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We present a first model-independent calculation of ππ intermediate states in the hadronic-light-by-light
(HLBL) contribution to the anomalous magnetic moment of the muon ðg − 2Þμ that goes beyond the scalar
QED pion loop. To this end, we combine a recently developed dispersive description of the HLBL tensor
with a partial-wave expansion and demonstrate that the known scalar-QED result is recovered after partial-
wave resummation. Using dispersive fits to high-statistics data for the pion vector form factor, we provide
an evaluation of the full pion box aπ boxμ ¼ −15.9ð2Þ × 10−11. We then construct a suitable input for the
γ�γ� → ππ helicity partial waves, based on a pion-pole left-hand cut and show that for the dominant
charged-pion contribution, this representation is consistent with the two-loop chiral prediction and the
COMPASS measurement for the pion polarizability. This allows us to reliably estimate S-wave rescattering
effects to the full pion box and leads to our final estimate for the sum of these two contributions

aπ boxμ þ aππ;π-pole LHC
μ;J¼0 ¼ −24ð1Þ × 10−11.

DOI: 10.1103/PhysRevLett.118.232001

Introduction.—The final report of the BNL E821 experi-
ment [1] dominates the world average for the experimental
value of the anomalous magnetic moment of the muon
ðg − 2Þμ, establishing a departure from its standard-model
(SM) expectation by about 3σ and thus providing an
intriguing hint for new physics that makes the improved
measurement at FNAL E989 [2], as well as a potential
independent determination at J-PARC E34 [3], highly
anticipated (see [4] for a detailed comparison of the two
methods). However, the significance of the deviation
crucially depends on the details of the SM evaluation.
Even more so, a sound interpretation of the future experi-
ments demands that also the theory uncertainties be care-
fully reassessed and ideally reduced in parallel with the
experimental improvement.
The by-far dominant uncertainties in the SM prediction

arise from hadronic contributions: hadronic vacuum polari-
zation (HVP) at second order in the fine structure constant
α and hadronic-light-by-light scattering (HLBL) at Oðα3Þ
[5]. With higher-order iterations of the same topologies

already under good control [6–9], most theoretical efforts
are concentrated on reducing the uncertainties in the calcu-
lations of the HVP and HLBL contributions. But while
analyticity and unitarity allow one to express the former in
terms of σðeþe− → hadronsÞ [10,11], which is well mea-
sured, an expression of the HLBL contribution in terms of
measurable quantities was not known until recently. So,
traditionally, HLBL scattering has been estimated using
hadronic models relying on different limits of QCD—large
Nc, chiral symmetry, perturbative expansion—as guiding
principles [12–26], which, however, complicates the assess-
ment of the theoretical uncertainty as well as the identifica-
tion of strategies for systematic improvements, making it
emerge as a potential roadblock [27,28].
In a series of recent papers [29–33], we have shown that

also the HLBL contribution can be expressed in terms of
measurable quantities, albeit not in a form as compact as for
HVP. In our model-independent approach based on dis-
persion relations, we have organized the calculation of the
HLBL tensor in terms of its singularities, i.e., single-
particle poles and unitarity cuts, by expanding in the mass
of intermediate states [34]. Individual terms in this expan-
sion can be uniquely defined in terms of form factors and
scattering amplitudes, which, at least in principle, are
accessible to experiment. In this way, the notion of pion-
pole and pion-box contributions becomes unambiguous,
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and the first terms in the expansion—pseudoscalar poles
from π0, η, η0 intermediate states—are fully determined by
the corresponding doubly virtual transition form factors.
Progress on the pseudoscalar-pole contributions hinges on
improved input for these form factors, in combination with
constraints on the asymptotic behavior [23], and only
concerns a few of the scalar functions that are necessary
for a full description of the HLBL tensor. A program to
reconstruct the transition form factors based on a combi-
nation of unitarity, analyticity, and perturbative QCD with
experimental data is currently under way [41–49].
Next in the expansion are two-pion intermediate states.

As demonstrated in [33], the one-loop diagrams evaluated
in scalar QED (sQED), including pion vector form factors
at each vertex to account for the photon virtuality, provide
an exact representation of the contribution of two-pion
intermediate states, where only the pion-pole contribution
to the left-hand cut (LHC) of the γ�γ� → ππ amplitudes is
retained. Thus, the dispersive approach unambiguously
defines the gauge-invariant pion-box topology in terms
of the pion vector form factor, a very well-measured
quantity. Here, we present a numerical evaluation of the
pion box, using a form factor fit to high-statistics data, in
turn using a dispersive representation to analytically con-
tinue the timelike data into the spacelike region required for
the ðg − 2Þμ integral and show that this contribution can be
calculated with negligible uncertainties.
Extending our formalism beyond the pion box to account

for two-pion rescattering effects is not easy. Here, we briefly
review the technical challenges, along with their solutions,
to be faced when doing this extension and present a first
numerical evaluation of S-wave ππ-rescattering effects,
which unitarize the pion-pole contribution to γ�γ� → ππ.
This constitutes the first step towards a full treatment of the
γ�γ� → ππ partial waves [50–52]. Our calculation settles the
role of the pion polarizability, which enters at next-to-
leading order in the chiral expansion of the HLBL amplitude
[53–55] and has been suspected to produce sizable correc-
tions in [54]. In this Letter, we illustrate the general strategy
and present first numerical results. Details of the formalism
are relegated to [56].
Dispersion relation for HLBL.—The central object in the

calculation of the HLBL contribution to ðg − 2Þμ is the
hadronic four-point function

Πμνλσðq1; q2; q3Þ ¼ −i
Z

d4xd4yd4ze−iðq1·xþq2·yþq3·zÞ

× h0jTfjμemðxÞjνemðyÞjλemðzÞjσemð0Þgj0i
ð1Þ

of four electromagnetic currents

jμem ¼ q̄Qγμq; Q ¼ diag

�
2

3
;−

1

3
;−

1

3

�
; ð2Þ

with momenta qi as indicated, q4 ¼ q1 þ q2 þ q3, and
quark fields q ¼ ðu; d; sÞT .
To be able to reconstruct the HLBL tensor Πμνλσ with

dispersion relations, it is imperative to use a decomposition
into scalar functions that are free of kinematic singularities
and zeros. Such a representation can be obtained following
the general recipe put forward by Bardeen, Tung [57], and
Tarrach [58] (BTT), resulting in

Πμνλσ ¼
X54
i¼1

Tμνλσ
i Πi; ð3Þ

with scalar functions Πi depending on the Mandelstam
variables s ¼ ðq1 þ q2Þ2, t ¼ ðq1 þ q3Þ2, u ¼ ðq2 þ q3Þ2
as well as the virtualities q2i and Lorentz structures Tμνλσ

i
[32,33]. This decomposition fulfills gauge invariance
manifestly

fqμ1; qν2; qλ3; qσ4gTi
μνλσ ¼ 0; ð4Þ

is highly crossing symmetric (with only 7 distinct struc-
tures, all remaining 47 being related to these by crossing
transformations), and ensures that the coefficient functions
Πi do not contain kinematic singularities and zeros. In
addition, the BTT decomposition typically allows for a very
economical representation of HLBL amplitudes; e.g.,
one of the structures coincides with the amplitude for a
pseudoscalar pole, while even the sQED amplitude
becomes very compact once expressed in terms of BTT
functions [56]. For the contribution to ðg − 2Þμ, a three-
dimensional integral representation is available [56]

aHLBLμ ¼ α3

432π2

Z
∞

0

dΣΣ3

Z
1

0

drr
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p Z
2π

0

dϕ

×
X12
i¼1

TiðQ1; Q2; Q3ÞΠ̄iðQ1; Q2; Q3Þ; ð5Þ

where the Ti are known kernel functions, the Π̄i suitable
linear combinations of the BTT Πi, and the Euclidean
momenta squared are given by [59]

Q2
1;2 ¼

Σ
3

�
1 −

r
2
cosϕ ∓ r

2

ffiffiffi
3

p
sinϕ

�
;

Q2
3 ¼

Σ
3
ð1þ r cosϕÞ: ð6Þ

There are only 6 distinct functions Π̄i; the remaining ones
are again related to these by crossing symmetry. It suffices
to calculate the Π̄i in the kinematic limit, where q4 → 0; the
transition to ðg − 2Þμ then proceeds by means of (5).
Two-pion intermediate states.—In a dispersive approach,

two-pion intermediate states comprise all contributions that
involve a two-pion cut, generically represented by the left
(unitarity) diagram in Fig. 1. The dominant term is obtained
if in the γ�γ� → ππ subamplitudes, in turn, the pion is put
on shell, i.e., if the pion-pole contribution to the LHC is
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isolated. In this case, the remaining hadronic amplitudes are
given by pion vector form factors, and as demonstrated in
[33], this class of two-pion intermediate states, the pure
pion box in diagram (a) in Fig. 1, reproduces the sQED
pion loop with vertices augmented by the appropriate pion
form factors. The reason for this behavior can be traced
back to the fact that only the singularities of the box
diagrams in sQED matter, while the triangle and bulb
diagrams are simply required to restore gauge invariance.
Because of the high degree of crossing symmetry, this pion-
box contribution can be expressed in terms of either fixed-
s, -t, or -u dispersion relations or in a symmetrized form

Ππ box
i ðs; t; uÞ ¼ 1

3

�
1

π

Z
∞

4M2
π

dt0
ImΠπ box

i ðs; t0; u0Þ
t0 − t

þ 1

π

Z
∞

4M2
π

du0
ImΠπ box

i ðs; t0; u0Þ
u0 − u

þ fixed tþ fixed u

�
: ð7Þ

In this case, the representation is exact.
Once heavier intermediate states are considered, generi-

cally denoted by the double lines in diagrams (b) and (c) in
Fig. 1, a more detailed investigation of the double spectral
functions is required. In practice, such contributions can be
included using a partial-wave expansion, in which case the
subprocess becomes a polynomial in the crossed variable,
and the crossed-channel cuts are neglected. Writing down
all crossed versions of the unitarity diagrams shown in
Fig. 1, one sees that each double spectral region appears
exactly twice in a symmetrized form as in (7) so that the
prefactor has to be changed from 1=3 → 1=2 [56], with
corrections suppressed by the mass scale of the neglected
LHC. In particular, this representation becomes exact for
ππ-rescattering effects, which, by definition, are polyno-
mial in the crossed Mandelstam variable.
Partial-wave expansion.—Constraints from unitarity are

most conveniently formulated in a partial-wave expansion
for HLBL helicity amplitudes hJλ1λ2;λ3λ4 , with angular
momentum J and helicity labels λi. In this case, the
unitarity relation becomes diagonal

ImhJλ1λ2;λ3λ4ðsÞ ¼
σπðsÞ
16πS

hJ;λ1λ2ðsÞh�J;λ3λ4ðsÞ; ð8Þ

where σπðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

π=s
p

gives the phase space, S ¼ 2
a symmetry factor in case of indistinguishable particles, and
hJ;λ1λ2 the helicity partial waves for γ�γ� → ππ. Once
formulated in isospin basis, Watson’s theorem [60] [see
also (10) below] guarantees that the phases on the right-
hand side cancel to produce a real imaginary part. The
partial-wave expansion of the pion box is obtained if both
hJ;λ1λ2ðsÞ and hJ;λ3λ4ðsÞ are identified with the partial-wave-
projected Born terms, while the rescattering effects corre-
spond to the unitarity corrections to either subamplitude
derived from (10).
There are 41 independent helicity amplitudes for the full

HLBL tensor, which reduce to 27 if one photon is taken on
shell. Rewriting the representation of the contribution to
ðg − 2Þμ, Eq. (5), in such a way that only dispersive
integrals over imaginary parts of these 27 helicity ampli-
tudes appear is highly nontrivial. By explicitly requiring
that unphysical amplitudes drop out in the final result and
that the two redundancies which appear in four space-time
dimensions d ¼ 4 [59] do not affect the result, one can
derive a set of sum rules for the scalar functions. (In [61],
sum rules for the special case of forward HLBL scattering
have been derived.) These sum rules apply to the full
amplitudes but not necessarily at the level of the partial-
wave-expanded ones, producing an apparent dependence
on unphysical amplitudes that would only disappear after a
resummation of all partial waves.
To avoid such pathologies, we were able to construct a

set of 27 amplitudes Π̌i, related to the 27 singly on-shell
helicity amplitudes by a basis change that we have derived
in explicit analytic form. In the limit q4 → 0, a subset of the
Π̌i includes all the scalar functions needed as input in (5)
[56]. Moreover, this set of 27 amplitudes is manifestly free
of Tarrach [58] or d ¼ 4 ambiguities [59]. For singly on-
shell kinematics, there still exist 15 sum rules among the 27
helicity amplitudes, which we have exploited to optimize to
a certain degree the representation with respect to the
convergence of the partial-wave expansion. This formalism
is now ready to be applied to the evaluation of rescattering
effects, but before doing that, we test it with the help of the
pion box and study how well we are able to reproduce its
numerical value by resumming the partial-wave expansion.
Pion box.—The formalism for dealing with the pion box

has been developed in [33]. Here, we provide a first
numerical evaluation thereof, with a realistic pion form
factor. The latter has been obtained by fitting a dispersive
representation as suggested in [62,63] to both spacelike [64]
and timelike [65–70] form factor data (similar representa-
tions have been used before in [71–76]), with the result

aπ boxμ ¼ −15.9ð2Þ × 10−11; ð9Þ

and an uncertainty determined from the differences between
the timelike data sets as well as the details of the fit
representation. The main reduction in uncertainty compared

(a) (b) (c)

FIG. 1. Two-pion-cut contributions to HLBL scattering. Solid
(wiggly) lines refer to pions (photons), while dashed lines
indicate the cutting of propagators. Double lines generically
denote heavier intermediate states, the gray blobs hadronic
amplitudes. Crossed diagrams are omitted.
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to earlier evaluations of a “pion loop” [13,16] is due to the
insight that the pion box, defined as two-pion intermediate
states with a pion-pole left-hand cut, is the unambiguous first
term in the expansion and can be expressed in terms of a
hadronic observable, the pion vector form factor, which is
very well known phenomenologically.
The pion box also provides an ideal test case for the

framework presented in the previous section since the full
result is known, and explicit expressions for all BTT scalar
functions are available. As a first step, we verified that the
sum rules encountered in the context of the partial-wave
expansion are fulfilled. Second, in the special case of the
pion box, a fixed-s, -t, -u representation should each hold,
combining to the symmetrized version in (7), so that the
convergence can be studied in each channel separately. The
results, for simplicity, obtained by using a vector-meson-
dominance pion form factor FV

π ðq2Þ ¼ M2
ρ=ðM2

ρ − q2Þ,
with aπ box;VMD

μ ¼ −16.4 × 10−11, are shown in Table I,
demonstrating that each representation approaches the full
result (going up to Jmax ¼ 20, we checked that also the
remaining differences disappear after partial-wave resum-
mation). The vanishing S-wave contribution for fixed s is
well understood and partly a matter of convention in the
choice of the six functions Π̄i, see [56]. In concrete
applications, the prescription of changing the prefactor
in (7), as explained above, combines the three representa-
tions in a way that best captures the physics (such as a
resonance) in all channels at once, which means that the
convergence patterns for fixed t or -u are more represen-
tative of realistic cases, and the average of the three should
be viewed as a worst-case scenario. But even that displays a
very reasonable convergence behavior.
ππ-rescattering effects.—We now turn to the evaluation

of rescattering effects as a first important step to go beyond
the pion-box contribution. The helicity amplitudes
hJ;λ1λ2ðsÞ entering (8) satisfy themselves a unitarity relation

ImhIJ;λ1λ2ðsÞ ¼ sin δIJðsÞe−iδIJðsÞhIJ;λ1λ2ðsÞ; ð10Þ

with isospin labels I and ππ phase shifts δIJ. This relation is
clearly violated for the (real) Born terms alone, but this
deficiency can be easily repaired by solving the dispersion
relation for the subprocess γ�γ� → ππ.

In contrast to the on-shell and singly virtual case [50–
52], the calculation of the γ�γ� → ππ partial waves for two
off-shell photons is complicated by the fact that even for
S waves two different helicity partial waves, h0;þþ and h0;00,
become coupled, including off-diagonal kernel functions
required to eliminate kinematic singularities [30,33]. Here,
we apply this framework to construct the γ�γ� → ππ
amplitudes that correspond to the rescattering corrections
to the Born terms, whose solution can still be derived based
on Muskhelishvili–Omnès methods [77,78]. We use ππ
phase shifts, based on the modified inverse-amplitude
method [79], for the main reason that it has a simple
analytic expression, which is convenient to use in combi-
nation with Muskhelishvili–Omnès methods, while at the
same time, it reproduces accurately the low-energy proper-
ties of the phase shifts as well as pole position and
couplings of the f0ð500Þ resonance. This phase shift
departs from the correct one just below the KK̄ threshold
because it does not feature the sharp rise due to the f0ð980Þ
resonance but continues flat with a smooth high-energy
behavior. A full-fledged evaluation of the f0ð980Þ resonance
would require a proper treatment of theKK̄ channel, which is
beyond the scope of this first estimate. We can, on the other
hand, test the sensitivity to the asymptotic part of the
dispersive integrals by studying solutions with different
cutoff values Λ ¼ ½1 GeV;∞Þ, constructed with finite-
matching-point techniques [51,80–83]. Moreover, we
checked that for low values of Λ, phase shifts obtained by
solving Roy equations [84–86] lead to equivalent results.
The results for the rescattering contribution, summarized

in Table II, are indeed stable over a wide range of cutoffs,
indicating that our input for the γ�γ� → ππ partial waves
reliably unitarizes the Born-term LHC, which should
indeed dominate at low energies. In addition, we checked
that the only sum rule that receives S-wave contributions is
already saturated at better than 90%, completely in line
with the expectation that the sum rules will be fulfilled
only after partial-wave resummation. The isospin-0 part
of the result can be interpreted as a model-independent
implementation of the contribution from the f0ð500Þ of
about −9 × 10−11 to HLBL scattering in ðg − 2Þμ. In total,
we obtain for the ππ-rescattering effects related to the
pion-pole LHC,

aππ;π-pole LHC
μ;J¼0 ¼ −8ð1Þ × 10−11; ð11Þ

TABLE I. Saturation of aπ boxμ for maximal angular momentum
Jmax.

Jmax Fixed s Fixed t Fixed u Average

0 0.0% 106.2% 106.2% 70.8%
2 73.9% 102.3% 92.7% 89.6%
4 89.2% 101.5% 96.4% 95.7%
6 94.3% 100.7% 97.9% 97.6%
8 96.5% 100.4% 98.7% 98.5%

TABLE II. S-wave rescattering corrections to aπ boxμ in units of
10−11 for both isospin components and in total.

Cutoff 1 GeV 1.5 GeV 2 GeV ∞

I ¼ 0 −9.2 −9.5 −9.3 −8.8
I ¼ 2 2.0 1.3 1.1 0.9
Sum −7.3 −8.3 −8.3 −7.9
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where the error is dominated by the uncertainties related to
the asymptotic parts of the integral, see Table II. Improving
the energy region≳1 GeV requires the inclusion of the KK̄
channel as well as higher contributions to the LHC, neither
of which can be expressed in terms of the pion vector form
factor. Very likely, such effects beyond pion states will be
less precisely estimated.
Finally, it is instructive to consider the separate con-

tributions not in the isospin but in the charge basis. In this
case, the unitarity relation (8) is no longer diagonal, and it is
not possible to define unambiguously the contribution of
each of the charge states. Irrespective of the detailed
convention for the separation, charged-pion states are
expected to strongly dominate; e.g., in the chiral expansion,
neutral-pion intermediate states first appear at three-loop
order. The derivative of the Born-term-subtracted ampli-
tude h0;þþðsÞ is related to the pion dipole polarizability
α1 − β1, to which the unitarized pion-pole LHC contributes

ðα1 − β1Þπ�;π-pole LHC ¼ ð5.4…5.8Þ × 10−4 fm3;

ðα1 − β1Þπ0;π-pole LHC ¼ ð11.2…8.9Þ × 10−4 fm3 ð12Þ

for Λ ¼ 1 GeV…∞. For the charged pion, this result is in
perfect agreement with the chiral two-loop prediction
5.7(1.0) [87] (in the same units) as well as the recent
COMPASS measurement 4.0ð1.2Þstatð1.4Þsyst [88]. In con-
trast, the two-loop prediction for the neutral pion −1.9ð0.2Þ
[89] is substantially smaller in size and has the opposite
sign of what we get from our representation. This failure,
however, is not reason for much concern because we are not
yet including here the main contributions to the LHC of the
amplitude for neutral pions, i.e., vector-meson exchange
involving V ¼ ω, ρ. Because of the scaling with ΓV→πγ , the
relative impact on the neutral channel [90]

Γω × BR½ω → π0γ� þ Γρ × BR½ρ0 → π0γ�
Γρ × BR½ρ� → π�γ� ∼ 12 ð13Þ

is an order of magnitude larger so that heavier intermediate
states allow one to repair ðα1 − β1Þπ0 without spoiling
agreement in the charged channel. In summary, the rescat-
tering effects in (11) are dominated by the charged pion,
with input for the γ�γ� → ππ partial waves fully consistent
with its dipole polarizability. For this reason, (11) can be
considered a model-independent implementation of effects
related to the low-energy constants L9 and L10, which were
suspected to produce large effects in [54]. Our calculation
proves that this is not the case and that the related
rescattering corrections are indeed of very reasonable size
(a similar conclusion was reached within a model approach
in [55]). In this context, it should be stressed that our
analysis does not rely on chiral operators, thus avoiding the
pathologies in their high-energy behavior and the need to
cure them. The polarizabilities enter here as the limit of our

γ�γ� → ππ amplitudes at a particular kinematic point that
does not contribute to the dispersive integrals directly,
providing an important cross-check of the low-energy limit.
In conclusion, we have shown that our framework allows

us to estimate, very accurately, the combined effect of two-
pion intermediate states generated by a pion-pole LHC and
its S-wave unitarization

aπ boxμ þ aππ;π-pole LHC
μ;J¼0 ¼ −24ð1Þ × 10−11; ð14Þ

which is considered to be among the most important
contributions after the dominant pseudoscalar poles but
was so far affected by significant uncertainties. This first
numerical result based on the dispersive approach lays the
foundation for extensions towards higher partial waves, an
improved LHC in the γ�γ� → ππ subamplitudes, as well as
higher-mass intermediate states, all important prerequisites
for a model-independent evaluation of the complete HLBL
contribution to ðg − 2Þμ.
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