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NN – nearest neighbours 
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Novelty and impact 

This nationwide investigation of spatial clustering of childhood leukaemia is unique in that it used 

precise geocodes of residence and carefully adjusted for multiple tests. Overall, no evidence of spatial 

clustering was found. Although individual tests did indicate clustering and a small cluster of acute 

lymphoblastic leukaemia was identified, Monte Carlo simulations show that such results could easily 

arise by chance. This highlights the importance of appropriately accounting for multiple testing in 

clustering studies.  
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Abstract  

The aetiology of childhood leukaemia remains largely unknown. Several hypotheses involve 

environmental exposures that could implicate spatial clustering of cases. The evidence from previous 

clustering studies is inconclusive. Most of them used areal data and thus had limited spatial resolution. 

We investigated whether childhood leukaemia tends to cluster in space using exact geocodes of place 

of residence both at the time of birth or diagnosis. We included 1871 leukaemia cases diagnosed 

between 1985 and 2015 at age 0-15 years from the Swiss Childhood Cancer Registry. For each case, 

we randomly sampled 10 age and sex matched controls from national censuses closest in time. We 

used the difference of k-functions, Cuzick-Edwards’ test and Tango’s index for point data to assess 

spatial clustering and Kulldorff’s circular scan to detect clusters. We separately investigated acute 

lymphoid leukaemia (ALL), acute myeloid leukaemia (AML), different age groups at diagnosis (0-4, 

5-15 years) and adjusted for multiple testing. After adjusting for multiple testing, we found no 

evidence of spatial clustering of childhood leukaemia neither around time of birth (P = 0.52) nor 

diagnosis (P = 0.51). Individual tests indicated spatial clustering for leukaemia diagnosed at age 5-15 

years, P k-functions = 0.05 and P Cuzick-Edwards’ = 0.04 and a cluster of ALL cases diagnosed at 

age 0-4 years in a small rural area (P = 0.05). This study provides little evidence of spatial clustering 

of childhood leukaemia in Switzerland and highlights the importance of accounting for multiple 

testing in clustering studies.  
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Introduction  

Childhood leukaemia is the most common childhood cancer, accounting for about a third of incident 

cases in many high income countries.
1
 Its aetiology remains largely unknown, the only established 

environmental risk factor being ionizing radiation at medium to high doses.2, 3 Suspected 

environmental risk factors include low-dose ionising radiation (e.g. background radiation), 

electromagnetic fields, traffic-related air pollution, pesticides and infections.
2, 4, 5

 Geographical 

variation of risk factors might lead to spatial variation in risk of disease and possibly spatial clustering 

of incident cases. Spatial clustering might result from emissions originating from point sources or 

linear structures such as busy roads. Increased risks of childhood leukaemia have for instance been 

reported in the vicinity of highways,6 nuclear power plants7 and petrol stations.8 Thus investigating 

spatial clustering of childhood leukaemia might help pinpoint relevant pollution sources and provide 

new clues about possible environmental risk factors.9 Furthermore, observing spatial clustering at 

specific time points, e.g. around diagnosis or birth, may indicate age windows of increased 

susceptibility.  

Several studies have assessed spatial clustering of childhood leukaemia.10, 11 Most studies aimed to 

determine whether leukaemia cases tend to occur closer to each other than expected by chance (global 

clustering tests) while some attempted to identify clusters (cluster detection tests).
12
 The majority of 

studies focused on place of residence at time of diagnosis. Studies in the UK with partly overlapping 

data mostly reported evidence of clustering or clusters of childhood leukaemia,9, 13-15 whereas the 

evidence from other countries was mixed. Evidence of clustering or clusters around time of diagnosis 

was found in Greece,16 Hong Kong,17 South Hungary,18 Florida19 and Argentina20 but not in Sweden,21 

Ohio,
22
 Germany,

23
 France

24
 and Spain.

25
 Evidence of clustering around time of birth was found in 

New Zealand
26
 but not in Ohio.

27
 Both time points were assessed in a study in Denmark and clustering 

around time of diagnosis but not around time of birth was reported.28  

These inconsistent findings might reflect real differences between countries or regions, but could also 

have resulted from differences in analytical approaches, data aggregation and statistical power. In most 

previous studies, only areal data was available, i.e. data aggregated to administrative areas, and this 
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may have reduced the statistical power to detect clustering.
29-32

 To our knowledge only three studies 

have used point pattern data based on precise geocodes.25, 27, 28 Statistical power is also affected by 

sample size as well as the shape and frequency of putative clusters (clustering scenario). Multiple 

testing is another common problem, as multiple tests are typically performed to cover different 

clustering scenarios, diagnostic subgroups and age groups. To our knowledge only two studies have 

corrected for multiple testing.22, 26 Lastly, though many studies have investigated acute lymphoid 

leukaemia (ALL) only few studies have examined the spatial distribution of acute myeloid leukaemia 

(AML).23, 24, 33 

In this nationwide study, we investigated whether there is evidence of spatial clustering of childhood 

leukaemia in Switzerland using geocoded residential locations of cases and representative controls at 

birth and at diagnosis. We assessed spatial clustering for different age groups (0-4, 5-15 years) and the 

two main diagnostic subgroups, ALL and AML. We used three different global clustering tests and a 

test for cluster detection, and paid particular attention to corrections for multiple testing.  

Methods  

Study population 

We included leukaemia cases recorded in the Swiss Childhood Cancer Registry (SCCR) diagnosed in 

Switzerland between 1985 and 2015 at age 0-15 years. The SCCR is a nationwide population-based 

registry with an estimated completeness of 91% during this period and age group, and of 

approximately 95% since the mid-1990s.34 The SCCR tracks residential address histories of cases 

from diagnosis back to birth. Addresses were geocoded to the Swiss grid coordinate system using the 

geo-referenced building addresses from the Swiss postal system (GeoPost) or manually using the 

geoportal maintained by the Federal Office of Topography (http://map.geo.admin.ch). We obtained 

precise geocodes to within 100m for 94% of the available cases (Supporting Information Text S1).  

We investigated pairs of cases living <50m from each other for possible sibling relationships based on 

family names (child and parents) recorded in the SCCR and included only one child for each sibling 

pair identified.  
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We obtained individual data, including geocoded place of residence, on the Swiss resident population 

from the national censuses in 1990, 2000 and 2010 through the Swiss National Cohort study.35 From 

this population, we randomly sampled 10 controls per case matched for age, gender and time of birth 

or diagnosis. This case-control ratio represents a compromise between including as many controls as 

possible (see Diggle’s discussion of the Cuzick-Edwards’ test36) and computational burden. We used a 

two-stage approach to sample controls as in a previous study of space-time clustering of childhood 

cancers.
37
 Briefly, to select a control, we first selected a municipality – the smallest administrative unit 

in Switzerland – by weighted random sampling with weights proportional to the estimated population 

counts in the year of a case’s diagnosis (or year of birth for clustering analyses around time of birth). 

We then selected one of the two censuses nearest to the case’s year of diagnosis (or birth) using 

weighted random sampling with linearly interpolated weights. For instance, for a child diagnosed in 

1996, the 1990 census was selected with probability (2000-1996)/10 = 0.4 and the 2000 census with 

probability (1996-1990)/10 = 0.6. Lastly, we randomly sampled a control without replacement from 

among the children residing in the same municipality at the selected census and belonging to the same 

sex and age group (0-4, 5-9, 10-15 years) as the corresponding case.  

Outcomes 

The SCCR classifies diagnoses according to the International Classification of Childhood Cancers 

Third Edition (ICCC3).
38
 We separately examined leukaemia (ICCC3 main group I), ALL (Ia) and 

AML (Ib), and age groups 0-4 and 5-15 years for leukaemia and 0-4 years for ALL. All sub-groups 

were selected a priori considering the possibility of differing aetiologies,2 sample size and consistency 

with previous studies.  

Statistical Analysis 

We applied spatial clustering tests appropriate for point pattern data: three global clustering tests, the 

difference of k-functions,
39
 Cuzick-Edwards’ test

36
 and Tango’s index for point data;

40
 and the most 

widespread cluster detection method, Kulldorff’s circular scan.41 We chose these tests for 

comparability with previous studies22, 25, 28 and because different tests may be sensitive to different 

clustering scenarios.
42
 Each of the three global tests requires an input parameter defining “closeness” 

between cases. For Cuzick-Edwards’ test the input parameter is k and a case is considered close to 
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another if it belongs to the k nearest neighbours (k-NN) of the case. For the other tests, the input 

parameters relate to Euclidean distance. We used a range of different input values for each test, 

assuring that closeness between two cases was on average comparable across the different tests 

(Supporting Information Table S1). For k-functions we additionally calculated 95% simulation 

envelopes (2.5% and 97.5% quantiles of the difference in k-functions in Monte Carlo samples) to 

highlight distances for which evidence of clustering was strongest. Kulldorff’s circular scan draws 

concentric circles with varying radii around all locations of cases and controls. For each circle, a 

likelihood ratio is calculated for the number of cases within and outside the circle under the binomial 

distribution. The circle with the highest likelihood ratio represents the cluster least likely to have 

occurred by chance and is designated the most likely cluster. A detailed description of the four tests 

and our implementation is given in the Supporting Information Texts S2, S3 and S4. 

We paid particular attention to correct for multiple testing. We did this in two steps using a Monte 

Carlo procedure. We obtained 999 Monte Carlo samples by randomly permuting case control labels 

keeping the locations fixed (random labelling). First, we calculated p-values adjusted for the multiple 

input parameters used in each statistical test (The details for this step are reported in Supporting 

Information Texts S2.1-S2.4). For example, for Cuzick-Edwards’ test, this step consisted in first 

calculating individual p-values for each input value of k-NN based on a chi-square approximation of 

the distribution of the test statistic, minimising over these p-values to obtain a profile p-value, and 

ranking the profile p-value of the empirical dataset among the profile p-values of Monte Carlo samples 

to obtain the adjusted p-value.40 In a second step, we corrected for the multiple testing due to different 

statistical tests, diagnostic groups and age groups (24 tests in total) (The details for this step are 

reported in Supporting Information Text S5). Briefly, we treated each of the Monte Carlo samples as if 

it were the empirical sample and the empirical sample as if it were a Monte Carlo sample and 

calculated adjusted p-values for each test as in the first step. For each sample, we then selected the 

smallest adjusted p-value over the different tests (minimum p-value). Finally, we ranked the minimum 

p-value of the true empirical sample among the minimum p-values of the Monte Carlo samples to 

obtain an overall p-value adjusting for all tests performed. This procedure accounts for correlations 
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between tests making the adjustment less conservative than a Bonferroni correction (Supporting 

Information Text S5). 

In additional analyses, we investigated spatial clustering in the three different sub-periods 1985-1994, 

1995-2004 and 2005-2015 and for time of diagnosis conducted a sensitivity analysis excluding cases 

with less precise geocodes (margin of error > 100m).  

Results 

Study Population 

We identified 1871 eligible cases of childhood leukaemia in the SCCR. For analyses around time of 

birth, after excluding those born before 1985, born outside of Switzerland or with missing geocodes 

and one case from a sibling pair, we included 1297 leukaemia cases (of whom 850 had identical place 

of birth and diagnosis) of which 1042 had been diagnosed with ALL and 180 with AML (Figure 1). 

For the analysis at time of diagnosis, we included 1865 leukaemia cases, of which 1485 were ALL and 

272 AML. Table 1 shows the distribution of cases stratified by sex and calendar period. ALL 

accounted for almost 80% of the leukaemia cases and boys outnumber girls as expected. 

Spatial Clustering 

After adjusting for multiple testing, we found no evidence of spatial clustering of childhood leukaemia 

cases, neither around time of birth (overall P = 0.52) nor diagnosis (overall P = 0.51) (Table 2). When 

we disregarded the multiple testing due to different diagnostic and age groups, individual tests did 

show evidence of spatial clustering.  

Based on k-functions, the strongest evidence for spatial clustering was for leukaemia at age 5-15 years 

using residence at diagnosis (adjusted P = 0.05) (Table 2). Figure 2 shows that the observed difference 

in k-functions between cases and controls for that subgroup stays within the 95% simulation envelopes 

for distances from 500m to 5km, providing no evidence of clustering. By contrast, for distances of less 

than 500m we did observed evidence of clustering, with the empirical difference in k-functions 

exceeding the envelope at 100m (Figure 2). The graphs for the other sub-groups did not show any 

departure (data not shown).  
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Similarly, Cuzick-Edwards’ test also showed the strongest evidence of clustering for leukaemia cases 

aged 5-15 years around the time of diagnosis (adjusted P = 0.04) (Table 2). Varying the number of k-

NN, evidence was strongest for 1-NN (unadjusted P = 0.01, Supporting Information Table S2) 

reflecting distances of 270m on average.  

The strongest evidence from Tango’s test was also observed for leukaemia diagnosed at 5-15 years for 

time of diagnosis (adjusted P = 0.05) (Table 2). Varying the input parameter θ, evidence was strongest 

for θ = 354 (unadjusted P = 0.01, Supporting Information Table S3) reflecting distances of 250m.  

Kulldorff’s circular scan showed the strongest evidence of a cluster for ALL at age 0-4 years with 

similar results at the time of birth (adjusted P = 0.05) and diagnosis (adjusted P = 0.05) (Table 2). In 

both analyses, the most likely cluster consisted of 5 cases (4 males and 1 female) living within a circle 

of approximately 500m radius, born during 1994-2009 and diagnosed during 1999-2012. In that circle, 

the number of expected cases (based on Monte Carlo sampling) was 0.39 suggesting a relative risk of 

12.8. The same group of cases also accounted for the low p-values observed for leukaemia at age 0-4 

years at both birth and diagnosis. This is unsurprising given that 75% of cases diagnosed at this age in 

our study did not relocate between birth and diagnosis. There was no evidence of additional clusters of 

ALL at 0-4 years around time of birth (P of the second most likely cluster = 0.36). Similarly there was 

no evidence of clusters in the other diagnostic or age groups (Table 2). 

For cases of leukaemia aged 0-15 years, we also tested for spatial clustering within the sub-periods 

1985-1994, 1995-2004 and 2005-2015 (without overall adjustment for multiple diagnostic and age 

groups). The sub-period analysis showed no evidence of spatial clustering around the time of birth 

(Table 3). In contrast, there was evidence of clustering around the place of diagnosis during 1995-

2004, with adjusted P = 0.04 for k-functions (strongest evidence at 1km), adjusted P = 0.05 for 

Cuzick-Edwards’ (1-NN corresponding to 270m on average) and adjusted P = 0.04 for Tango’s test (θ 

= 2121 corresponding to 1.5km distance). Evidence was weaker for the other sub-periods. Kulldorff’s 

circular scan was indicative of a cluster during 2005-2015 (adjusted P = 0.05) pinpointing the same 

rural area as for the entire period.  
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In a sensitivity analysis for place of diagnosis excluding the 104 cases with less precise geocodes 

(margin of error >100m) the overall P did not provide evidence of clustering (overall P = 0.15). 

However, compared to the main analysis, the adjusted P dropped markedly (Supporting Information 

Table S4). K-functions, Cuzick-Edwards’ and Tango’s test also indicated spatial clustering of 

leukaemia at age 0-15 years. Results of Kulldorff’s scan remained similar, again pinpointing the same 

set of five cases as the most likely cluster.  

Post-hoc analysis 

In a post-hoc analysis we investigated the risk of ALL in the municipality where the most likely 

cluster lies. We identified 10 children diagnosed with leukaemia (8 with ALL) during the study period 

1985-2015 with place of residence in that municipality. The incidence risk ratio for ALL adjusted for 

age, sex and year of diagnosis comparing children living within that municipality to those living 

outside was 4.28 (95% CI 2.13 - 8.57). When we restricted the analysis to children aged 0-4 years, the 

adjusted risk ratio increased to 7.37 (95% CI 3.50 - 15.5) (for details see Supporting Information Text 

S6). 

 

Discussion 

Main findings  

This nationwide study of childhood leukaemia in Switzerland covering the period 1985-2015 found no 

overall evidence of spatial clustering of leukaemia cases, neither around time of birth nor diagnosis. 

When we disregarded multiple testing, the strongest evidence from individual tests was for leukaemia 

at age 5-15 years at place of diagnosis during the entire period and for leukaemia at age 0-15 years at 

diagnosis during the sub-period 1995-2004. Evidence of spatial clustering tended to be stronger at 

small spatial scales representing distances of <500m. The strongest evidence for a cluster based on the 

Kulldorff’s circular scan was for a group of 5 ALL cases aged 0-4 years at diagnosis living in a rural 

area of Switzerland at birth within a circle of radius 500m. We found no evidence of spatial clustering 

of AML cases.  
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Discussion in the context of previous studies 

Few studies have investigated spatial clustering of childhood leukaemia using exact geocodes.25, 27, 28 A 

case-control study in San Francisco investigating place of residence at birth found no evidence of 

spatial clustering.
27
 A study in Denmark investigating both residence at diagnosis and at birth reported 

evidence of spatial clustering only for ALL cases aged 2-6 years at place of diagnosis.28 A study in 

Spain reported evidence of leukaemia clustering for only one of 5 investigated regions. This study also 

searched for clusters using Kulldorff’s circular scan and found weak evidence of a small leukaemia 

cluster in Barcelona.25 Two other studies have also analysed point pattern data but with less precise 

geocodes. A study in Ohio using street level precision and residence at diagnosis reported no evidence 

of global clustering or local clusters.
22
 A study in New Zealand using centroids of meshblocks (a small 

geographic unit) of children’s residence at birth found evidence of ALL clustering for children aged 

10-14 years.
26
 That study did not search for clusters. Though all of the above studies either used 

different statistical tests and/or multiple diagnostic or age subgroups, none of them adjusted for 

multiple testing.  

Our results are less comparable with studies that have used areal data. Several of these studies have 

reported evidence of global clustering
9, 13, 14, 16, 18

 or clusters
19, 20

 whereas others found weak or no 

evidence.23, 24, 43-45 The heterogeneity between the results might partly be attributable to the modifiable 

areal unit problem whereby results of spatial analyses may be greatly affected by the size and shape of 

area boundaries.
46
  

There have been reports of clusters of childhood leukaemia in Sellafield, Cumbria in the UK,47 

Krümmel, Elbmarsch in Germany
48
 and Fallon, Nevada in the US.

49
 However, these clusters were 

discovered circumstantially and are not the result of a systematic scan over a large pre-specified area. 

No causative factor has been established for any of these clusters. 

In a recent study in Switzerland, we reported evidence of space-time clustering of leukaemia cases at 

birth.37, 50 That analysis was only sensitive to temporary, localized risk increases, a pattern consistent 

with epidemics of infections, which might point to an infectious aetiology. In contrast, the present 

analysis is most sensitive to localised risk increases that are stable over prolonged periods of time and 

Page 12 of 29

John Wiley & Sons, Inc.

International Journal of Cancer

This article is protected by copyright. All rights reserved.



13 

 

are thus more indicative of a pollution source.  These two patterns are not mutually exclusive and the 

presence of both could indicate that childhood leukaemia can have different aetiologies. 

Strengths and Limitations 

The main strength of our study was the availability of precise geocodes, not only for cases but for the 

entire population, allowing us to sample a large number of representative controls. We were able to 

investigate both residence at diagnosis and birth. We ascertained cases from a national cancer registry 

with high coverage. Furthermore, we considered four different tests in order to cover a range of 

possible clustering scenarios. While the difference of k-functions, Cuzick-Edwards’ and Tango’s test 

are sensitive to the general tendency of cases to be closer to each other than would be expected by 

chance, Kuldorff’s scan method is sensitive to a single pronounced cluster. Furthermore, while k-

functions and Tango’s test use Euclidian distance, Cuzick-Edwards’ test uses nearest neighbours and 

thus weights distances differently in scarcely and densely populated areas. Finally, we carefully 

adjusted for multiple testing. Our correction was less conservative than the commonly used Bonferroni 

method, which, contrary to our method, does not account for correlations between tests. In doing so, 

we noticed that the test statistics for the difference of k-functions and Tango’s test are highly 

correlated and future studies may opt for only one of them in order to mitigate the multiple testing 

problem (Supporting Information Text S5 and S7). 

Though the SCCR has a high coverage, a small proportion of cases were not registered and missed by 

our study. This may have reduced the statistical power to detect spatial clustering. We could not adjust 

for full residential histories as these data were not available for controls. Also, as all other studies, we 

could not account for time spent away from homes. However, place of residence is a reasonable 

surrogate of young children’s local environment as they spend much of their time in or near their 

homes.51 Lastly, we cannot guarantee that control locations were fully representative of the population 

at risk in non-census years. Although our control sampling scheme accounted for changes in the 

geographic distribution of the population between census years at the municipal level, we could not 

control for uneven population shifts within municipalities.  
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Interpretation of findings 

Overall we found no evidence of spatial clustering of childhood leukaemia. Although result tables 

each contain two to five p-values around the standard 5%-level, careful correction for multiple testing 

shows that such tables are not exceptional (P > 0.5) and can easily arise by chance alone. 

The strongest evidence for clustering was around diagnosis for the age group 5-15 years at small 

distances (100 m for k-functions and the first NN for the Cuzick-Edwards’ test). This suggests that if 

indeed there was spatial clustering which our global tests had insufficient statistical power to confirm, 

it is likely to have involved highly localised risk increases. Such clustering would be compatible with 

point sources of pollution, which give rise to increased exposure levels in their immediate vicinity. 

The most likely cluster occurred in a rural area comprising 5 cases of ALL aged 0-4 years. The cluster 

represents a more than 10-fold risk increase within a circle with radius of 500m. Had such a cluster 

come into focus incidentally, it would indeed seem extraordinary. However, considering that it 

resulted from a systematic, country-wide scan, involving the evaluation of a vast number of circles of 

varying radii and centre points, and that multiple diagnostic and age groups were investigated, the 

cluster is by no means extraordinary. In fact, 266 of the 999 Monte Carlo samples produced clusters of 

cases by chance alone that attained 5%-significance level for at least one of the six diagnostic and age 

groups. This highlights the importance of adjusting for multiple testing.  

Conclusion  

Overall, this study provided no evidence of spatial clustering in Switzerland during the period 1985-

2015. However, we cannot exclude the presence of weak spatial clustering, the effects of which may 

have been too small for our analyses to detect. If indeed there was clustering, it is likely to have 

occurred at a small geographic scale, a scenario compatible with the presence of numerous highly 

localised pollution sources. Our study also highlights the importance of adjusting for multiple testing 

and demonstrates that localised excesses of childhood leukaemia cases, which may appear 

extraordinary when brought to one’s attention, may in fact occur quite often by chance. 
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Tables 

Table 1: Leukaemia cases available for analysis around time of birth and diagnosis according to 

gender and calendar period.    

 

 

  

Time of birth 

 Total Female 

N (%) 

1985-1994 

N (%) 

1995-2004 

N (%) 

2005-2015 

N (%) 

Leukaemia 0-15 1297 539 (41.6) 496 (38.2) 506 (39.0) 295 (22.7) 

Leukaemia 0-4 768 333 (43.4) 251 (32.7) 278 (36.2) 239 (31.2) 

Leukaemia 5-15 529 206 (38.9) 245 (46.3) 228 (43.1) 56 (10.6) 

ALL 0-15 1042 439 (42.1) 399 (38.3) 402 (38.6) 241 (23.1) 

ALL 0-4 627 278 (44.3) 207 (33.0) 224 (35.7) 196 (31.3) 

AML 0-15 180 72 (40.0) 75 (41.7) 71 (39.4) 34 (18.9) 

Time of diagnosis 

Leukaemia 0-15 1865 774 (41.5) 551 (29.5) 590 (31.6) 724 (38.8) 

Leukaemia 0-4 944 405 (42.9) 293 (31.0) 287 (30.4) 364 (38.6) 

Leukaemia 5-15 921 369 (40.1) 258 (28.0) 303 (32.9) 360 (39.1) 

ALL 0-15 1485 621 (41.8) 440 (29.6) 465 (31.3) 580 (39.1) 

ALL 0-4 782 342 (43.7) 246 (31.5) 233 (29.8) 303 (38.7) 

AML 0-15 272 109 (40.1) 87 (32.0) 91 (33.5) 94 (34.6) 

Abbreviations: ALL Acute Lymphoid Leukaemia, AML Acute Myeloid Leukaemia  
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Table 2: Results of different tests for spatial clustering of childhood leukaemia using residence at 

birth and at diagnosis.  

 

Abbreviations: ALL Acute Lymphoid Leukaemia, AML Acute Myeloid Leukaemia, NN nearest 

neighbours 

 

   Time of birth   

Diagnostic 

group 

Age  Difference of k-

functions 

P
a
 (distance in m) 

Cuzick-

Edwards’ test 

P
a
  (no. of NN) 

Tango’s Index                               

                            

P
a
  (parameter θ

b
) 

Kulldorff’s scan 

statistic 

P
a
  (Radius in m) 

Leukaemia 0-15 0.22 (600) 0.40 (6) 0.24 (1414) 0.30 (796) 

 0-4 0.75 (600) 0.50 (6) 0.72 (1414) 0.06 (493) 

 5-15 0.48 (1000) 0.80 (1) 0.59 (636) 0.97 (1762) 

ALL 0-15 0.11 (600) 0.06 (6) 0.11 (849) 0.75 (4330) 

 0-4 0.33 (100) 0.46 (6) 0.67 (1414) 0.05 (493) 

AML 0-15 0.45 (1000) 0.14 (76) 0.63 (2121) 0.29 (20,987) 

    overall  P
c
 = 0.52 

                        Time of diagnosis   

Leukaemia 0-15 0.11 (250) 0.11 (1) 0.13 (636) 0.13 (438) 

 0-4 0.42 (4000) 0.33 (11) 0.38 (7071) 0.07 (517) 

 5-15 0.05 (100) 0.04 (1) 0.05 (354) 0.22 (3089) 

ALL 0-15 0.42 (5000) 0.33 (1) 0.38 (7071) 0.10 (411) 

 0-4 0.49 (5000) 0.46 (6) 0.42 (7071) 0.05 (517) 

AML 0-15 0.61 (5000) 0.58 (52) 0.70 (7071) 0.88 (2698) 

    overall  Pc = 0.51 
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a
 Data represent p-values adjusting for the multiple input parameters used (Supporting Information 

Table S1). We refer to these p-values as adjusted P in the manuscript. The number in parenthesis 

represents the input parameter for which evidence of clustering was strongest. 

b
 The parameter θ determines the weights associated with a given distance between two points (see 

Supporting Information Text S4). 

c p -value adjusted for the multiple diagnostic groups and tests performed.   

 
 

Page 25 of 29

John Wiley & Sons, Inc.

International Journal of Cancer

This article is protected by copyright. All rights reserved.



26 

 

Table 3:  Results of tests for spatial clustering of childhood leukaemia for different calendar periods. 

Time of birth 

 Difference of k-

functions 

P
a
 (distance in m) 

Cuzick-

Edwards’ test  

P
a
 (no. of NN) 

Tango’s Index          

                              

P
a
 (parameter θ

b
) 

Kulldorff’s  

scan statistic 

P
a
 (radius in m) 

1985-1994 0.17 (1000) 0.58 (52) 0.23 (2121) 0.32 (27,119) 

1995-2004 0.62 (600) 0.23 (3) 0.44 (849) 0.97 (273) 

2005-2015 0.81 (450) 0.36 (1) 0.86 (1414) 0.90 (5986) 

   Time of diagnosis   

1985-1994 0.17 (5000) 0.29 (32) 0.12 (7071) 0.09 (3497) 

1995-2004 0.04 (1000) 0.05 (1) 0.04 (2121) 0.99 (640) 

2005-2015 0.50 (100) 0.06 (2) 0.35 (354) 0.05 (595) 

Abbreviations: NN nearest neighbours 

 

a Data represent p-values adjusting for the multiple input parameters used (Supporting Information 

Table S1). We refer to these p-values as adjusted P in the manuscript. The number in parenthesis 

represents the input parameter for which evidence of clustering was strongest. 

b The parameter θ determines the weights associated with a given distance between two points (see 

Supporting Information Text S4). 
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Figure legends 

 

Figure 1. Flow chart of the study population. 

 

Figure 2. The difference in k-functions between cases and controls for leukaemia at age 5-15 years at 

time of diagnosis. The shaded area is defined by the 95% simulation envelopes based on 999 Monte 

Carlo samples generated by randomly permuting the case-control status conditional on the entire set of 

case-control locations (random labelling): At any given distance, 95% of the calculated k-function 

differences from the Monte Carlo samples are within the grey zone. Values of the difference within the 

shaded area indicate the absence of spatial clustering. The solid line represents the empirical difference 

and the black dashed line the mean difference in the Monte Carlo samples. For small distances, the 

plot is enlarged in a separate window.  
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Figure 1. Flow chart of the study population.  
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Figure 2. The difference in k-functions between cases and controls for leukaemia at age 5-15 years at time 
of diagnosis. The shaded area is defined by the 95% simulation envelopes based on 999 Monte Carlo 

samples generated by randomly permuting the case-control status conditional on the entire set of case-
control locations (random labelling): At any given distance, 95% of the calculated k-function differences 
from the Monte Carlo samples are within the grey zone. Values of the difference within the shaded area 
indicate the absence of spatial clustering. The solid line represents the empirical difference and the black 
dashed line the mean difference in the Monte Carlo samples. For small distances, the plot is enlarged in a 

separate window.  
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