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ABSTRACT Spongy degeneration with cerebellar ataxia (SDCA) is a genetically heterogeneous neurode- ~ KEYWORDS
generative disorder with autosomal recessive inheritance in Malinois dogs, one of the four varieties of  Canis familiaris
the Belgian Shepherd breed. Using a combined linkage and homozygosity mapping approach we  canine

identified an ~10.6 Mb critical interval on chromosome 5 in a Malinois family with four puppies affected ~ Malinois

by cerebellar dysfunction. Visual inspection of the 10.6 Mb interval in whole-genome sequencing data  Na*/K*-ATPase
from one affected puppy revealed a 227 bp SINE insertion into the ATP1B2 gene encoding the B, B, subunit
subunit of the Na*/K*-ATPase holoenzyme (ATP1B2:c.130_131insLT796559.1:9.50_276). The SINE in-  adhesion

sertion caused aberrant RNA splicing. Immunohistochemistry suggested a reduction of ATP1B2 protein molecule on glia
expression in the central nervous system of affected puppies. Atp1b2 knockout mice had previously ~AMOG

been reported to show clinical and neurohistopathological findings similar to the affected Malinois  astrocytes
puppies. Therefore, we consider ATP1B2:c.130_131ins227 the most likely candidate causative variant  brain

for a second subtype of SDCA in Malinois dogs, which we propose to term spongy degeneration with  central nervous
cerebellar ataxia subtype 2 (SDCA2). Our study further elucidates the genetic and phenotypic complex- system

ity underlying cerebellar dysfunction in Malinois dogs and provides the basis for a genetic test to  epilepsy
eradicate one specific neurodegenerative disease from the breeding population in Malinois and the =~ KCNJ10

other varieties of the Belgian Shepherd breed. ATP1B2 thus represents another candidate gene for  cerebellar
human inherited cerebellar ataxias, and SDCA2-affected Malinois puppies may serve as a naturally dysfunction
occurring animal model for this disorder.

INVESTIGATION

Inherited (cerebellar) ataxia in humans represents a broad group of
clinically, pathologically, and genetically heterogeneous neurodegener-
ative disorders characterized by progressive degeneration of cerebellum
and, to a variable degree, of extracerebellar structures (Manto and
Marmolino 2009; Hersheson et al. 2012; Jayadev and Bird 2013). In-
herited ataxias are divided in autosomal recessive, autosomal dominant,
X-linked, and mitochondrial ataxias. Autosomal recessive and autosomal
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dominant inheritance patterns represent the most prevalent inherited
ataxias with ~20 and 40 identified causative genetic variants so far,
respectively (Washington University Neuromuscular Disease Center
Web site: http://neuromuscular.wustl.edu; Mancuso et al. 2014;
Klockgether and Paulson 2011; Jayadev and Bird 2013). Cerebellar
ataxia, the main clinical feature of these disorders, becomes manifest
as imbalance and lack of coordination. Ataxia may be the sole sign of
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cerebellar dysfunction or, more frequently, be accompanied by a wide
spectrum of additional neurological manifestations (Hersheson et al.
2012; Mancuso et al. 2014). Disparate pathophysiological mecha-
nisms have been described for inherited cerebellar ataxias, however
some recurrent components emerge. These include accumulation of
protein aggregates, impaired ion channel functions, defects in the
DNA-repair system, and mitochondrial dysfunction (Manto and
Marmolino 2009; Klockgether and Paulson 2011; Sandford and
Burmeister 2014).

Inveterinary medicine, similar to human medicine, cerebellar ataxias
are described as a heterogeneous group of neurodegenerative disorders
with variability in disease onset, severity and histopathological lesions
(Urkasemsin et al. 2010; Urkasemsin and Olby 2014). However, to date,
a genetic basis has been described for only some autosomal recessive
inherited cerebellar ataxias in the dog (Supplemental Material, Table S1,
Online Mendelian Inheritance in Animals Web site: http://omia.angis.
org.au). Currently, there are no consensus criteria for the classification
of canine neurodegenerative diseases, and denominations of entities
are mainly based on clinical and/or neuropathological features. The
increasing knowledge of the genetic defects underlying these disorders
is expected to facilitate the implementation of a neurodegeneration
classification scheme in animals and the study of pathogenetic mech-
anisms (Urkasemsin and Olby 2014).

We studied ataxias in the Belgian Shepherd breed and recently
reported a candidate causative variant in the KCNJ10 gene for spongy
degeneration with cerebellar ataxia, subtype 1 (SDCA1). This study
revealed an unexpected genetic heterogeneity in clinically comparable
cases, suggesting that more than one type of cerebellar ataxia is present
in Belgian Shepherd dogs (Kleiter et al. 2011; Mauri et al. 2017). The
KCNJ10 variant was also identified in an independent study (Stee et al.
2016; Van Poucke et al. 2017).

The aim of the present study was to identify the presumed causative
genetic defect of a second form of SDCA in Belgian Shepherd dogs,
which we propose to term SDCA2.

MATERIALS AND METHODS

Ethics statement

All animal experiments were performed according to the local regula-
tions. All dogs in this study were examined with the consent of their
owners. The collection of blood samples was approved by the Cantonal
Committee for Animal Experiments (Canton of Bern; permit 75/16).

Breed nomenclature

The Federation Cynologique Internationale (FCI) describes the Mali-
nois, together with the Groenendael, the Laekenois, and the Tervueren,
as a variety of the Belgian Shepherd dog breed. The American Kennel
Club, however, officially recognizes the Belgian Malinois, the Belgian
Sheepdog (FCI: Groenendael), the Belgian Laekenois (FCI: Laekenois),
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and the Belgian Tervuren (FCIL: Tervueren) as four distinct breeds. In this
paper all references to the breed nomenclature correspond to the FCI
standards.

Animal selection

We used the same animals as in our previous study (Mauri et al. 2017).
We investigated six related Malinois families in which 12 puppies
showed clinical signs of cerebellar dysfunction (Figure 1). We also
examined seven Malinois puppies with reported cerebellar signs, for
which no relatives were available. In addition to these individuals,
we genotyped 230 other Malinois, 25 Groenendael, two Laekenois,
and 35 Tervueren dogs whose blood samples were donated to the
biobank of the Institute of Genetics at the University of Bern. Fur-
thermore, we analyzed 503 samples from 87 genetically diverse dog
breeds.

Neuropathology and immunohistochemistry

Two Malinois puppies from family 5 and three from family 6 with signs
of cerebellar dysfunction were necropsied (MA142, MA143, MA162,
MA164, MA165, Figure 1). Brain and spinal cord samples from these
five puppies were collected and fixed in 4% buffered formaldehyde
solution, embedded in paraffin, and sectioned at 2-5 pwm. Eye samples
were available from puppy MA162 and processed in the same manner.
Sections were stained with hematoxylin and eosin and examined by
light microscopy. Furthermore, we performed immunohistochemistry
(THC) with a polyclonal rabbit antibody raised against a peptide cor-
responding to amino acids 115-141 of the human ATP1B2 protein.
This epitope is 100% identical between human and dog. IHC was per-
formed on paraffin-embedded cerebellar and brain stem sections from
the SDCA2-affected puppies MA162, MA164, MA165; and 13 control
dogs, which consisted of nine dogs that did not suffer from cerebellar
ataxia and four Malinois puppies that were affected by SDCA1 and
homozygous for the KCNJ10:¢.986T>C variant. To this end, sections
were deparaffinized, and antigen heat retrieval was performed by boil-
ing sections in pH 9 buffer (Dako Target Retrieval Solution, pH 9) in a
laboratory microwave (20 min at 95°) following a peroxidase block
and a blocking step with 10% normal goat serum. Tissue sections were
incubated overnight at 4° with the primary antibodies (Thermo Fisher
Scientific PA5-26279, 1:50 dilution of the 0.5 mg/ml stock solution) and
the reaction was visualized with the Dako REAL Detection System
according to the manufacturer’s instructions. The manufacturer’s doc-
umentation for the primary antibody showed a Western Blot in which
only a single specific band of ~34 kDa was detected.

DNA extraction and genotyping

Genomic DNA was isolated from EDTA blood samples with the
Maxwell RSC Whole Blood DNA Kit, which were used with the Maxwell
RSC Instrument (Promega). Genotyping was done on Illumina
CanineHD Chips containing 173,662 genome-wide SNPs by Gene-
Seek/Neogen. Genotypes were stored in a BC/Gene database version
3.5 (BC/Platforms).

Linkage and homozygosity mapping

Linkage analysis was performed with Illumina CanineHD SNP Chip
genotypes from 20 dogs belonging to family 5 and 6 (Figure 1). We
analyzed the data set for parametric linkage under a fully penetrant,
recessive model of inheritance with the Merlin software (Abecasis et al.
2002). PLINK v1.07 (Purcell et al. 2007) was used as described
(Wiedmer et al. 2016) to search for extended intervals of homozygosity
with shared alleles across selected affected animals.
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of cerebellar dysfunction (see Results and Discussion). Crosses intersecting the connection lines to the common ancestor represent the numbers
of generations (e.g., MA302 is a great-grandson of the common ancestor).

Reference sequences

The dog CanFam 3.1 genome assembly and NCBI annotation release
103 was used for all analyses. All references to the canine ATP1B2 gene
correspond to the accessions XM_546597.5 (mRNA) and XP_546597.2
(protein). XP_546597.2 has the same length as the human protein
(NP_001669.3; 290 amino acids) and 286 out of 290 amino acids
(99%) are identical between dog and human.

Whole-genome resequencing

A PCR-free fragment library was prepared from one affected Malinois
dog (MA163) with a 400 bp insert size. We sequenced the library to
roughly 32x coverage on an Illumina HiSeq3000 instrument using 2 x
150 bp paired-end reads. The reads were mapped to the dog reference
genome assembly CanFam3.1 as previously described (Mauri et al
2017). The sequence data were deposited under the study accession
number PRJEB16012 at the European Nucleotide Archive (ENA). The
sample accession number is SAMEA104032048. We also used 146 con-
trol genomes, which were either publicly available (Bai et al. 2015) or
produced during other projects in our group (Table S2).

Single nucleotide and small indel variants were individually identi-
fied using GATK HaplotypeCaller in gVCF mode, and subsequently
genotyped per chromosome and genotyped across all samples simul-
taneously (Van der Auwera et al. 2013). We filtered the obtained data
with the variant filtration module of GATK and used the ENSEMBL
annotation CanFam 3.1 (version 72) to predict the functional effects of
the called variants together with SnpEff software (Cingolani ef al. 2012).
The resulting sequence alignments of MA163 were visually inspected
and screened for structural variants with the Integrated Genomics
Viewer (IGV) software (Robinson et al. 2011).

PCR and Sanger sequencing

Sanger sequencing was used to confirm the variant identified from
whole-genome resequencing. For these experiments we amplified
PCR products from genomic DNA using AmpliTaq Gold 360 Master
Mix (Life Technologies). The PCR primers used for the genotyping of
the ATP1B2:c.130_131insLT796559.1:g.50_276 variant were GAAC
CCCCTGACTCCATTTC (forward primer) and GGAGCAGTTAA
AGGCTGGTG (reverse primer). PCR products were directly sequenced
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on an ABI 3730 capillary sequencer (Life Technologies) after treatment
with exonuclease I and shrimp alkaline phosphatase. Sanger sequence data
were analyzed with Sequencher 5.1 (GeneCodes). The sequence of the
PCR product with the insertion allele was submitted to the ENA under
accession number LT796559.1.

Fragment length analysis

To genotype a large number of samples we used fragment length analyses
by assessing the PCR product sizes on the Fragment Analyzer Automated
CE (capillary gel electrophoresis) System [Advanced Analytical Technol-
ogies (AATI)]. We used the PROSize analytical software (AATI) to
visually inspect the obtained gel images and classify the dogs as homozy-
gous for the SINE (short interspersed nuclear elements) insertion (ins/ins,
single band of ~425 bp), heterozygous (wt/ins, two bands of ~198 and
~425 bp), or homozygous wild type (wt/wt, single band of ~198 bp).

RNA isolation and reverse transcription-PCR

Total RNA was purified from the skin of one affected Malinois puppy
(MA133) with the RNeasy Fibrous Tissue Mini Kit according to the
manufacturer’s recommendations (QIAGEN). Blood total RNA from
one control dog (SY045) was isolated as described (Wiedmer et al.
2016). The RNA samples were treated with RNase-free DNase to
remove contamination with genomic DNA. The SuperScript IV Re-
verse Transcriptase kit was used to generate cDNA according to the
manufacturer’s recommendations (Thermo Fisher Scientific). Primers
for reverse transcription PCR (RT-PCR) were designed in exon 1 and at
the boundary of exons 3 and 4 of the ATP1B2 gene (forward primer:
GTGGTTGAGGAGTGGAAGGA; reverse primer: TGGAATCGTT
GTAAGGCTCCAA). 30 cycles of PCR were performed with Ampli-
Taq Gold 360 Master Mix (Life Technologies). RT-PCR products were
analyzed with the Fragment Analyzer and preparatively separated using
the DNA Size Selection System PippinHT (Sage Science) according to
the manufacturer’s recommendations. The resulting isolated fragments
were sequenced separately as described above.

Data availability
File S1 is a video showing the clinical phenotype of the four affected
Malinois siblings belonging to family 6 at 4 wk of age (MA162-165).
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Figure 2 Histopathology of a cerebellar nucleus. (A) Malinois dog MA162 with spongy degeneration and (B) nonaffected control dog. The
affected Malinois puppy (A) showed a prominent vacuolation of the neuropil with large numbers of clearly defined and empty vacuoles of varying

size and gliosis. Hematoxylin and eosin stain.

File S2 depicts the sequence context of the 227 bp SINE insertion into
exon 2 of the ATPIB2 gene. File S3 illustrates the aberrant ATPIB2
exon 2 splicing patterns in dogs with the SINE insertion and the pre-
dicted protein sequences resulting from the mutant transcripts. Figure
S1 contains a screenshot of the IGV software in the region of the
visually identified ATP1B2:c.130_131ins227 variant. Table SI lists the
genetic basis of inherited canine cerebellar disorders which have been
reported in the literature. Table S2 shows the ENA accession numbers
of the whole-genome sequencing data that was used. Table S3 contains
genome regions =1 Mb that showed positive LOD scores in the linkage
analysis. Table S4 presents the homozygous genome regions with
shared alleles among the four analyzed affected Malinois puppies from
family 6. Table S5 illustrates ATP1B2:c.130_131ins227 genotypes of
503 control dogs from 87 diverse dog breeds.

RESULTS

Clinical presentation
Clinical signs in the puppies from family 5 and 6 had a similar time of
onset of 4 wk of age and were mainly associated with cerebellar
dysfunction. We predominantly observed generalized ataxic gait in
all puppies. Due to the inability to ambulate, five out of six affected
puppies were euthanized on welfare grounds by the sixth week of age.
One puppy from family 6 died at 6.5 wk of age during a seizure.
Upon more detailed investigation, only the four affected Malinois
puppies from family 6, but not the affected puppies from family 5,
additionally had seizures, showed pacing as well as circling, and were
diagnosed with central blindness. Moreover, they had a very rapid
progression of clinical signs (File S1).

Neuropathological findings

Neuropathological analysis was hindered in two puppies due to autolysis
of the CNS (MA164, MA165). Histopathological changes in the three
affected puppies from family 6 were characterized by bilateral-symmetric
vacuolation of the neuropil, targeting the cerebellar nuclei (Figure 2); the
ventral horn gray matter of the spinal cord, in particular at the level of
the cervical intumescence; and the brain stem. In the spinal cord, vac-
uolation was associated with neuronal necrosis and severe gliosis. Ad-
ditionally, in the puppy MA162, neuronal necrosis and diffuse presence
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of hypertrophic astrocytes with vesicular nuclei, reminiscent of Alz-
heimer type II cells, were observed in the hippocampus, caudate nucleus,
and diffusely in the cortex. Histopathological eye abnormalities were not
noticed.

Neuropathological lesions noted in family 5 differed from those
observed in family 6. The affected puppies in family 5 displayed gliosis in
the cerebellar nuclei, in selected medullary nuclei, and in the spinal cord
gray matter. However, CNS vacuolation was not present.

Genetic mapping of the causative variant in family 6

As the genetic analyses were performed independently and at the
same time as the clinical and neuropathological investigations, we
initially considered the possibility that the affected puppies in
families 5 and 6 shared the same genetic defect. To map the causative
locus we investigated these two Malinois families with a total of six
puppies with cerebellar dysfunction (Figure 1). A combined linkage
analysis revealed a single linked segment on chromosome 5 reaching
a statistically significant LOD score of 3.657. However, when we
performed linkage analysis separately for each of the two families,
we noted that family 6 only presented a single linked segment on
chromosome 5 (LOD score of 2.680), whereas family 5 showed
linked segments on 12 different chromosomes (maximal LOD score
of 0.977, Table S3).

To fine map the region of interest, we then analyzed the six af-
fected Malinois puppies belonging to family 5 and 6 for extended re-
gions of homozygosity with simultaneous allele sharing. This initial
homozygosity-mapping approach did not reveal any shared segment on
chromosome 5 between all six investigated puppies. As the histopath-
ological findings and the clinical presentation had already suggested
phenotypic differences between these two families, we then subsequently
performed the homozygosity mapping for each family separately. The
analyses showed that only the four affected puppies from family 6 had a
homozygous genome region on chromosome 5 (Table S4). By inter-
secting the linked segment and the homozygous interval from the four
cases of family 6, we could define an exact critical interval of
10,564,105 bp at Chr5:29,906,132-40,470,236. Moreover, upon inspec-
tion of the SNP-chip genotypes of the isolated Malinois cases with
unknown relationships to our families, we identified one additional

-=.G3:Genes| Genomes | Genetics


http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/FileS2.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/FileS3.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/FigureS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/FigureS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/TableS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/TableS2.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/TableS3.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/TableS4.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/TableS5.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/FileS1.mp4
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/TableS3.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.043018/-/DC1/TableS4.xlsx

Table 1 Variants detected by whole-genome resequencing of one affected Malinois puppy (MA163)

Filtering Step

Number of Variants

Variants in the whole genome? 1,889,727
Variants in the critical 10.6 Mb interval on chromosome 5 75,231
Variants in the critical interval that were absent from 146 other dog genomes 37
Protein-changing variants in the whole genome? 7936
Protein-changing variants in the 10.6 Mb critical interval on chromosome 5 817
Protein-changing variants in the critical interval, absent from 146 other dog genomes 0

¥The sequences were compared to the reference genome (CanFam 3.1) from a Boxer. Protein-changing variants were classified based on the ENSEMBL annotation

(version 72).

puppy, which also carried the disease-associated haplotype in the ho-
mozygous state (MA133). We therefore assumed that this puppy was
affected by the same genetic disease as the four cases in family 6.

Identification of the causative variant

A total of 255 genes were annotated in the 10.6 Mb critical interval on
chromosome 5. To acquire a comprehensive overview of all variants in
this region we resequenced the whole genome of one affected Malinois
puppy (MA163) and called single nucleotide as well as indel variants
with respect to the reference genome of a presumably nonaffected Boxer.
The genotype of the affected Malinois puppy was further compared with
146 dog genomes from various breeds that had been sequenced in the
course of other studies (Table S2). We hypothesized that the causative
variant should be completely absent from all dog breeds in the sample
set except the Belgian Shepherd breed. After applying this filter, 37 disease-
associated variants remained. However, none of these variants was pre-
dicted to change an encoded protein by our automated bioinformatic
analysis (Table 1).

Therefore, we considered the possibility that the disease-associated
variant was a structural variant, which would not have been detected by
our automated variant calling pipeline. Thus, we visually inspected the
10.6 Mb critical interval on chromosome 5 and identified a candidate
structural variant in the ATPIB2 gene (Figure S1). The structural var-
iant arose from a 227 bp SINE insertion within exon 2 of the ATP1B2
gene, including a 15 bp duplication flanking the insertion site, and can be
described as ATP1B2:c.130_131insLT796559.1:g.50_276 or in abbreviated
form as ATP1B2:c.130_131ins227 or Chr5:32,551,064_32,551,065ins227
(Figure 3 and Figure S1).

The presence of this structural variant in homozygous state was
confirmed by Sanger sequencing in the four affected Malinois puppies
belonging to family 6 and in the isolated case (MA133). The two avail-
able parents (MA229, MA233) were heterozygous for this insertion as
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expected for obligate carriers. Furthermore, we genotyped this variant by
fragment length analysis in 251 other Malinois, 25 Groenendael, two
Laekenois, 35 Tervueren, and 503 dogs of genetically diverse other
breeds. The variant was not found outside the Belgian Shepherd
population, but it also occurred in a heterozygous state in 38 Malinois,
one Groenendael, and seven Tervueren dogs. In the two cases from
family 5 and in the five remaining isolated cases, the variant was also
absent (Table 2 and Table S5).

Analyses of the ATP1B2 transcript

Unfortunately, no suitable brain RNA samples were available for this
study. To examine the effect of the 227 bp SINE insertion in exon 2 of the
ATPIB2 gene on the transcript, we therefore isolated total skin and
blood RNA from one affected Malinois puppy (MA133) and an un-
affected control dog (SY045), respectively. In the affected Malinois
puppy we identified at least three distinct transcript isoforms due to
altered splicing. After separation and sequencing, none of the experi-
mentally obtained RT-PCR products had the expected size. Sequencing
of the products demonstrated either the complete skipping of exon 2 or
the activation of two new cryptic splice sites generating aberrant exon
lengths. All three mutant transcripts maintained the original reading
frame (Figure 4 and File S3).

IHC

To assess the ATP1B2 protein expression we performed IHC on
cerebellar and brain stem tissues with anti-ATP1B2 polyclonal anti-
bodies (Figure 5). In the control dogs, the generated IHC signal was
consistently present, albeit with varying intensity. The signal was
mostly seen around neurons and in a glial-like pattern, with extensions
similar to astrocytic processes, in the whole cerebellar and brain-stem
parenchyma, especially in the gray matter. The obtained IHC sections
from MA162 and MA164 showed a weaker IHC signal around neurons

@
—é@‘? § Figure 3 SINE insertion in exon
¥ s 2 of the ATP1B2 gene (ATP1B2:
wifins whwt nt ¢.130_131ins227). (A) A 227 bp

— 1,000 SINE insertion was found in ho-
mozygous state in five Malinois
puppies affected by SDCA2 af-
ter position 130 of the ATP1B2
coding sequence. The SINE
belonged to the SINEC2A1_CF

family derived from an endoge-

— 500

nous tRNA gene. 15 nt flanking
the insertion site were dupli-
cated. (B) Experimental geno-
typing of the SINE insertion by

— 100

fragment size analysis. We amplified exon 2 of ATP1B2 and flanking intron segments by PCR and separated the products of dogs with the three

different genotypes by capillary gel electrophoresis.
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Table 2 Association of the SINE insertion with cerebellar dysfunction

Genotype ATP1B2:c.130_131ins227 wt/wt wt/ins ins/ins
Malinois cases (family 6 and MA133) — — 5
Malinois cases (families 1-5 and six isolated puppies)? 13 1 —
Malinois controls 199 38 —
Groenendael controls 24 1 —
Laekenois controls 2 — —
Tervueren controls 28 7 —
Control dogs from other breeds 503 — —

Six of these Malinois puppies, which belonged to family 1-4, and one isolated case, MA152, were previously reported to be affected by SDCA1 caused by the

KCNJ10:c.986T>C variant (Mauri et al. 2017).

bThese dogs were specifically genotyped by fragment length analysis for the ATP1B2:c.130_131ins227 variant. The genome sequences of 146 independent control
dogs were also homozygous wt/wt. Therefore, the number of control dogs totals 948.

(Figure 5). In the affected Malinois puppy MA165, no ATP2B1 expres-
sion could be detected by IHC.

DISCUSSION
In this study, we identified a structural variant in exon 2 of the ATPIB2
gene as candidate causative genetic variant for SDCA in the Belgian
Shepherd breed. While we only observed affected puppies in the Malinois
variety, the proposed pathogenic variant also segregates in other varieties
of the Belgian Shepherd breed. We suggest to call this particular pheno-
type spongy degeneration with cerebellar ataxia, subtype 2 (SDCA2).
To the best of our knowledge, so far, no ATP1B2 variants have been
described in human patients with neurologic symptoms. However,
AtpIb2 knockout mice were reported with similar clinical signs as
the affected Malinois puppies. Afp1b2~/~ mice showed rapidly wors-
ening motor impairment and spongy degeneration of the CNS, resem-
bling the neurohistopathological findings observed in the Malinois
puppies but with a different topographical distribution (Magyar
et al. 1994). Our hypothesis is also supported by a study where the
Na*/K*-ATPase was inhibited in vivo by subdural injections of
ouabain in guinea pigs. The inhibition of the Na*/K*-ATPase
holoenzyme caused seizures and, on histopathology, an evident
spongy degeneration in the CNS (Calandriello et al. 1995).

A P = B

The Na*/K*-ATPase is a ubiquitously expressed multi-subunit pro-
tein in the plasma membrane. It is the principal regulator of intracel-
lular homeostasis in every animal cell. The holoenzyme consists of «, 3,
and auxiliary vy subunits. It is responsible for the active Na* extrusion
(three ions) and K* uptake (two ions) necessary to generate and main-
tain the cellular transmembrane ionic gradients that are essential for the
activity of secondary transporters such as voltage-gated Na* and K*
channels, the Na*/Ca?* exchanger, and neurotransmitter uptake trans-
porters (Mobasheri et al. 2000; Tokhtaeva et al. 2009; Friedrich, et al.
2016). The a subunit is the main component of the Na*/K*-ATPase
and is also defined as a catalytic subunit. It is responsible for ion trans-
port. The B subunit is essential for correct folding, assembly, and tar-
geting of the holoenzyme to the plasma membrane as well as for
holoenzyme function by regulating Na* affinity (Habiba et al. 2000;
Mobasheri et al. 2000; Geering 2008; Tokhtaeva et al. 2009). Further-
more the 3 subunit may play a role in cell adhesion and CNS devel-
opment (Antonicek et al. 1987; Miiller-Husmann et al. 1993; Lecuona
et al. 1996; Boer et al. 2010). In contrast to the o and B subunits, the y
subunit is not essential for the function of the Na*/K*-ATPase. If pre-
sent, it acts as an ion transport regulator. To date, four different a, four
B3, and seven <y subunit isoforms were identified (Geering 2001; Hilbers
et al. 2016).

Figure 4 Effect of the SINE
insertion on ATP1B2 transcripts.
(A) Schematic representation of
exons 1-3 of the ATP1B2 gene.
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Figure 5 IHC for the ATP2B1 protein. (A and B) Two control dogs showed a clear perineuronal expression of ATP2B1. However, the intensity of
the IHC signal was variable between dogs. (C and D) In two of the affected Malinois puppies, perineuronal expression was present, but appeared
to be weaker than in the control dogs. In a third affected puppy, no ATP2B1 expression was observed.

The ATP1B2 gene encodes the 3, subunit isoform, first discovered
as adhesion molecule on glia (AMOG) (Antonicek et al. 1987; Gloor
et al. 1990). The 3, subunit isoform is predominantly expressed in the
brain, especially in the cerebellum, and it preferentially binds to o,
which is mainly found in astrocytes after completion of development.
The main task of the a3, Na*/K*-ATPase holoenzyme in astrocytes is
to restore extracellular K* homeostasis following neuronal depolariza-
tion. A failure of K* buffering and clearance would result in high
extracellular K* and consequently to sustained glial and neuronal hy-
perexcitability compromising neuronal firing, synaptic transmission,
and neurotransmitter reuptake (Tokhtaeva et al. 2012; Friedrich et al.
2016; Hilbers et al. 2016; Larsen et al. 2016).

Disturbances in the K* homeostasis in the CNS are often associated
with neurological disorders such as cerebellar dysfunction or epilepsy
(Hirose 2006; Larsen et al. 2014). Recently, we genetically characterized
a hereditary cerebellar ataxia in the Belgian Shepherd breed caused by a
pathologic variant in KCNJ10, encoding the astrocytic K;4.1 potassium
channel (Mauri et al. 2017). Both KCNJ10 and the o8, Na*/K*-ATPase
seem to play a pivotal role for K* homeostasis in the CNS, especially
in the cerebellum. They are not interchangeable, but serve temporally
distinct roles, with KCNJ10 acting during and a3, Na*/K*-ATPase

-=.G3:Genes | Genomes | Genetics
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working after neuronal depolarization (Larsen et al. 2014). In addition
to an impaired K* clearance after neuronal depolarization, dysfunction
of the a3, Na*/K*-ATPase might also lead to extracellular accumula-
tion of glutamate and/or to an increase in intracellular Ca?* and/or to
cell swelling, which all might contribute to the observed histopatholog-
ical changes (Friedrich et al. 2016; Prontera et al. 2017).

The central blindness in the SDCA2-affected puppies is most likely
explained by necrotic changes involving the visual cortex. However,
the a3, Na*/K*-ATPase holoenzyme is also associated with retino-
schisin on the photoreceptor and bipolar cells of the eye, and the
retinoschisin—a;3, Na*/K*-ATPase complex is necessary for mainte-
nance of retinal cell organization as well as photoreceptor-bipolar syn-
aptic structure. Variants in the retinoschisin gene, RSI, cause splitting
of retinal cell layers and loss in central vision. The phenotype is defined
as X-linked juvenile retinoschisis (XLRS) (MIM#312700; Molday et al.
2007, 2012; Friedrich et al. 2011). However, we did not observe any
histopathological changes of the retina in an SDCA2-affected puppy
and thus think that blindness in these dogs is caused by the central
lesions.

Our RNA experiments demonstrated altered splicing of the ATB1B2
transcript in skin RNA from one affected puppy. It has to be cautioned
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that the splicing might be different in the CNS. However, given the
sequence context of the SINE insertion, it seems impossible that the
insertion allele could give rise to the expression of the wild-type mRNA.

Our IHC findings suggest a reduction in ATP1B2 protein expression
in the CNS of SDCA2-affected Malinois. However, IHC signal could still
be identified, possibly indicating the expression of mutant ATP1B2
protein. The antibody that was used was directed against a peptide
corresponding to amino acids 115-141 located in the extracellular
domain of the wild-type protein. The three characterized aberrant
transcripts all maintained the original reading frame and encoded this
epitope. Thus, translation of any of these mutant transcripts might have
led to the expression of a detectable mutant protein (File S3). Further
investigation is needed to assess if any of these mutant ATP1B2 pro-
teins might retain some residual functional activity. For the mut #3
protein, this seems highly unlikely as it is lacking the entire predicted
transmembrane domain. The mut #1 and mut #2 proteins contain
insertions of 59 and 51 amino acids into the cytoplasmic domain re-
spectively, and it is at least questionable whether they can exert the
same functions as the normal 3, subunit of the Na*/K*-ATPase.

In humans, ATP1B2 variants have not been reported to date. How-
ever, severe neurological disorders have been associated with variants in
the ATPIA2 and ATPIA3 genes encoding the o, and a3 subunit iso-
forms. ATPIA2 variants are responsible for hemiplegic migraine type
2 (FHM2, MIM#602481; Prontera et al. 2017) and alternating hemi-
plegia of childhood 1 (AHCI, MIM#104290; Swoboda et al. 2004).
ATPIA3 defects cause rapid-onset dystonia Parkinsonism (RDP,
DYT12, MIM#128235), as well as alternating hemiplegia of childhood
2 (AHC2, MIM#614820) and CAPOS syndrome (cerebellar ataxia,
areflexia, pes cavus, optic atrophy, and sensorineural hearing
loss syndrome, MIM#601338; Heinzen et al. 2014; Holm and Lykke-
Hartmann 2016).

To conclude, we identified a SINE insertion in exon 2 of the ATP1B2
gene (ATP1B2:c.130_131insLT796559.1:¢.50_276), leading to altered
splicing and an impaired ATP1B2 protein expression in the CNS, as
most likely causative for SDCA2 in the Belgian Shepherd breed.
Cerebellar dysfunction in this breed is heterogeneous and, together
with the previously reported KCNJ10:c.986T>C variant, we still cannot
explain all cases affected by similar clinical signs. Further investigation
is needed to resolve the genetic and phenotypic complexity underlying
cerebellar dysfunction in Malinois dogs. Our findings encourage
genetic testing of Belgian Shepherd dogs so that the nonintentional
breeding of affected puppies with SDCA2 can be avoided in the future.
Moreover, our data imply ATP1B2 as an additional candidate gene for
human inherited cerebellar ataxias of unknown etiology. Affected pup-
pies represent a spontaneous animal model for hereditary ataxia.
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