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Methane-derived carbon, incorporated by methane-oxidizing bacteria, has

been identified as a significant source of carbon in food webs of many

lakes. By measuring the stable carbon isotopic composition (d13C values)

of particulate organic matter, Chironomidae and Daphnia spp. and their rest-

ing eggs (ephippia), we show that methane-derived carbon presently plays a

relevant role in the food web of hypertrophic Lake De Waay, The Nether-

lands. Sediment geochemistry, diatom analyses and d13C measurements of

chironomid and Daphnia remains in the lake sediments indicate that oligo-

trophication and re-eutrophication of the lake during the twentieth

century had a strong impact on in-lake oxygen availability. This, in turn,

influenced the relevance of methane-derived carbon in the diet of aquatic

invertebrates. Our results show that, contrary to expectations, methane-

derived relative to photosynthetically produced organic carbon became

more relevant for at least some invertebrates during periods with higher

nutrient availability for algal growth, indicating a proportionally higher

use of methane-derived carbon in the lake’s food web during peak eutrophi-

cation phases. Contributions of methane-derived carbon to the diet of the

investigated invertebrates are estimated to have ranged from 0–11%

during the phase with the lowest nutrient availability to 13–20% during

the peak eutrophication phase.
1. Introduction
Eutrophication of inland waters as a consequence of human impact has a detri-

mental effect on different aspects of the water quality of lakes, rivers and

streams [1]. For example, the process can change the chemical properties of

the water, leading to oxygen depletion [2] and accumulation of nutrients in

the anoxic hypolimnion [3]. Lake ecosystems with low oxygen concentrations

and high nutrient loading are characterized by higher output of the important

greenhouse gas methane (CH4) than oxygen-rich lakes and lakes with lower

nutrient availability [4,5], particularly via gas bubbles (ebullition) and release

of CH4 stored in the anoxic hypolimnion during lake overturning [6]. CH4

formed in lakes can be oxidized by methane-oxidizing bacteria (MOB), predo-

minantly in oxygenated sections of the lake basin [7]. Biogenic CH4 in

freshwater systems is characterized by distinctly low ratios between the stable
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Figure 1. Bathymetric map of Lake De Waay. The circles indicate the coring
locations (see the electronic supplementary material): (09) core WAY09 presented
in this study, (05) core WAY05 investigated by Kirilova et al. [33] from which we
used the XRF data (see below). Asterisks (*) indicate locations of the surface sedi-
ment samples at 2.5, 5, 8 and 14.5 m depth. Lake water nutrient concentrations
and pH were measured in August 2011. TP, total phosphorus; TN, total nitrogen.
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carbon isotopes 13C and 12C (expressed as d13C values; 280 to

250‰) [8,9] and MOB are known to discriminate against the

heavier 13C when metabolizing CH4, resulting in even lower

d13C values of MOB biomass [10]. These very low values do

not occur in aquatic and terrestrial photosynthetic primary

producers (235 to 210‰ [11–15]). The very low observed

d13C values of, for example, larvae of non-biting midges

(Chironomidae) of the tribe Chironomini [16,17] and plank-

tonic water fleas of the genus Daphnia (Cladocera) [18] in

some lakes are therefore considered a clear indication of

MOB, or organisms feeding on MOB, forming a relevant

part of the diet of these organisms.

Planktonic filterers such as Daphnia can graze MOB from

the water column during stratification, a process which can

effectively reduce MOB biomass and lead to increased epi-

limnetic CH4 concentrations at least in some shallow boreal

lakes [19]. Furthermore, Daphnia has been shown to rely

strongly on MOB-derived carbon during autumn overturn-

ing, when the CH4 stored in deep anoxic water layers of

stratified lakes comes into contact with oxygen [20]. Benthic

invertebrates that can incorporate CH4-derived carbon, such

as chironomid larvae of the tribe Chironomini, either feed

on MOB in the sediments (deposit feeders) or MOB associ-

ated with suspended organic particles (filter feeders). Some

Chironomini larvae have been shown to actively maintain

an oxic–anoxic interface within their tubes, providing a

habitat for MOB which they feed on [21]. d13C values of chir-

onomids and Daphnia closely reflect those of their food source

(differences of 0–1‰) and of their fossilizing chitinous struc-

tures (reported offsets of 0–1‰) [22–25]. Chitinous remains

deposited and buried in the lake sediments retain their

original isotopic composition [23]. Hence, analysis of d13C

values of ‘fossil’ chironomid and Daphnia remains can pro-

vide insights on their past food sources and into whether

CH4-derived carbon formed a major component of their

diet [23,26–31]. Available studies indicate that chitinous

remains with low d13C values are deposited in lakes

with high surface and deep water CH4 concentrations and

diffusive CH4 emissions [28,29].

It is unclear whether an increase in nutrient loading, in

addition to a higher CH4 output, also results in a higher con-

tribution of CH4-derived carbon to the lake food webs. Higher

photosynthetic primary productivity associated with higher

nutrient loading can increase the availability of algal organic

matter. As a consequence, a higher proportion of algae in

the diet of invertebrate groups that may also incorporate

CH4-derived carbon could be expected. However, higher

algal productivity can also lead to decreased oxygen concen-

trations in lake sediments and deep water layers, and

associated increases in CH4 production and CH4 availability

in lake ecosystems. This can favour the growth of MOB and

their temporal and spatial availability within lakes. Therefore,

how the relevance of CH4-derived carbon in the food web of

lakes changes under influence of (past or future) changes in

nutrient concentrations and productivity remains poorly con-

strained, particularly on decadal time scales which are not

covered by instrumental measurements of CH4 concentrations

and d13C values in aquatic ecosystems.

The d13C values of chitinous remains of aquatic invert-

ebrates were previously mainly studied in oligo- to

mesotrophic, often remote lakes [27,29,30,32]. Here, we pre-

sent a study of the d13C values of fossil Chironomini head

capsules and Daphnia resting eggs (ephippia) from recent
(twentieth century) sediments from a small and presently

hypertrophic dimictic lake in The Netherlands (figure 1).

The study lake, Lake De Waay, underwent a transition from

eutrophic (total phosphorus (TP) � 100 mg l21) to more meso-

trophic conditions (TP � 40 mg l21) and then again to

hypertrophic conditions (TP . 100 mg l21) during the past

approximately 100 years [33,34]. The impact of twentieth-

century temperature changes on lake ecosystems in The

Netherlands is likely to have been relatively minor compared

with direct anthropogenic environmental disturbances.

Therefore, this study provides an opportunity to investigate

the effects of both oligotrophication and (re-)eutrophication

and the associated changes in oxygenation regime on the con-

tribution of CH4-derived carbon to the aquatic food web, and

indirectly on in-lake dissolved CH4 availability, under rela-

tively stable climatic conditions. We compare fossil

invertebrate d13C values with a diatom-inferred reconstruc-

tion of total phosphorus concentrations (DI-TP) in the lake

water and the Fe : Mn ratio of the sediments, which is

expected to increase with decreasing oxygen availability at

the sediment–water interface [35]. If CH4-derived carbon

became more relevant for Lake De Waay’s food web under

conditions with higher nutrient availability, we expect to

see a positive relationship between nutrient availability (DI-

TP) and anoxia (Fe : Mn ratio), which in turn are expected

to be negatively related to d13C values of the examined invert-

ebrate groups that can incorporate CH4-derived carbon.

Conversely, if higher availability of algal material in the

eutrophic to hypertrophic phases led to a lower relevance

of CH4-derived carbon for the investigated aquatic invert-

ebrates, we expect to see positive relationships between the

d13C values of the studied invertebrate groups and DI-TP

and Fe : Mn in Lake De Waay.
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Figure 2. d13C values of (a) POM, (b) Chironomini body tissue, (c) Daphnia body tissue (open circles) and Daphnia ephippia (dots) sampled on 3 September and
30 November 2009 and 1 March and 1 June 2010. The lines indicate the d13C values of bulk sediment organic matter from the top sample of the core (a), d13C
values of Chironomini head capsules from surface sediment at 5 m water depth (two replicates) (b), and d13C values of Daphnia ephippia from surface sediments at
5 m water depth (two replicates, dashed lines) and 15 m water depth (solid line) (c). (d ) Boxplot showing the range of d13C values from the field survey, as well as
the d13C of CH4 sampled in the sediment and in oxic and anoxic water. Whiskers of the boxplots encompass data points no more than 1.5 times the interquartile
range from the box. V-PDB, Vienna Pee Dee Belemnite.
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2. Material and methods
(a) Current conditions in the lake
To assess the current range of d13C values of chironomids,

Daphnia, floating Daphnia ephippia and suspended particulate

organic matter (POM) in the water column of Lake De Waay,

field sampling was conducted on 3 September and 30 November

2009, and 1 March and 1 June 2010. Living organisms were

collected using plankton nets, kicknets and inspection of

submerged wood and rope. In the laboratory, organisms were

sorted and transferred to tin cups and water was filtered

for d13C analysis (see the electronic supplementary material for

details on sampling and processing).

On 3 September 2009, nine sediment cores were taken using a

gravity corer (UWITEC, Austria): five at 14.5 m water depth and

four at 5 m water depth. The top 2 cm of sediment were sampled

in the field. Sediment was treated with 10% potassium hydroxide

for 2 h at room temperature and sieved (200 mm). From the sieve

residue, approximately 50 subfossil Daphnia ephippia and head

capsules of chironomids of the tribe Chironomini were cleaned

with a forceps and placed in pre-weighed tin cups for isotope

analysis, resulting in one sample for d13C analysis of Daphnia
ephippia from 14.5 m and two from 5 m water depth, and two

samples of Chironomini head capsules from 5 m water depth.

On 9 August 2011, water samples were collected to character-

ize CH4 concentration in the lake water during late summer

stratification, and for analysis of d13C values of CH4 as a basis

for isotope mixing models (see [36] and the electronic sup-

plementary material for full details). In addition, we retrieved

more surface sediments (0–2 cm) from 2.5, 8 and 14.5 m depth

as described above which were sent to the Netherlands Institute

of Ecology (NIOO) for quantitative polymerase chain reaction

(qPCR) analysis to assess the presence and abundance of metha-

nogens and MOB (see the electronic supplementary material for

details on the methods).

(b) Down-core study
On 30 November 2009, a 68 cm long core (WAY09) was taken at

8 m water depth ( just beneath the summer thermocline) using a

gravity corer, and sampled on site at 2 cm intervals. Seventeen

samples were prepared for gamma spectrometric determination

of 137Cs (see the electronic supplementary material). A sub-

sample from the same sampling depths (approx. 12 mg dry

weight) was treated with 2.5% HCl to remove carbonates [35],

then freeze dried and subsequently loaded into tin cups for
bulk sediment d13C analysis. Further subsamples were used to

reconstruct diatom-inferred total phosphorus concentrations

(DI-TP) following Kirilova et al. [33,34] (see the electronic

supplementary material).

Sediment cores taken by Kirilova et al. [33] from Lake De Waay

(WAY05) were previously analysed using a XRF core scanner

(Avaatech, The Netherlands). Here, we use the ratio between Fe

and Mn as an indication of past changes in the oxygen regime of

the lake. Higher values in this ratio are indicative for lower

oxygen availability [37,38]. Cores WAY09 (this study) and WAY05

were correlated by comparing their 137Cs profiles (see the electronic

supplementary material). Invertebrate remains were sorted from 17

samples and analysed for their d13C values, following the same pro-

cedure as for subfossil remains in the surface sediment samples (see

above and the electronic supplementary material). Relationships

and lags between records were quantified by cross-correlation

analysis, after linear detrending of the time series (see the electronic

supplementary material).

To assess how much carbon in the diet of Chironomini and

Daphnia could derive from CH4, and how strongly this contri-

bution may have varied in the past, we applied a two-source

mixing model [39] to the modern and down-core invertebrate

d13C data. As end-members, d13C values of POM (average) and

a CH4 sample from the sediment pore space were chosen, the

latter modified by 26‰ to account for fractionation by MOB

[10] (see the electronic supplementary material for further

details). For the mixing model, we assumed no change in base-

line d13C of CH4 and POM over time because d13C values of

bulk sedimentary organic matter remained very stable within

our record (230.5+0.5‰).
3. Results
(a) Current conditions in the lake
POM d13C values (both 0–60 and 0–250 mm fractions were ana-

lysed) were around 236‰ in late autumn and late winter, and

230‰ in late spring and late summer (figure 2a). The d13C value

of bulk sedimentary organic matter in the top sediment layer at

the coring site was 231.3‰ and the atomic C : N ratio was 13.1,

suggesting a predominantly lacustrine origin of organic material

with some terrestrial contributions [35]. Chironomids of the

tribe Chironomini (figure 2b) had an average d13C value of

232.5‰ (n ¼ 31, standard deviation (s.d.)+1.95‰), which

http://rspb.royalsocietypublishing.org/
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agrees well with values of Chironomini head capsules from the

surface sediment samples (233.0 and 233.4‰). Only three indi-

vidual chironomid larvae had lower d13C values than the POM,

all belonging to Glyptotendipes barbipes-type and collected in late

autumn (237.8, 239.0 and 239.0‰). Daphnia d13C values were

highly variable (average 236.6+6.8‰, n ¼ 6; figure 2c). In late

winter, they were much lower than the POM (244.2 and

244.3‰) as opposed to late summer (226.5‰) and late

spring (235.0, 234.6 and 234.8‰). Insufficient Daphnia
were collected in late autumn for a measurement. Floating

Daphnia ephippia d13C values were lower (average 241.7+
4.8‰, n ¼ 9; figure 2c) than POM throughout the year and the

values were in agreement with those found in ephippia from

surface sediments (238.6, 239.3 and 239.6‰). Most notably,

in late autumn, the floating ephippia reached d13C values as

low as 249.4‰.

d13C values of six CH4 samples from anoxic waters and sedi-

ments ranged from 269.0 to 267.5‰, whereas values for two

samples from oxygen-rich waters were 251.3 and 250.6‰

(figure 2d). CH4 concentrations in the surface and bottom

waters were 1.1 and 479 mM, respectively. qPCR analyses

revealed that gene copy numbers of methanotrophic bacteria

as well as of methanogenic archaea in sediment samples

increased with water depth (electronic supplementary material,

table S1). At 2.5 m water depth, the numbers of methanotrophs

in the sediments were below detection limit (approx. 103 gene

copies gram sediment21). However, a nested PCR approach

indicated that MOB were present but below detection of

qPCR assays. Type Ia MOB dominated the methanotrophic

community, while type II MOB could not be detected.
(b) Down-core study
(i) Trophic history and oxygen availability
Fossil diatom assemblages (presented in the electronic sup-

plementary material) indicate clear shifts in TP in Lake De

Waay in the past ca 100 years. The DI-TP values for Lake

De Waay suggest hypertrophic conditions (greater than

100 mg TP l21, figure 3) in the lower section of the core.

This is followed by a phase until ca 1955 with a drop in DI-

TP to around 35 mg l21 which is related to hydrological

changes in the lake’s catchment as a result of surface water

management [33]. DI-TP increases again gradually between
ca 1955 and 1975 to 100 mg l21 as the lake underwent a dis-

tinct re-eutrophication. From thereon, the lake reverted back

to hypertrophic conditions as DI-TP exceeds 100 mg l21,

which is confirmed by water column TP measurements in

2011 (figure 1; [36]).

The oligotrophication during the early twentieth century

is associated with a distinct lowering of the Fe : Mn ratio

from 15 to 7 in core WAY05 (figure 3). This suggests an

increase in oxygen availability at the sediment–water

interface in the centre of the lake [37,38]. The last part

of the twentieth century is then characterized by increasing

Fe : Mn to values around 15, indicating more anoxic con-

ditions at the sediment–water interface. Both trends in Fe :

Mn follow the oligo- and eutrophication of the lake as

inferred by diatoms. Cross-correlation analysis revealed

maximum correlations between DI-TP and Fe : Mn, if the

records are shifted by one to two sample steps (ca 5–10

years; correlation coefficients 0.55 and 0.56, respectively),

suggesting that the response of lake oxygenation lags

approximately 10 years behind the changes in trophic state

(electronic supplementary material, figure S3).
(ii) Down-core d13C
Bulk organic matter in the sediments had an average d13C

value of 230.5‰, with little change (s.d.+0.5‰) through-

out core WAY09 (figure 3). Before ca 1940 and after ca 2000,

head capsules of the Chironomini had low d13C values

(235‰ and lower). Clearly, higher values are recorded

between ca 1940 and 2000 (233.8 to 231.2‰). Daphnia ephip-

pia d13C values rise gradually from 240.0 to 233.7‰

between approximately 1920 and approximately 1970, after

which a strong opposite trend is apparent, with Daphnia
d13C reaching values as low as 241.5‰ just below the sedi-

ment surface. Cross-correlation indicates strong negative

correlations between Fe : Mn and invertebrate d13C values at

lags of zero to two sample steps (approx. 0–10 years; corre-

lation coefficients 20.52 to 20.80) for Daphnia and one to

two sample steps (approx. 5–10 years; correlation coefficients

20.58 to 20.70) for Chironomini (electronic supplementary

material, figure S3). The strongest negative relationships

were found for both invertebrate groups for a lag of two

sample steps (ca 10 years).
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4. Discussion
(a) Current conditions in the lake
Stable carbon isotope analysis of the different organisms and

sedimentary remains in Lake De Waay provided evidence

for both photosynthetically produced and CH4-derived

carbon contributing to the aquatic food web. POM d13C

values in Lake De Waay (236 to 230‰) were in the range

of POM collected in small, eutrophic and/or high dissolved

inorganic carbon (DIC) lakes and characteristic for algal bio-

mass (239 to 218‰ [13,40,41]). d13C values of Daphnia in

late winter (244.3‰) and floating Daphnia ephippia in late

autumn (249.4‰) in Lake De Waay were clearly lower than

reported for photoautotrophic biomass in small eutrophic

lakes, and distinctly lower than the d13C values of water

column POM we observed. Low d13C values of zooplankton,

and Daphnia in particular, have been linked to the uptake of

CH4-derived carbon [18,42]. The pronounced difference in

d13C values (approx. 219‰) between CH4 sampled in the

sediment and in the oxic surface waters is an indication of

MOB activity within the lake, as preferential uptake of 12CH4

by MOB [10] leads to higher d13C values of the CH4 pool.

This is supported by the qPCR analysis that indicated the pres-

ence of DNA of MOB type I in the surface sediments. The low

d13C values we found in Daphnia and their ephippia confirm

that these organisms incorporate MOB-derived carbon in

Lake De Waay.

Temperature, starvation and lipid content can influence

invertebrate d13C values, but these effects are typically small

(+0 to 2‰ [11,25,43,44]) compared with the shifts we

observed, indicating that seasonal variations in d13C values

of Daphnia in Lake De Waay mainly reflect changing avail-

ability and d13C values of available food sources. Based on

the two-source mixing model, we estimate a contribution of

CH4-derived carbon to the diet of Daphnia ranging from 0%

(in late spring and summer) to 27% (based on body tissue)

and 39% (based on ephippia) in late autumn and winter.

This is in agreement with findings by Taipale et al. [20], who

found the strongest contribution of CH4-derived carbon to

the diet of Daphnia in a polyhumic boreal lake in Finland in

autumn. Similarly, Harrod & Grey [45] and Morlock et al.
[46] reported Cladoceran d13C values 10–20‰ lower in

autumn and winter than in summer in eutrophic lakes in

Germany and Switzerland, respectively. These results indicate

that these invertebrates can use a CH4-derived carbon source

when the preferred food sources are less readily available.

The Chironomini larvae were sampled in the littoral zone,

whereas MOB-feeding chironomids are mostly found in sedi-

ment exposed to low oxygen concentrations [47–49]. The

sampling location may explain why the majority of the

living Chironomini we sampled did not exhibit as low d13C

values as in some studies [47], even though CH4 and

MOB appear to play a major role in the lake food web.

Nevertheless, several individuals had d13C values distinctly

lower than observed for POM and the other Chironomini

larvae, suggesting that CH4-derived carbon may have con-

tributed to their diet even in littoral habitats (12–15% based

on the mixing model). Agasild et al. [49] also reported at

least 40% CH4-derived carbon in the diet of Chironomus
plumosus found in the littoral, macrophyte-covered zone of

a shallow lake.

Chironomini head capsules and Daphnia ephippia in the

uppermost analysed sample in core WAY09 were also
characterized by low d13C values (238.5‰ for Chironomini

and 241.5‰ for Daphnia ephippia), values which are again

well below the average of modern water column POM and

the sedimentary organic matter in the surface sediments.

This suggests that the imprint of CH4-derived carbon on the

d13C values of the organisms is registered in the fossil

record, even though this record integrates seasonal and spatial

variability in Daphnia and chironomid d13C values.
(b) Carbon sources during changing nutrient levels
The DI-TP reconstruction confirms, with higher temporal resol-

ution, the conclusions by Kirilova et al. [33,34] that the lake

went from eutrophic conditions at the beginning of the twenti-

eth century to more mesotrophic conditions between ca 1925

and 1955, followed by a trend to the current, hypertrophic con-

ditions (figure 3). The Fe : Mn record indicates lower

availability of oxygen at the sediment–water interface during

the eutrophic and hypertrophic phases (figure 3), conditions

that promote methanogenesis [50], although the variations in

oxygen availability take place more gradually and lag those

in nutrient concentrations by approximately 5–10 years. This

lag may reflect the time needed to accumulate organic rich,

oxygen-demanding sediments during eutrophication and the

lingering oxygen demand of such sediments after oligotrophi-

cation [51]. The oldest and the most recent sediments,

representing the highest nutrient levels and lowest oxygen

availability, featured d13C values in chitinous remains of Daph-
nia and Chironomini that resemble the low values we found

during the field survey (figures 2 and 3). As discussed above,

this suggests a contribution of CH4-derived carbon to the diet

of Daphnia (up to 20% based on the mixing model, figure 3)

and Chironomini (up to 12%). In intermediate sections of the

record, the analysed invertebrate remains had distinctly

higher d13C values, which may indicate a lower (or even a

lack of) contribution of CH4-derived carbon to the diets of

Daphnia (less than 10%) and Chironomini (less than 2%)

during this period. Variations in d13C values of Daphnia were

more gradual than variations in Chironomini d13C values.

However, the maxima in both curves closely followed the

observed minimum in Fe : Mn values, with the strongest nega-

tive relationships between the records observed for a small lag

of approximately 5–10 years (electronic supplementary

material, figure S3). This suggests that variations in invertebrate

d13C values were related to changes in oxygen availability in

the hypolimnion resulting from changes in lake productivity.

There are alternative explanations for changes in invert-

ebrate d13C values in lake sediment records. However, these

cannot explain the full range of invertebrate d13C values

observed for Lake De Waay. d13C values of autochthonous

photoautotrophic primary production may vary in lakes,

owing to changing 12C-preference of algae during carbon

uptake, and/or shifts in baseline d13C values of DIC. Lower

algal growth rates under lower nutrient availability lead to

higher discrimination against 13C during photosynthesis and

therefore more 13C-depleted algal biomass [52]. Therefore,

this mechanism would have caused lower d13C values of

algal biomass and correspondingly lower Daphnia d13C

values during the mesotrophic conditions reconstructed for

the lake ca 1925–1955. This implies that a major increase in

baseline d13C values of DIC would have been necessary to

explain the increase in Daphnia d13C values, even exceeding

the 8‰ shift observed in Daphnia ephippia. Considering the

http://rspb.royalsocietypublishing.org/
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present DIC d13C values of 29.1‰ [28], this would only be

possible if DIC reached unrealistically high d13C values

of approximately 0‰, which exceed the range of DIC

d13C values reported in a wide range of lakes (231.1 to

22.1‰, [53]).

Heterotrophic respiration of dissolved organic carbon

(DOC) can also lead to 13C-depletion of DIC available to

algae and consequently of organisms that feed on them, a

process often reported for lakes with high DOC concen-

trations [54]. As Lake De Waay is presently characterized

by relatively low DOC concentrations (0.5 mmol l21; [55]), a

strong increase in heterotrophic respiration of DOC during

the second half of the twentieth century is unlikely. More-

over, we would expect that major variations in d13C values

of algal production in Lake De Waay would have led to dis-

tinct variations in d13C values of bulk organic matter in the

sediments.

As indicated above, factors such as starvation, temperature

and lipid composition have only minor effects on d13C values

of aquatic invertebrates (+0 to 2‰) [11,25,43,44]. These factors

therefore cannot (fully) explain the major changes in fossil

invertebrate d13C values observed in Lake De Waay. Finally,

changes in the timing of Daphnia ephippia production may

potentially have some effect on the d13C values of the fossil

assemblage. However, given the supporting evidence of

changes in trophic state and oxygenation regime, as well as

the similar trends in Chironomini d13C values, we consider it

highly unlikely that this is the primary cause for changes in

ephippia d13C values in the sediments of Lake de Waay.
5. Conclusion
We have shown that in the currently hypertrophic Lake De

Waay, CH4-derived carbon plays a relevant role in the pelagic

food web and most likely also in parts of the benthic food

web, based on the very low d13C values of Daphnia, floating

Daphnia ephippia and some chironomids in comparison to

POM values and sedimentary organic matter. This is clearest

in autumn (figure 2), when photosynthetic primary pro-

ductivity as food source is declining, and stored

hypolimnetic CH4 is mixed with oxygen-rich water layers,

providing favourable conditions for MOB. Our down-core

study revealed that during the beginning of the twentieth

century, higher nutrient levels and relatively lower oxygen

availability occurred, comparable to the modern situation

(figure 3). Under these conditions, d13C values of remains

of Daphnia and Chironomini were very low, and lower than

may be expected from feeding on photoautotrophic biomass

only [11–15]. This suggests a significant contribution of CH4-
derived carbon to the lake’s food web, comparable to the

modern situation. By contrast, the more mesotrophic phase

between ca 1925 and 1955, which was associated with

higher oxygen availability at the sediment–water interface,

was associated with distinctly (up to 8‰) higher d13C

values in the investigated invertebrate remains (figure 3).

We conclude that the eutrophication of the lake resulted

in an increase in primary productivity and an increase in

strength and duration of hypoxic conditions, which allow

for both increased CH4 production in the sediment and

increased build-up of dissolved CH4 in the hypolimnion

[4–6]. MOB can be expected to thrive under these conditions

and can therefore provide a more readily available food

source for Daphnia in the water column and Chironomini

living in sediments near the oxycline. This implies that

even though eutrophication can lead to a higher availability

of algal organic matter in lakes, some invertebrate taxa may

benefit from the higher availability of CH4-derived carbon

as an alternative food source, leading to an increased role

of CH4-derived carbon for at least some sections of the lake

food webs, and that oligotrophication can have the opposite

effect. It is likely that the increased CH4-derived carbon use

is owing to higher CH4 production (in addition to a longer

build-up of hypolimnetic CH4) [6], which implies that CH4

emissions by lakes are potentially higher after eutrophication

events and that (re-)oligotrophication may lower CH4 emis-

sions. This is also confirmed by experiments that revealed

increased methanogenesis in sediments after addition of

both P and N [56]. Based on our record, there may be

multi-annual to decadal-scale lags between variations in

nutrient concentrations and changes in CH4-derived carbon

entering lake food webs.
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