
ORIGINAL RESEARCH
published: 04 January 2017

doi: 10.3389/fnagi.2016.00318

Frontiers in Aging Neuroscience | www.frontiersin.org 1 January 2017 | Volume 8 | Article 318

Edited by:

Pedro Rosa-Neto,

McGill University, Canada

Reviewed by:

Ramesh Kandimalla,

Texas Tech University, USA

Haixian Wang,

Southeast University, China

*Correspondence:

Stefan J. Teipel

stefan.teipel@med.uni-rostock.de

Received: 21 September 2016

Accepted: 09 December 2016

Published: 04 January 2017

Citation:

Teipel SJ, Grothe MJ, Metzger CD,

Grimmer T, Sorg C, Ewers M,

Franzmeier N, Meisenzahl E,

Klöppel S, Borchardt V, Walter M and

Dyrba M (2017) Robust Detection of

Impaired Resting State Functional

Connectivity Networks in Alzheimer’s

Disease Using Elastic Net Regularized

Regression.

Front. Aging Neurosci. 8:318.

doi: 10.3389/fnagi.2016.00318

Robust Detection of Impaired
Resting State Functional
Connectivity Networks in Alzheimer’s
Disease Using Elastic Net
Regularized Regression

Stefan J. Teipel 1, 2*, Michel J. Grothe 2, Coraline D. Metzger 3, 4, Timo Grimmer 5,

Christian Sorg 6, 7, 8, Michael Ewers 9, Nicolai Franzmeier 9, Eva Meisenzahl 10,

Stefan Klöppel 11, 12, Viola Borchardt 13, Martin Walter 13, 14 and Martin Dyrba 2

1Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany, 2German Center for Neurodegenerative

Diseases, Site Rostock/Greifswald, Rostock, Germany, 3 Institute of Cognitive Neurology and Dementia Research and

Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany, 4German Center for

Neurodegenerative Diseases, Site Magdeburg, Magdeburg, Germany, 5Department of Psychiatry and Psychotherapy,

Klinikum rechts der Isar, Technische Universität München, Munich, Germany, 6Department of Neuroradiology of Klinikum

rechts der Isar, Technische Universität München, Munich, Germany, 7Department of Psychiatry of Klinikum rechts der Isar,

Technische Universität München, Munich, Germany, 8 TUM-Neuroimaging Center, Technische Universität München, Munich,

Germany, 9 Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität,

Munich, Germany, 10Department of Psychiatry, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich,

Germany, 11Department of Psychiatry and Psychotherapy, Section of Gerontopsychiatry and Neuropsychology, Faculty of

Medicine, University of Freiburg, Freiburg, Germany, 12University Hospital of Old Age Psychiatry, Bern, Switzerland, 13 Leibniz

Institute for Neurobiology, Magdeburg, Germany, 14Department of Psychiatry, University of Tübingen, Tübingen, Germany

The large number of multicollinear regional features that are provided by resting state

(rs) fMRI data requires robust feature selection to uncover consistent networks of

functional disconnection in Alzheimer’s disease (AD). Here, we compared elastic net

regularized and classical stepwise logistic regression in respect to consistency of

feature selection and diagnostic accuracy using rs-fMRI data from four centers of the

“German resting-state initiative for diagnostic biomarkers” (psymri.org), comprising 53

AD patients and 118 age and sex matched healthy controls. Using all possible pairs

of correlations between the time series of rs-fMRI signal from 84 functionally defined

brain regions as the initial set of predictor variables, we calculated accuracy of group

discrimination and consistency of feature selection with bootstrap cross-validation. Mean

areas under the receiver operating characteristic curves as measure of diagnostic

accuracy were 0.70 in unregularized and 0.80 in regularized regression. Elastic net

regression was insensitive to scanner effects and recovered a consistent network of

functional connectivity decline in AD that encompassed parts of the dorsal default

mode as well as brain regions involved in attention, executive control, and language

processing. Stepwise logistic regression found no consistent network of AD related

functional connectivity decline. Regularized regression has high potential to increase

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
https://doi.org/10.3389/fnagi.2016.00318
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2016.00318&domain=pdf&date_stamp=2017-01-04
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:stefan.teipel@med.uni-rostock.de
https://doi.org/10.3389/fnagi.2016.00318
http://journal.frontiersin.org/article/10.3389/fnagi.2016.00318/abstract
http://loop.frontiersin.org/people/122840/overview
http://loop.frontiersin.org/people/196726/overview
http://loop.frontiersin.org/people/42732/overview
http://loop.frontiersin.org/people/26098/overview
http://loop.frontiersin.org/people/380174/overview
http://loop.frontiersin.org/people/52624/overview
http://loop.frontiersin.org/people/11793/overview
http://loop.frontiersin.org/people/379671/overview
http://psymri.org


Teipel et al. Impaired Functional Connectivity in AD

diagnostic accuracy and consistency of feature selection from multicollinear functional

neuroimaging data in AD. Our findings suggest an extended network of functional

alterations in AD, but the diagnostic accuracy of rs-fMRI in this multicenter setting did

not reach the benchmark defined for a useful biomarker of AD.

Keywords: regularization, diagnostic imaging, feature selection, functional magnetic resonance imaging (fMRI),

Alzheimer’s disease

INTRODUCTION

Many studies have identified altered functional connectivity
networks in resting state examinations of Alzheimer’s disease
(AD) patients compared to controls using functional imaging
techniques such as FDG-PET or resting state functional MRI (rs-
fMRI) (for a recent review see Teipel et al., 2016). Typically AD
dementia impairs functional connectivity in the default mode
network (DMN; Greicius et al., 2004), but AD pathological
changes and ensuing functional disruptions have been shown
to extend beyond the regions of the DMN (Agosta et al., 2012;
Grothe et al., 2016).

To identify the network characteristics of AD-related changes
in functional imaging data, most studies have employed stepwise
or multiple linear regression approaches (Agosta et al., 2012;
Koch et al., 2012; Sheline and Raichle, 2013). However, features
from rs-fMRI and other functional imaging data are often highly
collinear across regions, and linear regression approaches are
known to be highly sensitive toward collinearity (James et al.,
2013; Section 3.3.6). In the presence of a high number of features
relative to the number of available observations (Tibshirani,
2011) and when features are collinear (Hoerl and Kennard,
1970; Tibshirani, 1996), regularization techniques have been
established for dimension reduction and feature selection. More
recently, regularized models, using an elastic net penalty (Zou
and Hastie, 2005; Zou and Zhang, 2009), have been applied
to multimodal neuroimaging studies to reduce the effect of
multicollinearity on feature selection (Trzepacz et al., 2014;
Teipel S. J. et al., 2015; Schouten et al., 2016; de Vos et al., 2016).

Here, we used rs-fMRI data from a multicenter study to
compare accuracy of group separation, as well as stability
of regional feature selection and ensuing identification of
cortical networks discriminating AD patients and controls
between cross-validated regularized logistic regression with an
elastic net penalty and classical stepwise logistic regression.
We hypothesized that elastic net logistic regression would lead
to more generalizable feature selection and more consistent
network identification than classical stepwise logistic regression.
Of note, the principles of these methods, except the elastic net
penalty, represent textbook knowledge from statistical learning
literature, but adoption of these methods to the burning
issue of highly collinear features in neuroimaging research is
still slow.

MATERIALS AND METHODS

For the current study, we used data from 53 patients with
clinically probable AD according to NINCDS-ADRCA criteria

(McKhann et al., 1984) and 118 healthy elderly control
individuals that have been retrieved retrospectively from four
sites within the framework of the “German resting-state
initiative for diagnostic biomarkers” (http://www.psymri.org).
Distribution of demographic characteristics of participants across
sites is summarized in Table 1.

All participants were free of any significant neurological,
psychiatric, or medical condition (except for AD in patients),
in particular cerebrovascular apoplexy, vascular dementia,
depression, or subclinical hypothyroidism, as well as substance
abuse. Healthy controls were required to have no cognitive
complaints and scored within one standard deviation of the age
and education adjusted norm in all subtests of the Consortium
to Establish a Registry of Alzheimer’s Disease (CERAD) cognitive
battery (Morris et al., 1989).

Written informed consent was provided by all subjects,
or their representatives. The study was approved by local
ethics committees at each of the participating centers, and
has been conducted in accord with the Helsinki Declaration
of 1975.

Imaging and Data Acquisition
The data used in this study were obtained from four different
3.0 Tesla MRI scanners. Acquisition parameters for the rs-fMRI
sequences are given in Table 2. In one center (site I), the subjects
were instructed to keep their eyes open, whereas in the remaining
centers (sites II-IV) all subjects were requested to close their
eyes, relax, but not to fall asleep. Functional MRI was based on
echo-planar imaging using scan durations between 6 and 8.7 min
for the rs-fMRI sequence. The number of acquired time points
was between 120 and 200 with a voxel size ranging from 2 × 2
× 2.6 up to 3.28 × 3.28 × 4.4 mm3 (Table 2). For anatomical
reference, high-resolution T1-weighted gradient echo sequences

TABLE 1 | Demographic characteristics.

AD Controls

No. cases (women)a 53 (31) 118 (61)

Age (SD) [years]b 72.4 (8.8) 70.4 (6.2)

MMSE (SD), numberc 22.5 (4.4), 53 28.8 (1.0) 97

MoCA (SD), number – 26.4 (2.1), 19

Education (SD) [years]d 11.4 (2.1) 13.6 (3.1)

MMSE, Mini Mental State Examination (Folstein et al., 1975); MoCA, Montreal Cognitive

Assessment (Nasreddine et al., 2005).
aNot significantly different between groups, χ2

= 0.68, 1 df, p = 0.41.
bNot significantly different between groups, t = 1.67, 169 df, p = 0.96.
csignificantly different between groups, Mann-Whitney U-test, p < 0.001.
dsignificantly different between groups, t = −4.72, 168 df, p < 0.001.
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TABLE 2 | Scanner characteristics.

Center Model Manufacturer TR TE Volumes Voxel size Gap

[s] [s] [mm3] [mm]

I TrioTim Siemens 2.61 0.030 200 3 × 3 × 3.6 0.6

II Verio Siemens 3 0.030 120 2 × 2 × 2.6 0.6

III Verio Siemens 2.58 0.030 180 3.5 × 3.5 × 3.5 0

IV Trio Siemens 3 0.030 120 3.28 × 3.28 × 4.4 0.4

with an isotropic resolution of 1 mm3 were also obtained from all
scanners during the same session.

MR Processing
Functional MRI data processing was carried out using Data
Processing Assistant for Resting-State fMRI (DPARSF
3.2) (Chao-Gan and Yu-Feng, 2010), considering the
recommendations from a recent systematic evaluation of
processing alternatives (Shirer et al., 2015). After the removal
of the first six images to account for gradient field stabilization,
the rs-fMRI data was slice time corrected and realigned to
the temporal mean image. The anatomical T1-weighted image
of each participant was coregistered to the mean functional
image and subsequently segmented into gray matter, white
matter, and cerebrospinal fluid (CSF) partitions using the Voxel-
based Morphometry (VBM8) toolbox (Gaser et al., 1999) that
extends Statistical Parametric Mapping (SPM8) (Friston et al.,
2007). The Diffeomorphic Anatomical Registration Through
Exponentiated Lie algebra (DARTEL) algorithm (Ashburner,
2007) was applied to normalize the T1-weighted images to the
Montreal Neurological Institute (MNI) reference coordinate
system using the default brain template included in VBM8. The
deformation fields generated by DARTEL were used to project
the functional scans from each subjects’ native image space
into the MNI reference space. We combined this step with the
reslicing of all functional data to an isotropic resolution of 3
mm. The subsequent nuisance regression included covariates
of head movement (rotation, translation, and first and second
order derivatives) and the mean time courses for the global
brain signal, the white matter segment signal, and the CSF
segment signal. Although global signal regression was found
to introduce negative correlations (Murphy et al., 2009; Shirer
et al., 2015), studies consistently reported that it effectively
increases the signal-to-noise ratio (Yan et al., 2013; Power
et al., 2014; Shirer et al., 2015). Recently, Shirer et al. evaluated
the influence of global signal regression on group separation
but only found a minor, non-significant effect (Shirer et al.,
2015). Subsequently, the images were band-pass filtered using
the frequency band 0.1–0.01 Hz. For each individual the time
series of signal was extracted for each of the 84 functionally
defined regions of the Greicius atlas (Shirer et al., 2012).
Pearson’s correlation coefficients were computed for the
3486 possible pairs of correlations between these 84 regions
(Shirer et al., 2012). Finally, Pearson correlation coefficients
of the signal time courses were adjusted to be normally
distributed using Fisher’s Z-transform (Fisher, 1915): z = 0.5 ln
[(1+r)/(1–r)].

Statistical Analysis
Demographic Characteristics
Baseline demographic characteristics were compared between
AD and control cases using parametric and non-parametric tests
as required: age and years of education were compared between
groups using Student’s t-test, gender distribution using Chi2

test, and neuropsychological test results using non-parametric
Mann-Whitney U-test.

Prediction of Group Membership
We compared two regression models for prediction of group
membership (AD vs. controls) in respect to two outcomes, (i)
the accuracy of prediction as determined by the area under
the receiver operating characteristics curve (AUC), and (ii) the
consistency of feature selection.

The two regression models encompassed:

1. bidirectional (backward and forward) stepwise unpenalized
logistic regressions using the function step in R (The R
Foundation for Statistical Computing). The function weights
the choices via the Akaike information criterion (AIC), which
takes account of the total number of fitted parameters.

2. penalized logistic regression models with an elastic net
penalty, as determined using the R package glmnet (available
at http://cran.r-project.org/web/packages/glmnet/index.
html). Elastic net regression is controlled by two parameters,
(i) alpha, which sets the degree of mixing between two
types of regularized regression, namely ridge regression
(regularization by squared L2 norm; alpha = 0) and the
Lasso (Least Absolute Shrinkage and Selection Operator,
regularization by L1 norm; alpha = 1), and (ii) lambda,
defining the strength of regularization (Friedman et al., 2010).
Alpha was selected to be 0.5, corresponding to a full elastic net
penalty, which minimized the partial likelihood deviance of
the model (see Figure 1). Lambda was determined using grid
search with 100-fold cross-validation. The optimal lambda
was determined as the mean across 100 iteratively determined
lambda values minimizing the deviance of the model. The
optimal lambda value was determined for each bootstrap
iteration in the training data and applied to the test data as
defined below. Details of this method can be found in the
appendix.

Both models were determined using strict cross-validation
procedures. Random samples of 2/3 of the data were drawn
1000 times to train the prediction models (training data). For
both regression models, the prediction accuracy was determined
using the remaining 1/3 as test data. Parameter optimization,
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FIGURE 1 | Selection of alpha parameter for penalized logistic regression. Misclassification error plotted against the range of lambda values (plotted on a

logarithmic scale) for different values of α for a penalized logistic regression on the rs-fMRI data. Numbers on top of each graph indicate the number of selected

variables. Error bars indicate the bootstrapped standard deviation for the misclassification error for each lambda value. The left bottom plot shows the different

deviance curves on a unified scale, indicating that α = 0.5 yields the lowest deviance together with α = 0, corresponding to a ridge regression model.

i.e., selection of optimal lambda and (stepwise) feature selection,
was conducted in the training data and subsequently applied
to the test data. Prior to model building, the feature space
was restricted through determining the set of variables which
correlate with diagnosis with a Pearson’s correlation coefficient
of |r| > 0.35 in the training data, resulting in an average number
of 36 included predictor variables across the bootstrapped
repetitions.

In a second analysis, dummy coded center variables
were forced as additional variables into the models to
determine the effect of center on model accuracy and feature
selection.

To check for multicollinearity of the stepwise logistic
regression models, we determined the variance inflation factor
(VIF) (Belsley, 1991) for each independent variable on the set
of the remaining independent variables using the function vif
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in R package “car” (available at https://cran.r-project.org/web/
packages/car/index.html).

RESULTS

Demographic Characteristics
Demographic characteristics are summarized in Table 1. AD
patients and controls were not significantly different in age
(t = 1.67, 169 df, p= 0.96) or sex distribution (Chi2 = 0.68, 1 df,
p= 0.41). Both groups differed significantly in years of education
(t = −4.72, 168 df, p < 0.001), with less years of education in
the AD cases, and, as expected, AD patients scored significantly
lower than healthy controls in the MMSE score (p < 0.001).

Prediction of Group Membership
The median VIF across all stepwise regression models and
variables was 86, indicating a very high collinearity in the large
majority of models. Mean area under the ROC curves in the
test samples was 70% for the stepwise selection, and 80% for the
elastic net regression models for the discrimination between AD
cases and controls. The mean AUC and corresponding 2.5/97.5
percentile confidence intervals for both models are shown in
Figure 2. The selected features are shown in Table 3 for both
models, with seven features selected in at least 50% of 1000
cross-validation repetitions for the elastic net and two features
selected for the stepwise logistic regression model. Figures 3, 4
show the frequency distribution of feature selection, suggesting
that features were more homogeneously and more often selected
in the cross-validation repetitions for the elastic net compared to

FIGURE 2 | Areas under the ROC curves for stepwise and elastic net

logistic regression. AUC and 2.5/97.5 percentile confidence intervals for

stepwise logistic regression without scanner (step.) and with scanner forced

into the model (step. plus), and for elastic net logistic regression without

scanner (EN) and with scanner forced into the model (EN plus).

the stepwise logistic regression models, with a median value of 10
features with the stepwise regression and 22 features in the elastic
net regression.

When we repeated the analyses with dummy coded center
covariates forced into the models, AUC was 81% for the elastic
net penalty, and selected features above 50% frequency were
unchanged. For the stepwise regression, AUC decreased to 68%,
and no feature was selected with a frequency above 45%.

DISCUSSION

In accordance with our hypothesis, we found more accurate
group discrimination between AD dementia cases and controls
and more homogeneous feature selection from resting state
fMRI data when using regularized logistic regression with an
elastic net penalty compared with a classical stepwise logistic
regression. These findings support the notion that regularized
regression is superior to classical stepwise feature selection
for dealing with highly collinear multidimensional functional
imaging data. The features retrieved from penalized regression
point to alterations of an extended functional network in
mild AD dementia, compromising the dorsal DMN, but also
key regions for language processing, object recognition and
attention.

As illustrated by the high VIF with a median value of
86 (values above five are considered indicative for serious
multicollinearity; Belsley, 1991), the regional rs-fMRI values
exhibited a high degree of collinearity that compromised
unbiased feature selection and determining the relevance of
single features. The problem of dealing with multidimensional,
multicollinear data is well-known in the statistical literature
under the term of “the curse of dimensionality” (Bellman, 1961).
Penalized regression has been developed since the 1940s to deal
with this problem, encompassing techniques like ridge regression
(Hoerl, 1970), the Lasso (Tibshirani, 1996), and more recently
elastic net regression (Zou and Hastie, 2005), which combines
both regularization techniques within the same model. Different
to ridge regression, and similar to the Lasso, elastic net regression
not only shrinks the feature coefficients but sets some of the
coefficients to zero, thus reducing the dimensionality of the
feature space. Different to the Lasso, elastic net regression is
designed to select highly correlated features as a group rather
than selecting only a single feature out of such a set of highly
correlated variables, thus preserving a potentially meaningful
correlation structure of the original feature space (Zou and
Hastie, 2005).

Previous neuroimaging studies have successfully applied
elastic net regression to multimodal neuroimaging data for
feature selection for dementia prediction in subjects with mild
cognitive impairment (MCI), and AD cases (Trzepacz et al.,
2014; Teipel S. J. et al., 2015; de Vos et al., 2016). A previous
study has applied this approach to rs-fMRI data of people with
mild to moderate AD dementia from one scanner (Schouten
et al., 2016), reaching 77% accuracy in the mild AD subgroup.
In our multicenter study, cross-validated accuracy of 80%
discrimination between AD cases and controls from elastic net
regression was higher than the accuracy in this previous study
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TABLE 3 | Selected features.

Frequency [%] Anatomical regions Functional networks (Shirer et al., 2012)

FEATURES FROM ELASTIC NET

94.5 Left/right gyrus temporalis superior Auditory network

87.1 Right gyrus frontalis superior <-> left gyrus occipitalis medialis Basal ganglia network <-> visuospatial network

79.8 Left gyrus frontalis medialis <-> bilateral precuneus Anterior salience network <-> precuneus network

69.9 Left/right precentral gyrus Sensorimotor network

68.7 Right gyrus frontalis inferior <-> cingulate gyrus body Anterior salience network <-> dorsal DMN

60.9 Right gyrus angularis <-> right gyrus frontalis medialis Dorsal DMN <-> right executive control network

59.9 Bilateral anterior cingulate gyrus/ left gyrus frontalis superior/left gyrus

frontalis medialis <-> left lobulus parietalis inferior/superior

Dorsal DMN <-> left executive control network

FEATURES FROM STEPWISE LOGISTIC REGRESSION

56.9 Left/right precentral gyrus Sensorimotor network

53.8 Right gyrus frontalis superior <-> left gyrus occipitalis medialis Basal ganglia network <-> visuospatial network

FIGURE 3 | Feature selection frequency plot. Frequency of selected

features (based on 1000 bootstrap iterations) for elastic net and stepwise

logistc regression. Please note that the x-axis represents the features that

were sorted according to their frequency independently within each model.

Therfore, the same position on the x-axis does not indicate the same feature

for the elastic net and the stepwise logistic regression models, respectively.

(Schouten et al., 2016), but still lower than results from previous
monocenter studies lacking cross-validation (Koch et al., 2012;
Balthazar et al., 2014). Our findings level of accurcy agrees
with estimates from previous cross-validated monocenter studies
using non-linear machine learning techniques for classification
(Challis et al., 2015; Dyrba et al., 2015). One recent study yielded
100% group discrimination between 20 AD patients and 20
controls using support vector machine classification (Khazaee
et al., 2015). From the method description, however, the feature
selection prior to cross-validated machine learning was based on
the entire data set and was not part of the cross-validation.

FIGURE 4 | Number of features selected per model. Histograms plotting

the frequency with which a number of features was selected across all

bootstrapping iterations for elastic net (blue) and stepwise logistc

regression (red).

Features selected by the elastic net regression were more
consistent across repeated cross-validations than features
selected by stepwise regression. Previous research on rs-fMRI in
AD dementia has often focused on the DMN regions (Greicius
et al., 2004; Koch et al., 2012; Balthazar et al., 2014). This
approach reduces potential problems from collinearity through a
priori feature selection. At the same time, it restricts the analysis
to a single preselected functional network. Using elastic net
regression, we retrieved the dorsal part of the DMN as key part of
altered functional connectivity in AD. This agrees with previous
analyses based on preselected DMN regions (Greicius et al., 2004;
Koch et al., 2012; Balthazar et al., 2014) and underscores the
overall validity of our approach. In addition, we found decreased
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functional connectivity in AD in the superior temporal gyrus,
a region that is involved in language processing (Zhuang et al.,
2014), and prefrontal parts of the salience network, prefrontal
and parietal components of executive control networks, as
well as the medial occipital gyrus as part of the ventral visual
stream involved in object recognition (Teipel et al., 2007) and
recognition of limb movements (Astafiev et al., 2004). These
findings support the extended nature of AD pathology affecting
several higher order cognitive networks, as previously found
in topographic lesion driven studies (Grothe et al., 2016) and
rs-fMRI analysis in small samples of 12 to 16 AD cases and
12–22 controls (Zhou et al., 2010; Agosta et al., 2012; Dai et al.,
2012), and one large scale study (Brier et al., 2012). Different
to two of these previous studies (Zhou et al., 2010; Agosta
et al., 2012), we found only reductions, but no increases of
functional connectivity in AD. This difference may have two
possible causes. The first possible cause would be different
severity of disease within the dementia stage of AD. However,
the MMSE scores were similar between the AD cases of our and
the previous studies. Another cause may be the different metric
used as prediction features: we used correlation between regions
irrespective of preselected networks, whereas the previous
studies used regional loadings on independent components
associated with specific functional networks (Agosta et al., 2012;
Zhou et al., 2010).

Compared with elastic net regression, stepwise regression
yielded only 70% accuracy. In addition, selection of the most
relevant features was much less consistent across the 1000
iterations, compromising only two functional connections
between sensorimotor and visuospatial regions, and no
connection involving the DMN. These findings suggest that
feature selection in step-wise regression was more sensitive to
multicollinearity, where small differences in explained variance
drive almost arbitrarily selection of a single feature among a set
of highly collinear variables (Farrar and Glauber, 1967).

Stepwise logistic regression was sensitive to scanner effects,
with a slight drop in prediction accuracy and a further loss of
consistency in feature selection when scanner was forced into
the model. In contrast, elastic net regression was insensitive
to scanner effects; both accuracy of group discrimination and
frequency of feature selection were unaffected when we repeated
the analyses with scanner forced into the cross-validated models.
This finding is of particular relevance given the sensitivity of
rs-fMRI data to multiscanner effects, as has been reported in
test-retest studies of rs-fMRI even in healthy people repeatedly
scanned at the same scanner (Meindl et al., 2010; Chen et al.,
2015; Lin et al., 2015; Orban et al., 2015; Shirer et al., 2015;
Jovicich et al., 2016), including long-term evaluation after more
than 12 months (Chou et al., 2012; Guo et al., 2012; Blautzik
et al., 2013). Moreover, the use of multiple scanners typically
results in high variability of signal-to-noise and contrast-to-noise
ratios, particularly when using field strengths of 3T and higher
(Magnotta et al., 2006; Lin et al., 2015; Jovicich et al., 2016).

We need to consider two main limitations of our study.
First, the scan protocols were different between scanners.
Multiscanner acquisition helps to increase sample size, a problem
of many previous monocenter studies. In addition, estimates

of accuracy derived from multicenter data may more easily
generalize to future use of an imaging technology in routine care
than estimates derived from single center data acquisition. We
employed preprocessing steps that had been shown in a previous
study to reduce multiscanner effects (Shirer et al., 2015), and
used cross-correlation of regional signal time series which in a
previous study had yielded more stable results across scanners
than other connectivity metrics, such as cross-coherence or
partial cross-correlation (Fiecas et al., 2013). Secondly, the
reference standard in our sample was a clinical diagnosis of
AD dementia, but independent PET or CSF based biomarker
validation was not available in the majority of cases. Data came
from expert centers experienced in the early diagnosis of AD.
Still, a final judgment of the added value of rs-fMRI for AD
diagnosismust await systematic evaluation of diagnostic accuracy
in multicenter data from biomarker stratified cases.

In summary our findings point to an extended network of
functional disconnection, including the dorsal DMN, but also
involving functional networks employed in attention, object
recognition and language processing. In a multicenter sample
of AD and control cases, elastic net regression yielded cross-
validated diagnostic accuracy that approached, but did not reach,
the benchmark for a useful biomarker of AD (Consensus-Group,
1998); diagnostic approaches based on stepwise regression came
not even close to this benchmark. These findings question the
future wide-spread use of rs-fMRI as a stand-alone diagnostic
marker of AD (Teipel S. et al., 2015). This does not exclude
an important role of rs-fMRI as add-on diagnostic marker
(Dai et al., 2012) and to identify mechanisms of functional
disconnection and resilience in future prospective studies. Our
data suggest that regularized regression should be preferred over
still more widely used but less robust stepwise feature selection to
retrieve homogeneous and stable estimates of altered functional
networks in AD.
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