periods.
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Figure 9: Optimal number of analogues for the different subregions and the two methods, re-
sulting from optimization. Method 4Zo is made of a single level of analogy with N; analogues,

whereas 4Zo-2MIo has two levels of analogy with Ny -and N3 analogues.
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Figure 10: Distribution of optimal weights for the predictors of the first level of analogy
(geopotential heights) of (blue) 4Zo, (red) 4Zo-2MIo, and (green) 4Zo-4MIo methods. Results
are aggregated for the ten subregions. Predictors are sorted by increasing pressure and hour

(when a pressure level is selected twice).

38



ACCEPTED MANUSCRIPT

0 20 40 60 80 100 120 140
Generations
Fig@xample of evolution of the performance score of the best individual over eight
@en ent optimizations.

V.

39



Table 1: Parameters of the reference method on atmospheric circulation (2Z). First column is
level of analogy (0 for preselection); subsequent columns list meteorological variable, its hour
of observation within the target day (temporal window), criterion used for current level of

analogy, and number of analogues.

Level Variable Hour Criterion Nb

0 +60 days around the target date
71000 12 h
7500 24 h

S1 50

Table 2: Parameters of the reference method with moisture variables (2Z-2MI). Conventions

are the same as in Table[d]

Level Variable Hour Criterion Nb

0 +60 days around the target date

71000 12 h

1 S1 70
7500 24'h
TPW * RH850 12h

2 RMSE 30

TPW * RH850 24 h

Table 3: Pressure levels (~) automatically selected for the 4Zo method for different subregions

(ID). R represents the 2Z reference method (Table .

ID 300 400 500 600 700 850 925 1000

1 ~ ~ ~~
2 ~ ~ ~~
3 ~ ~ ~~
4 ~ ~ ~
5 ~ ~ ~
6 ~ ~ ~
7 ~ ~ ~r
8 ~ ~ ~~
9 ~ ~ ~~
10 ~ ~ ~~Y
R ~ ~
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Table 4: Relative improvement (%) in CRPSS for different precipitation thresholds for the

optimized 4Zo method, compared to the reference method.

1D P>1 mm P>0.1-P10 P>0.5-P10
CP VP Cp VP CpP VP

1 10.2 9.4 8.5 7.9 17.0 14.2
2 9.9 3.4 10.2 7.3 19.3 13.7
3 13.3 105 133 109 19.7 9.7

4 11.0 7.4 129 10.0 23.2 23.8
5 8.6 4.2 10.9 6.2 25.2 23.8
6 10.5 5.1 11.1 7.1 21.2 41.1
7 243 124 331 260 712 1043
8 19.0 12,7 26.2 19.2 -394 34.9
9 12.4 6.8 13.8 9.9 24.9 48.1
10 13.6 6.8 14.4 6.9 29.9 31.5

133 7.9 154 11.1 29.1 34.5

®
<

Table 5: Pressure levels automatically selected for the analogy of atmospheric circulation (~)
and moisture analogy (®) of the 4Zo-2MIo method, for different subregions (ID). R represents
the 2Z-2MI reference method (Table [2)

ID 300 400 500 600 700 850 925 1000

1 ~ ~ oo ~ ~
2 ~ ~ o® ~ ~
3 ~ ~ 00 ~ ~
4 ~ ° ~ e ~ ~
5 ~ ~ o0 ~~
6 ~ . ~ e ~ ~
7 ~ . ~ e ~ ~
8 ~ o ~ @ ~~
9 ~ ° ~ e ~ ~
10 ~ ° ~ e ~ ~
R ~ ' ~
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Table 6: Relative improvement (%) in CRPSS for different precipitations thresholds for the

optimized 4Zo-2MIo method, compared to the reference method.

ID P>1 mm P>0.1-P10 P>0.5-P10
Cp VP Cp VP CPp VP

1 12.6 9.3 124 9.7 15.8 11.0
2 10.4 7.7 11.2° 105 189 16.6
3 145 11.6 141 114 187 14.6
4 11.4 9.4 11.5 11.6 149 22.7
5 11.8 8.0 12.2 8.9 12.0 128
6 11.3 7.1 11.2 8.0 15.3  29.1
7 205 155 252 240 43.0 795
8 19.3 15.7 23.1 186 252 317
9 17.0 154 174 16.5 23.7 394
10 129 9.6 13.8 11.1 285 32.1

av. 142 109 152 13.0 21.6 289
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Parameters of the Analogue Method are optimized jointly and entirely objectively
Parameters that were manually selected can now be optimized automatically
Some parameter inter-dependencies have been demonstrated

New degrees of freedom could be added to the Analogue Method

The performance scores of the prediction were increased significantly
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