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Abstract: In this third paper of a series dedicated to a dispersive treatment of the

hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion

intermediate states in the HLbL contribution to the anomalous magnetic moment of the

muon (g−2)µ, including a detailed discussion of the unitarity relation for arbitrary partial

waves. We show that obtaining a final expression free from unphysical helicity partial waves

is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules

that could be used to constrain future calculations of γ∗γ∗ → ππ. We validate the formalism

extensively using the pion-box contribution, defined by two-pion intermediate states with

a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when

resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector

form factor, we provide an evaluation of the full pion box, aπ-box
µ = −15.9(2)×10−11. As an

application of the partial-wave formalism, we present a first calculation of ππ-rescattering

effects in HLbL scattering, with γ∗γ∗ → ππ helicity partial waves constructed dispersively

using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-

0 part of our calculation can be interpreted as the contribution of the f0(500) to HLbL

scattering in (g − 2)µ. We argue that the contribution due to charged-pion rescattering

implements corrections related to the corresponding pion polarizability and show that

these are moderate. Our final result for the sum of pion-box contribution and its S-wave

rescattering corrections reads aπ-box
µ + aππ,π-pole LHC

µ,J=0 = −24(1)× 10−11.
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1 Introduction

The long-standing discrepancy between the standard-model determination and the exper-

imental measurement [1] (updated to the latest muon-proton magnetic moment ratio [2])

aexp
µ = 116 592 089(63)× 10−11 (1.1)

of the anomalous magnetic moment of the muon (g− 2)µ has triggered substantial interest

in the subject on both the theoretical and the experimental side. The ongoing E989

experiment at Fermilab [3] as well as complementary efforts by J-PARC E34 [4] aim at

improving the precision by a factor of 4, see [5] for a detailed account of the experimental

strategies in both cases. On the theory side, the uncertainty is dominated by hadronic

effects [6–8], while QED [9] and electroweak [10] contributions are under control at the level

of at least 1× 10−11. Currently, the dominant source of hadronic uncertainties is hadronic

vacuum polarization (HVP) at O(α2) in the fine-structure constant, closely followed by the

O(α3) hadronic light-by-light (HLbL) contribution, depicted in figure 1, and with higher-

order insertions of the same hadronic amplitudes already under sufficient control [11–14].

In view of improved data input for the dispersion relation for HVP [15], it is likely that

the stumbling block will eventually become the sub-leading HLbL contribution.

Current estimates for HLbL scattering in (g− 2)µ are largely based on hadronic mod-

els [16–27], which despite implementing different limits of QCD, such as large-Nc, chiral

symmetry, or constraints from perturbative QCD, all involve a certain amount of uncon-

trollable uncertainties without offering a systematic path forward. In order to improve the

determination of the HLbL contribution, we proposed a dispersive framework [28], based on

the fundamental principles of analyticity, unitarity, gauge invariance, and crossing symme-

try, which opens up a path towards a data-driven evaluation [29]. As the next step [30, 31],

we presented a comprehensive solution to the task of constructing a basis for the HLbL

tensor devoid of kinematic singularities, defining scalar functions that are amenable to

– 1 –



J
H
E
P
0
4
(
2
0
1
7
)
1
6
1

Figure 1. HLbL contribution to the anomalous magnetic moment of the muon (g − 2)µ.

a dispersive treatment. In particular, we derived a Lorentz decomposition of the HLbL

tensor that manifestly implements crossing symmetry and gauge invariance, with scalar

coefficient functions free of kinematic singularities and zeros that fulfill the Mandelstam

double-spectral representation. In this framework, we worked out how to define unambigu-

ously and in a model-independent way both the pion-pole and the pion-box contribution.1

With pion- as well as η-, η′-pole contributions determined by their doubly-virtual

transition form factors, which by themselves are strongly constrained by unitarity, ana-

lyticity, and perturbative QCD in combination with experimental data [38–46], we here

apply our framework to extend the partial-wave formulation of two-pion rescattering ef-

fects for S-waves [28] to arbitrary partial waves. To this end, we identify a special set of

(unambiguously defined) scalar functions that fulfill unsubtracted dispersion relations and

can be expressed as linear combinations of helicity amplitudes. Their imaginary part, the

input required in the dispersion relations, is provided in terms of helicity partial waves for

γ∗γ∗ → ππ by means of unitarity. Working out explicitly the basis change to the helic-

ity amplitudes, we generalize the unitarity relation derived in [28] up to D-waves only to

arbitrary partial waves. We demonstrate that indeed the summation of the partial waves

reproduces the known full result for the pion box, to which the ππ-rescattering contribution

is expected to produce the dominant correction. We provide the details of a first numerical

analysis [47] of these rescattering effects based on helicity partial waves for γ∗γ∗ → ππ

that we construct dispersively from a pion-pole left-hand cut (LHC) and ππ phase shifts

from the inverse-amplitude method, an approach that isolates pure ππ contributions and

thus, in the isospin-0 channel, provides an estimate for the impact of the f0(500) reso-

nance on HLbL scattering. In the same way, our γ∗γ∗ → ππ amplitudes reproduce the

phenomenological value for the charged-pion polarizability, thereby clarifying the role of

the associated corrections in (g−2)µ [48–50]. These results lay the groundwork for a future

global analysis of two-meson intermediate states in the HLbL contribution.

The outline is as follows: section 2 is devoted to a thorough derivation of partial-wave

dispersion relations for the HLbL tensor, with tensor decomposition, dispersion relations,

sum rules, and partial-wave expansion addressed in sections 2.1–2.5. A short summary

of the strategy is provided at the beginning of section 2, complemented by a summary of

1For a dispersive approach not for the HLbL tensor, but for the Pauli form factor instead see [32].

Complementary to the dispersive approach, a model-independent determination of the HLbL contribution

could be achieved using lattice QCD, see [33–37] for recent progress in this direction.

– 2 –
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the most important results in section 2.6. In section 3, a numerical evaluation of the pion

box is provided based on fits of the pion vector form factor to high-statistics time-like and

space-like data. The pion box is further used to explicitly verify the general results derived

in section 2, in particular to demonstrate the convergence of the partial-wave expansion

for its contribution to (g − 2)µ. Rescattering corrections to the pion box are discussed in

section 4, including a numerical analysis of the S-wave contribution, before we conclude in

section 5. Further details of the formalism are provided in the appendices.

2 Helicity formalism for HLbL

In this section, we derive the formalism for the evaluation of the HLbL two-pion contribu-

tion to (g− 2)µ. The goal of our treatment is to relate this contribution to helicity partial

waves for the sub-process γ∗γ∗ → ππ, which in principle are measurable input quantities

or at least can be reconstructed dispersively.

The outline of this derivation is illustrated as a flowchart in figure 2. The first step

is the decomposition of the HLbL tensor into Lorentz structures and scalar functions that

are free of kinematic singularities and zeros. We have solved this problem in [31] and

recapitulate the results in section 2.1. This representation, referred to as BTT tensor

decomposition [51, 52] in figure 2, allows us to write the HLbL contribution to (g−2)µ in full

generality as a master formula that involves only three integrals. This master formula (2.25)

applies to any conceivable HLbL tensor, as long as it is consistent with general properties

that should be fulfilled by any admissible HLbL amplitude: gauge invariance, crossing

symmetry, and the principle of maximal analyticity [53], i.e. the principle that the scattering

amplitude can be represented by a complex function that exhibits no further singularities

except for those required by unitarity and crossing symmetry. Any such singularities are

of dynamical origin, and thus have to be contained within the scalar functions Π̄i in the

master formula. Phrased differently, if a given amplitude for the HLbL tensor cannot be

expressed in the BTT basis, e.g. due to the appearance of kinematic singularities, this

automatically implies that this amplitude is at odds with said general properties.

The dynamics of HLbL scattering is thus contained in the scalar functions, which are

the objects that we describe dispersively. In [31], we have used the Mandelstam representa-

tion for the scalar functions to study the pion-box contribution. In section 2.2, we extend

the dispersive treatment and derive from the Mandelstam representation single-variable

dispersion relations for general two-pion contributions. Combining these single-variable

dispersion relations with unitarity constraints requires a basis change to helicity ampli-

tudes, since the partial-wave unitarity relation becomes diagonal only for definite helicity

amplitudes. However, this basis change is complicated by the appearance of redundancies

in the representation which, together with the requirement that longitudinal polarizations

for on-shell photons not contribute in the final HLbL representation, necessitates a more

careful study of the BTT scalar functions and their relation to helicity amplitudes. The

solution to this problem is the explicit derivation of a basis that removes all redundancies

and apparent contributions from unphysical polarizations, which is presented in section 2.4.

– 3 –
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BTT tensor decomposition

sections 2.1 and 2.4

master formula (2.25):

aHLbL
µ =

∫
dΣ̃ dr dφ (. . .)

12∑

i=1

Ti Π̄i

Mandelstam representation

section 2.2

ππ dispersion relation (2.36), (2.64):

Π̌i(s) =

∫
ds′

Im Π̌i(s
′)

s′ − s

unitarity relation

section 2.5

imaginary parts of scalar functions (2.87):

Im Π̌i(s) ∝
∑

j

čij
∑

J

(hJ,λ1λ2h
∗
J,λ3λ4)j

Roy-Steiner equations for γ∗γ∗ → ππ

section 4

helicity partial waves for γ∗γ∗ → ππ:

hJ,λ1λ2(s, q2
1, q

2
2)

Figure 2. Outline of the formalism for the HLbL two-pion contribution to (g − 2)µ. The dashed

lines denote a derivation or calculation, the double lines indicate the insertion of results.

As a by-product we obtain a set of physical sum rules to be fulfilled by the scalar functions

and thereby the helicity amplitudes.

After the basis change to helicity amplitudes, we can then employ the unitarity relation

to determine the imaginary parts in the dispersion integrals in terms of helicity amplitudes

for γ∗γ∗ → ππ. In particular, we perform a partial-wave expansion of the helicity am-

plitudes and generalize the S-wave result of [28] to arbitrary partial waves, which is the

main result of section 2.5. In performing this analysis the partial waves for γ∗γ∗ → ππ

are treated as known, given quantities, which unfortunately they are not. The lack of

experimental information can be partly compensated by theory constraints, in particular

by dispersion relations in the form of Roy-Steiner equations [54–57]. A simplified, S-wave

variant of these will be solved in section 4.

A summary of the main results is provided in section 2.6, including a glossary of the

notation for the scalar functions. The subtleties in the various basis changes unfortunately

require the introduction of different sets of scalar functions, whose dimension, defining

equation, and main properties are summarized in table 1.
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2.1 Tensor decomposition and master formula for (g − 2)µ

In this subsection, we recapitulate the decomposition of the HLbL tensor into a sum of

gauge-invariant Lorentz structures times scalar functions that are free of kinematic singu-

larities. We slightly modify and improve the master formula presented in [30, 31] in such

a way that crossing symmetry between all three off-shell photons remains manifest. The

dynamical input in the master formula is encoded in only six different scalar functions and

their crossed versions.

2.1.1 BTT decomposition of the HLbL tensor

The HLbL tensor is defined as the hadronic Green’s function of four electromagnetic cur-

rents in pure QCD:

Πµνλσ(q1, q2, q3) = −i
∫
d4x d4y d4z e−i(q1·x+q2·y+q3·z)〈0|T{jµem(x)jνem(y)jλem(z)jσem(0)}|0〉,

(2.1)

where the electromagnetic current includes the three lightest quarks:

jµem := q̄Qγµq, q = (u, d, s)T , Q = diag

(
2

3
,−1

3
,−1

3

)
. (2.2)

The hadronic contribution to the helicity amplitudes for (off-shell) photon-photon scat-

tering is given by the contraction of the HLbL tensor with polarization vectors:

Hλ1λ2,λ3λ4 = ελ1µ (q1)ελ2ν (q2)ελ3λ
∗
(−q3)ελ4σ

∗
(q4)Πµνλσ(q1, q2, q3), (2.3)

where q4 = q1 + q2 + q3.

The usual Mandelstam variables

s := (q1 + q2)2, t := (q1 + q3)2, u := (q2 + q3)2 (2.4)

fulfill the linear relation

s+ t+ u =
4∑

i=1

q2
i =: Σ. (2.5)

Gauge invariance requires the HLbL tensor to satisfy the Ward-Takahashi identities

{qµ1 , qν2 , qλ3 , qσ4 }Πµνλσ(q1, q2, q3) = 0. (2.6)

Based on a recipe by Bardeen, Tung [51], and Tarrach [52] (BTT), we have derived

in [30, 31] a decomposition of the HLbL tensor

Πµνλσ =

54∑

i=1

Tµνλσi Πi, (2.7)

– 5 –
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with tensor structures reproduced here for completeness (all remaining ones follow from

crossing symmetry [31])

Tµνλσ1 = εµναβελσγδq1αq2βq3γq4δ,

Tµνλσ4 =
(
qµ2 q

ν
1 − q1 · q2g

µν
)(
qλ4 q

σ
3 − q3 · q4g

λσ
)
,

Tµνλσ7 =
(
qµ2 q

ν
1 − q1 · q2g

µν
)(
q1 · q4

(
qλ1 q

σ
3 − q1 · q3g

λσ
)

+ qλ4 q
σ
1 q1 · q3 − qλ1 qσ1 q3 · q4

)
,

Tµνλσ19 =
(
qµ2 q

ν
1 − q1 · q2g

µν
)(
q2 · q4

(
qλ1 q

σ
3 − q1 · q3g

λσ
)

+ qλ4 q
σ
2 q1 · q3 − qλ1 qσ2 q3 · q4

)
,

Tµνλσ31 =
(
qµ2 q

ν
1 − q1 · q2g

µν
)(
qλ2 q1 · q3 − qλ1 q2 · q3

)(
qσ2 q1 · q4 − qσ1 q2 · q4

)
,

Tµνλσ37 =
(
qµ3 q1 · q4 − qµ4 q1 · q3

)(
qν3q

λ
4 q

σ
2 − qν4qλ2 qσ3 + gλσ (qν4q2 · q3 − qν3q2 · q4)

+ gνσ
(
qλ2 q3 · q4 − qλ4 q2 · q3

)
+ gλν (qσ3 q2 · q4 − qσ2 q3 · q4)

)
,

Tµνλσ49 = qσ3

(
q1 · q3q2 · q4q

µ
4 g

λν − q2 · q3q1 · q4q
ν
4g

λµ + qµ4 q
ν
4

(
qλ1 q2 · q3 − qλ2 q1 · q3

)

+ q1 · q4q
µ
3 q

ν
4q
λ
2 − q2 · q4q

µ
4 q

ν
3q
λ
1 + q1 · q4q2 · q4

(
qν3g

λµ − qµ3 gλν
))

− qλ4
(
q1 · q4q2 · q3q

µ
3 g

νσ − q2 · q4q1 · q3q
ν
3g

µσ + qµ3 q
ν
3 (qσ1 q2 · q4 − qσ2 q1 · q4)

+ q1 · q3q
µ
4 q

ν
3q
σ
2 − q2 · q3q

µ
3 q

ν
4q
σ
1 + q1 · q3q2 · q3 (qν4g

µσ − qµ4 gνσ)
)

(2.8)

+ q3 ·q4

((
qλ1 q

µ
4−q1 ·q4g

λµ
)

(qν3q
σ
2−q2 ·q3g

νσ)−
(
qλ2 q

ν
4−q2 · q4g

λν
)

(qµ3 q
σ
1−q1 ·q3g

µσ)
)
.

The BTT decomposition has the following properties:

• all the Lorentz structures fulfill the Ward-Takahashi identities, i.e.

{qµ1 , qν2 , qλ3 , qσ4 }T iµνλσ(q1, q2, q3) = 0, ∀i ∈ {1, . . . , 54}, (2.9)

• there are only seven distinct Lorentz structures, the remaining 47 ones are crossed

versions thereof,

• the scalar functions Πi are free of kinematic singularities and zeros.

The first two properties make gauge invariance and crossing symmetry manifest, while

the third property provides the foundation for writing dispersion relations: in a dispersive

treatment, we exploit the analytic structure of the scalar functions dictated by unitarity

and we have to make sure that the singularity structure due to the hadronic dynamics is

not entangled with kinematic singularities.

Since the number of helicity amplitudes for fully off-shell photon-photon scattering is

41, the set of 54 structures {Tµνλσi } does not form a basis, but exhibits a 13-fold redundancy,

as we discussed in detail in [31]. While 11 linear relations hold in general, two additional

ones are present in four space-time dimensions [58]. Away from four space-time dimensions,

a subset of 43 Lorentz structures forms a basis:

Πµνλσ =

43∑

i=1

Bµνλσi Π̃i, (2.10)

– 6 –
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where the basis-coefficient functions Π̃i are no longer free of kinematic singularities. How-

ever, the explicit structure of their kinematic singularities follows from the projection of

the BTT decomposition onto this “basis.”

2.1.2 Master formula for the HLbL contribution to (g − 2)µ

Based on a projection technique in Dirac space, one can extract the HLbL contribution to

aµ := (g − 2)µ/2 from the following expression:

aHLbL
µ = − e6

48mµ

∫
d4q1

(2π)4

d4q2

(2π)4

1

q2
1q

2
2(q1 + q2)2

1

(p+ q1)2 −m2
µ

1

(p− q2)2 −m2
µ

× Tr
(

(/p+mµ)[γρ, γσ](/p+mµ)γµ(/p+ /q1
+mµ)γλ(/p− /q2

+mµ)γν
)

×
54∑

i=1

(
∂

∂qρ4
T iµνλσ(q1, q2, q4 − q1 − q2)

) ∣∣∣∣
q4=0

Πi(q1, q2,−q1 − q2).

(2.11)

There are only 19 independent linear combinations of the structures Tµνλσi that contribute

to (g − 2)µ, hence we can make a basis change in the 54 structures

Πµνλσ =

54∑

i=1

Tµνλσi Πi =

54∑

i=1

T̂µνλσi Π̂i, (2.12)

in such a way that in the limit q4 → 0 the derivative of 35 structures T̂µνλσi vanishes. Since

the loop integral and the propagators are symmetric under q1 ↔ −q2, in [31] we made sure

to preserve crossing symmetry under exchange of q1 and q2, but did not yet exploit the fact

that it is even possible to preserve crossing symmetry between all three off-shell photons

— the limit q4 → 0 singles out one of the photons, but the remaining three are completely

equivalent. For the sake of simplifying further calculations, we present here new structures

T̂µνλσi and the corresponding scalar functions Π̂i, superseding the ones given in [31].

The 19 structures T̂µνλσi contributing to (g − 2)µ can be chosen as follows:

T̂µνλσi = Tµνλσi , i = 1, . . . , 11, 13, 14, 16, 17, 50, 51, 54,

T̂µνλσ39 =
1

3

(
Tµνλσ39 + Tµνλσ40 + Tµνλσ46

)
.

(2.13)

The 35 structures

{
T̂µνλσi

∣∣i = 12, 15, 18, . . . , 38, 40, . . . , 49, 52, 53
}

(2.14)

do not contribute to (g − 2)µ and are given in appendix A.

– 7 –
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The set of 19 linear combinations of scalar functions that give a contribution to (g−2)µ
is defined by (replacing eq. (D.1) in [31])

Π̂1 = Π1 + q1 · q2Π47,

Π̂4 = Π4 − q1 · q3 (Π19 −Π42)− q2 · q3 (Π20 −Π43) + q1 · q3q2 · q3Π31,

Π̂7 = Π7 −Π19 + q2 · q3Π31,

Π̂17 = Π17 + Π42 + Π43 −Π47,

Π̂39 = Π39 + Π40 + Π46,

Π̂54 = Π42 −Π43 + Π54, (2.15)

together with the crossed versions thereof

Π̂2 = C23
[
Π̂1

]
, Π̂3 = C13

[
Π̂1

]
, Π̂5 = C23

[
Π̂4

]
, Π̂6 = C13

[
Π̂4

]
,

Π̂8 = C12
[
Π̂7

]
, Π̂9 = C12

[
C13
[
Π̂7

]]
, Π̂10 = C23

[
Π̂7

]
, Π̂13 = C13

[
Π̂7

]
, Π̂14 = C12

[
C23
[
Π̂7

]]
,

Π̂11 = C13
[
Π̂17

]
, Π̂16 = C23

[
Π̂17

]
, Π̂50 = −C23

[
Π̂54

]
, Π̂51 = C13

[
Π̂54

]
, (2.16)

where the crossing operators Cij exchange momenta and Lorentz indices of the photons i

and j, e.g.2

C12[f ] := f(µ↔ ν, q1 ↔ q2), C14[f ] := f(µ↔ σ, q1 ↔ −q4). (2.17)

The following intrinsic crossing symmetries are preserved (we do not list the symmetries

involving the fourth photon):

Π̂1 = C12

[
Π̂1

]
, Π̂4 = C12

[
Π̂4

]
, Π̂17 = C12

[
Π̂17

]
,

Π̂39 = C12

[
Π̂39

]
= C13

[
Π̂39

]
= . . . , Π̂54 = −C12

[
Π̂54

]
, (2.18)

where the dots denote three more crossing relations that follow from the given ones. Hence,

the scalar functions Π̂i contributing to (g − 2)µ fall into only six distinct classes that are

closed under crossing symmetry of the off-shell photons 1, 2, and 3. Apart from Π̂39, which

is fully symmetric, the representatives in (2.15) are picked because they share a common

property: their s-channel is special as follows from the observation that the corresponding

Lorentz structures T̂µνλσi are (anti-)symmetric under either C12 or C34 (or both). This is

reflected in the intrinsic crossing symmetries (2.18).3

The HLbL contribution to (g − 2)µ can now be written as

aHLbL
µ = −e6

∫
d4q1

(2π)4

d4q2

(2π)4

1

q2
1q

2
2(q1 + q2)2

1

(p+ q1)2 −m2
µ

1

(p− q2)2 −m2
µ

×
∑

i∈G
T̂i(q1, q2; p)Π̂i(q1, q2,−q1 − q2),

(2.19)

2The composition of two crossing operators is understood to act e.g. in the following way:

C12[C23[f(q1, q2, q3, q4)]] = C12[f(q1, q3, q2, q4)] = f(q2, q3, q1, q4).
3T̂µνλσ7 is symmetric under C34, but not under C12. One could split the six elements in the crossing class

of Π̂7 into two classes, one with an additional even, one with an odd intrinsic crossing symmetry.
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where G := {1, . . . , 11, 13, 14, 16, 17, 39, 50, 51, 54} and

T̂i(q1, q2; p) :=
1

48mµ
Tr
(

(/p+mµ)[γρ, γσ](/p+mµ)γµ(/p+ /q1
+mµ)γλ(/p− /q2

+mµ)γν
)

×
(

∂

∂qρ4
T̂ iµνλσ(q1, q2, q4 − q1 − q2)

) ∣∣∣∣
q4=0

. (2.20)

As in [31], we perform a Wick rotation, average the result over the direction of the Euclidean

four-momentum of the muon, and use the Gegenbauer polynomial technique [59] to perform

five of the eight integrals in full generality, i.e. without prior knowledge of the functions

Π̂i. The symmetry properties of the loop integral and the kernels T̂i under q1 ↔ −q2 allow

us to write the master formula for the HLbL contribution to (g − 2)µ containing a sum of

only 12 terms:

aHLbL
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ
√

1− τ2Q3
1Q

3
2

12∑

i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ),

(2.21)

where Q1 := |Q1| and Q2 := |Q2| denote the norm of the Euclidean four-vectors. The 12

scalar functions Π̄i are a subset of the functions Π̂i:

Π̄1 = Π̂1, Π̄2 = Π̂2, Π̄3 = Π̂4, Π̄4 = Π̂5, Π̄5 = Π̂7, Π̄6 = Π̂9,

Π̄7 = Π̂10, Π̄8 = Π̂11, Π̄9 = Π̂17, Π̄10 = Π̂39, Π̄11 = Π̂50, Π̄12 = Π̂54. (2.22)

They have to be evaluated for the reduced (g − 2)µ kinematics

s = q2
3 = −Q2

3 = −Q2
1 − 2Q1Q2τ −Q2

2, t = q2
2 = −Q2

2, u = q2
1 = −Q2

1, q2
4 = 0.

(2.23)

Due to the basis change, the kernel functions Ti differ slightly from the ones given

in [31]. We provide the explicit expressions in appendix B.

In [60] a different parametrization of the (g−2)µ integration region has been proposed,

which proved advantageous for the numerical implementation. We perform the following

variable transformation in the master formula (note that Σ̃ = −Σ is the sum of the squared

Euclidean virtualities, whereas Σ denotes the sum of the squared Minkowskian virtualities):

Q2
1 =

Σ̃

3

(
1− r

2
cosφ− r

2

√
3 sinφ

)
,

Q2
2 =

Σ̃

3

(
1− r

2
cosφ+

r

2

√
3 sinφ

)
,

Q2
3 = Q2

1 + 2Q1Q2τ +Q2
2 =

Σ̃

3
(1 + r cosφ) .

(2.24)

The range of integration is then Σ̃ ∈ [0,∞), r ∈ [0, 1], and φ ∈ [0, 2π]. The integration

region in the Mandelstam plane and the meaning of the variables is illustrated in figure 3.

After the variable transformation, the master formula becomes

aHLbL
µ =

α3

432π2

∫ ∞

0
dΣ̃ Σ̃3

∫ 1

0
dr r

√
1−r2

∫ 2π

0
dφ

12∑

i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ), (2.25)

where Q1, Q2, and τ are understood as functions of Σ̃, r, and φ.
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Q2
3 = 0

Q
22 =

0Q
2 1
=
0

r = 0

r = 1

φ = π

φ = 5π
3

φ = π
3

τ = 1

τ = −1

Figure 3. Integration region for (g − 2)µ. The border of the integration region is at r = 1 and

corresponds to τ = −1 for π/3 < φ < 5π/3 (solid gray line) and τ = 1 otherwise (dashed gray

line). The angles φ = π/3, φ = π, and φ = 5π/3 correspond to Q2
2 = Q2

3, Q2
1 = Q2

2, and Q2
1 = Q2

3,

respectively. The three points where one of the Q2
i is zero are singularities of the integration kernels.

The height of the equilateral triangle is given by Σ̃.

The master formula for the HLbL contribution to (g − 2)µ is exact and completely

general: given any representation of the HLbL tensor, one can project out the six scalar

functions Π̂i in (2.15). Using these and their crossed versions, one can construct the 12

scalar functions Π̄i in (2.22), which encode the entire dynamical content of HLbL scattering

relevant for (g − 2)µ. After their insertion into the master formula (2.25), only a three-

dimensional integral has to be carried out.

In a next step, we aim at reconstructing the scalar functions Π̄i using dispersive meth-

ods, which will be the content of the remainder of this section.

2.2 Dispersion relations for the HLbL tensor

In this subsection, we discuss the dispersive framework that we employ for the reconstruc-

tion of the scalar functions. The starting point is the Mandelstam representation, which

is a double-dispersion relation. Unitarity allows us to write the HLbL tensor as a sum

of contributions from different intermediate states. After reviewing in section 2.2.1 the

most important properties of the pion-pole and pion-box contributions, we continue by

considering general two-pion intermediate states in section 2.2.2.

In order to calculate the two-pion contributions beyond the pion box, input on the

sub-process γ∗γ∗ → ππ is needed. This input will be in the form of helicity partial waves

which, in principle, could be measured or, in the absence of data on the doubly-virtual

process, have to be reconstructed dispersively [54–57]. The partial-wave expansion turns,

however, the amplitude into a polynomial in the crossed-channel Mandelstam variables,

i.e. the cut structure in the crossed channel due to heavier (e.g. multi-pion) intermediate
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Figure 4. Intermediate states in the direct channel: pion pole and two-pion cut.

states gets lost. Therefore, with γ∗γ∗ → ππ helicity partial waves as input, one has to use

a single-variable dispersion relation. We derive in section 2.2.3 a suitable form for such a

dispersion relation that follows from the Mandelstam representation.

2.2.1 Mandelstam representation for HLbL

In [31], we have used Mandelstam’s double-spectral representation [61] for the BTT scalar

functions Πi in order to split the HLbL contribution to (g − 2)µ into the following sum:

aHLbL
µ = aπ

0-pole
µ + aπ-box

µ + aππµ + . . . (2.26)

This sum directly reflects the sum over intermediate states in the unitarity relation in

which, by definition, all intermediate states enter on-shell. While unitarity alone defines

the imaginary parts, the real parts are obtained from the dispersion integrals. In short,

this amounts to the following procedure:

• Write down the unitarity relation for the HLbL tensor.

• In the sum over intermediate (on-shell) states, the one-pion state contributes as a

δ-function to the imaginary part, which offsets the dispersion integral and defines the

π0-pole contribution.

• The next-heavier intermediate state in the unitarity relation is a two-pion state. So

far, we concentrate on one- and two-pion intermediate states, shown in figure 4.

• In the two-pion contribution, write down the crossed-channel unitarity relation for

the sub-process γ∗γ∗ → ππ. The one-pion contribution in this unitarity relation

defines the π-pole contribution to γ∗γ∗ → ππ. Separating this pole contribution

corresponds to further splitting the two-pion contribution to HLbL into different

box-type topologies, shown in figure 5.

• The two-pion phase-space integral in the HLbL unitarity relation can be converted

into a second (crossed-channel) dispersion integral. This nontrivial but essential

technical step is described in detail in appendix D of [30].

• Finally, the symmetrization over the different channels produces the Mandelstam

representation.

– 11 –



J
H
E
P
0
4
(
2
0
1
7
)
1
6
1

= + + + + . . .

Figure 5. Two-pion contributions to HLbL. Further crossed diagrams are not shown explicitly.

The double-spectral representation for the pion box has the following form:

Ππ-box
i (s, t, u; {q2

j }) =
1

π2

∫ ∞

4M2
π

ds′
∫ ∞

t+(s′;{q2j })
dt′
ρπ-box
i;st (s′, t′; {q2

j })
(s′ − s)(t′ − t)

+
1

π2

∫ ∞

4M2
π

ds′
∫ ∞

u+(s′;{q2j })
du′

ρπ-box
i;su (s′, u′; {q2

j })
(s′ − s)(u′ − u)

+
1

π2

∫ ∞

4M2
π

dt′
∫ ∞

u+(t′;{q2j })
du′

ρπ-box
i;tu (t′, u′; {q2

j })
(t′ − t)(u′ − u)

,

(2.27)

where the functions ρπ-box
i denote the double-spectral densities, which have been derived

(though not given explicitly) in [31]. The borders of the double-spectral regions t+ and u+

are defined in appendix G.3 of [31].

In [31], we have explicitly shown that the Mandelstam representation for the pion box

is mathematically equivalent to a scalar QED (sQED) one-loop calculation, multiplied by

appropriate pion vector form factors for the off-shell photons. First, the form factors only

depend on the virtualities {q2
i } and can be pulled out of the double-dispersion integral.

Second, triangle and bulb diagrams appear in the sQED calculation only in order to ensure

gauge invariance: indeed when projected onto our gauge-invariant tensor structures, the

analytic structure of sQED is the one of pure box topologies. In order to calculate the

pion-box contribution numerically, it is convenient to rather use a Feynman parametrization

instead of the dispersive representation. It turns out that in the limit of (g−2)µ kinematics,

the Feynman parametrization of the scalar functions Π̂i defined in (2.15) is very compact.

Due to the limit q4 → 0, only two-dimensional Feynman parameter integrals appear:

Π̂π-box
i (q2

1, q
2
2, q

2
3) = F Vπ (q2

1)F Vπ (q2
2)F Vπ (q2

3)
1

16π2

∫ 1

0
dx

∫ 1−x

0
dyIi(x, y), (2.28)

where F Vπ is the electromagnetic pion vector form factor and the integrands Ii can be found

in appendix C, written in a way that shows explicitly the absence of kinematic singularities.

The main goal of the present article is to describe two-pion contributions beyond the

pion box, i.e. the topologies that involve a crossed-channel intermediate state heavier than

one pion in one or both sub-processes.

2.2.2 Two-pion contributions beyond the pion box

Let us examine in more detail the form of the Mandelstam representation as sketched in the

previous subsection. The starting point is a fixed-t dispersion relation with a discontinuity
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given by the two-pion contribution to the unitarity relation for the HLbL tensor:

Imππ
s Πµνλσ =

1

32π2

σπ(s)

2

∫
dΩ′′s

(
Wµν

+−(p1, p2, q1)W λσ
+−
∗
(p1, p2,−q3)

+
1

2
Wµν

00 (p1, p2, q1)W λσ
00
∗
(p1, p2,−q3)

)
, (2.29)

where Wµν are the matrix elements for γ∗γ∗ → ππ. The subscripts {+−, 00} denote the

charges and p1,2 the momenta of the intermediate pions. The phase-space factor is

σπ(s) :=

√
1− 4M2

π

s
. (2.30)

In order to analytically continue the unitarity relation, these matrix elements have to be

expressed in terms of fixed-s dispersion relations for the scalar functions in a proper tensor

decomposition, see [31]:

Wµν
+− =

5∑

i=1

Tµνi

(
ρs;+−i;t (s)

t−M2
π

+
ρs;+−i;u (s)

u−M2
π

+
1

π

∫ ∞

4M2
π

dt1
Ds;+−
i;t (t1; s)

t1−t
+

1

π

∫ ∞

4M2
π

du1

Ds;+−
i;u (u1; s)

u1−u

)
,

Wµν
00 =

5∑

i=1

Tµνi

(
1

π

∫ ∞

4M2
π

dt1
Ds;00
i;t (t1; s)

t1 − t
+

1

π

∫ ∞

4M2
π

du1

Ds;00
i;u (u1; s)

u1 − u

)
. (2.31)

Wµν
00 does not contain any pole terms because the photon does not couple to two neutral

pions due to angular momentum conservation and Bose symmetry.

If we pick the contribution of the pole terms on both sides of the cut, we single out

box topologies:

Imππ
s Πµνλσ

∣∣∣
box

=
1

32π2

σπ(s)

2
(2.32)

×
∫
dΩ′′s

∑

i,j=1,4

Tµνi T λσj

(
ρs;+−i;t (s)

t′ −M2
π

+
ρs;+−i;u (s)

u′ −M2
π

)(
ρs;+−j;t (s)

t′′ −M2
π

+
ρs;+−j;u (s)

u′′ −M2
π

)∗
,

where the primed variables belong to the sub-process on the left-hand side and the double-

primed variables to the sub-process on the right-hand side of the cut. This contribution

was the subject of study in [31]. We consider now the contributions with discontinuities

either in one or both of the sub-processes:

Imππ
s Πµνλσ

∣∣∣
1disc

=
1

32π2

σπ(s)

2

∫
dΩ′′s

5∑

i,j=1

Tµνi Tλσj

×
[(
ρs;+−i;t (s)

t′−M2
π

+
ρs;+−i;u (s)

u′−M2
π

)(
1

π

∫ ∞

4M2
π

dt2
Ds;+−
j;t (t2; s)

t2−t′′
+

1

π

∫ ∞

4M2
π

du2
Ds;+−
j;u (u2; s)

u2−u′′
)∗

+

(
1

π

∫ ∞

4M2
π

dt1
Ds;+−
i;t (t1; s)

t1−t′
+

1

π

∫ ∞

4M2
π

du1
Ds;+−
i;u (u1; s)

u1−u′
)(

ρs;+−j;t (s)

t′′ −M2
π

+
ρs;+−j;u (s)

u′′−M2
π

)∗]
,
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Imππ
s Πµνλσ

∣∣∣
2disc

=
1

32π2

σπ(s)

2

∫
dΩ′′s

5∑

i,j=1

Tµνi Tλσj

×
[(

1

π

∫ ∞

4M2
π

dt1
Ds;+−
i;t (t1; s)

t1 − t′
+

1

π

∫ ∞

4M2
π

du1
Ds;+−
i;u (u1; s)

u1 − u′
)

×
(

1

π

∫ ∞

4M2
π

dt2
Ds;+−
j;t (t2; s)

t2 − t′′
+

1

π

∫ ∞

4M2
π

du2
Ds;+−
j;u (u2; s)

u2 − u′′
)∗

+
1

2

(
1

π

∫ ∞

4M2
π

dt1
Ds;00
i;t (t1; s)

t1 − t′
+

1

π

∫ ∞

4M2
π

du1
Ds;00
i;u (u1; s)

u1 − u′
)

×
(

1

π

∫ ∞

4M2
π

dt2
Ds;00
j;t (t2; s)

t2 − t′′
+

1

π

∫ ∞

4M2
π

du2
Ds;00
j;u (u2; s)

u2 − u′′
)∗]

. (2.33)

If the order of phase-space and dispersive integrals are exchanged, the phase-space integrals

can be performed by applying a tensor reduction to the quantities
∫
dΩ′′s

5∑

i,j=1

Tµνi T λσj
1

t1 − t′
1

t2 − t′′
. (2.34)

The reduced scalar phase-space integrals can then be transformed into another dispersive

integral. Together with the dispersion integral ds′ of the primary cut, this produces a

double-dispersion relation. The case of the simplest scalar phase-space integral is explained

in [30]. Here, we do not try to calculate explicitly the tensor phase-space integrals, because

we are interested just in the analytic structure of the “1disc” and “2disc” contributions,

i.e. the boxes with heavier intermediate states in one or both of the sub-processes.

In order to obtain the full double-spectral representation, one has to consider not only

a fixed-t dispersion relation as a starting point but also the crossed versions, i.e. fixed-s and

fixed-u dispersion relations. The symmetrization leads to the Mandelstam representation.

For a more detailed discussion in the case of the pion box, see again [31]. We consider now

the “1disc” and “2disc” contributions, where the pole in one or both of the sub-processes

is replaced by a discontinuity. As the symmetrization procedure is identical in both cases,

we only discuss the case of a discontinuity in both sub-processes.

Figure 6 shows the unitarity diagrams corresponding to the double-spectral represen-

tations that are generated if we start in our derivation from the fixed-t dispersion relation:

the diagrams 6a and 6b generate a cut for s > 4M2
π , which is the right-hand cut in the

fixed-t dispersion relation. The diagrams 6c and 6d are responsible for the left-hand cut for

u > 4M2
π . In all cases the first cut is always the one through the two-pion intermediate state.

As discussed in [30, 31], an (st)-box diagram can be represented either by a fixed-s,

fixed-t, or fixed-u dispersion relation: in the case of a fixed-t representation, there appears

only one dispersion integral along the right-hand s-channel cut. Likewise, in a fixed-s

representation, only one dispersion integral along the t-channel cut is present. In the case

of a fixed-u representation, however, an (st)-box generates two integrals along both the

s- and the t-channel cut. This particularity translates directly into the double-spectral

representation: the (st)-box can be written as only one double-dispersion integral if one

starts from a fixed-s or fixed-t representation. If one starts from the fixed-u representation,

one obtains a sum of two double-dispersion integrals, see appendix G.3 of [31].

– 14 –



J
H
E
P
0
4
(
2
0
1
7
)
1
6
1

(a) ρst (b) ρsu (c) ρus (d) ρut

Figure 6. Unitarity diagrams representing the “2disc”-box contributions that are (partially)

accessible through a fixed-t dispersion relation.

Consider now the Mandelstam diagram in figure 7, which shows the double-spectral

regions that we generate if we start from a fixed-t dispersion relation. Because we consider

in the primary cut only two-pion intermediate states, not all the contributions from the

displayed double-spectral regions are generated. We understand from the above discussion

of the (st)-box that ρst and ρut are complete, but that the contributions from ρus and

ρsu are not, because only one double-spectral integral for each of these contributions is

obtained. However, two double-spectral integrals would be needed to generate the full

contribution of these regions: one of the two integrals has a primary cut at the higher

threshold 16M2
π and is neglected in the fixed-t representation. Of course, two more double-

spectral regions ρts and ρtu, which correspond to crossed boxes, are completely missing in

the fixed-t representation.

The complete set of double-spectral regions, which is obtained after symmetrization, is

shown in figure 8. In the symmetric version, the double-spectral integrals over ρst and ρut
are taken from the fixed-t representation, ρts and ρus come from the fixed-s representation,

and finally ρsu and ρtu stem from the fixed-u dispersion relation.

In summary, we can write the contribution of higher intermediate states in the sec-

ondary channel as a double-spectral representation (we suppress the explicit dependence

on the virtualities):

Πππ
i (s, t, u) =

1

π2

∫ ∞

4M2
π

ds′
∫ ∞

t+(s′)

dt′
ρππi;st(s

′, t′)

(s′ − s)(t′ − t) +
1

π2

∫ ∞

4M2
π

ds′
∫ ∞

u+(s′)

du′
ρππi;su(s′, u′)

(s′ − s)(u′ − u)

+
1

π2

∫ ∞

4M2
π

dt′
∫ ∞

s+(t′)

ds′
ρππi;ts(t

′, s′)

(t′ − t)(s′ − s) +
1

π2

∫ ∞

4M2
π

dt′
∫ ∞

u+(t′)

du′
ρππi;tu(t′, u′)

(t′ − t)(u′ − u)

+
1

π2

∫ ∞

4M2
π

du′
∫ ∞

s+(u′)

ds′
ρππi;us(u

′, s′)

(u′ − u)(s′ − s) +
1

π2

∫ ∞

4M2
π

du′
∫ ∞

t+(u′)

dt′
ρππi;ut(u

′, t′)

(u′ − u)(t′ − t) .

(2.35)

The border functions of the double-spectral regions approach asymptotically t+(s)
s→∞−→ 9M2

π

for the “1disc” contribution or 16M2
π for the “2disc” contribution.

2.2.3 Single-variable dispersion relation for two-pion contributions

When we expand the sub-process γ∗γ∗ → ππ into partial waves, we obtain a polynomial

in the crossed-channel Mandelstam variables. This means that we neglect the crossed
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s = 0

s = 4M2
π

s = 16M2
π

t
=
0

t
=
4M

2π

t
=
16M

2π

u
=
0

u
=
4M

2
π

u
=
16
M

2
π

s-channel

t-channel u-channel

ρst ρsu

ρus

ρut

Figure 7. Mandelstam diagram for HLbL scattering for the case q21 = q22 = q23 = −2M2
π , q24 = 0.

Only those double-spectral regions for “2disc”-box topologies are shown that are reconstructed from

the fixed-t dispersion relation. The dashed line marks a line of fixed t with its s- and u-channel

cuts highlighted in gray.

channel cut of the “1disc” or “2disc” boxes, reducing them effectively to triangle (in the

case of “1disc” boxes) and bulb topologies (in the case of “2disc” boxes), as illustrated in

figure 9. After having applied the approximation, there is no way to distinguish e.g. in

figure 9g between contributions coming originally from ρst or ρsu. Therefore, we discuss in

the following what kind of single-variable dispersion relation is appropriate in the case of

a partial-wave expanded input for the sub-process.

Consider again the situation for a fixed-t dispersion relation with the corresponding

Mandelstam diagram in figure 7. When constructing the Mandelstam representation, we

selected from this representation only the contributions from ρst and ρut. After the partial-

wave expansion, however, we are no longer able to drop the incomplete contributions from

ρus and ρsu. Instead, let us assume that the neglected contributions from these two double-

spectral regions are small: they are only due to the higher thresholds 9M2
π (in the case

of “1disc”) or 16M2
π (in the case of “2disc”). Furthermore, their discontinuities, being
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s = 0

s = 4M2
π

s = 16M2
π

t
=
0

t
=
4M

2π

t
=
16M

2π

u
=
0

u
=
4M

2
π

u
=
16
M

2
π

s-channel

t-channel u-channel

ρst

ρts

ρsu

ρus

ρut ρtu

Figure 8. Mandelstam diagram for HLbL scattering for the case q21 = q22 = q23 = −2M2
π , q24 = 0

with all the double-spectral regions for “2disc”-box topologies.

generated by multi-particle intermediate states, are phase-space suppressed. Instead of

combining the completely reconstructed double-spectral regions from fixed-s, fixed-t, and

fixed-u representations, we can simply sum all contributions from all three fixed-(s, t, u)

representations. Apart from the neglected higher cuts, each double-spectral contribution

appears twice in this sum. The appropriate representation is therefore one half the sum of

fixed-(s, t, u) representations:

Πππ
i (s, t, u) ≈ 1

2

(
1

π

∫ ∞

4M2
π

dt′
Im Πππ

i (s, t′, u′)

t′ − t +
1

π

∫ ∞

4M2
π

du′
Im Πππ

i (s, t′, u′)

u′ − u

+
1

π

∫ ∞

4M2
π

ds′
Im Πππ

i (s′, t, u′)

s′ − s +
1

π

∫ ∞

4M2
π

du′
Im Πππ

i (s′, t, u′)

u′ − u

+
1

π

∫ ∞

4M2
π

ds′
Im Πππ

i (s′, t′, u)

s′ − s +
1

π

∫ ∞

4M2
π

dt′
Im Πππ

i (s′, t′, u)

t′ − t

)
. (2.36)

In the limit of infinitely heavy intermediate states in the crossed channel this relation is

exact. In particular, the dominant ππ-rescattering contributions that we consider in this
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(a) ρst (b) ρsu (c) ρts (d) ρtu (e) ρus (f) ρut

︸ ︷︷ ︸
≈

︸ ︷︷ ︸
≈

︸ ︷︷ ︸
≈

(g) (h) (i)

Figure 9. (a)–(f) Unitarity diagrams representing the complete set of “2disc”-box contributions.

(g)–(i) Partial-wave approximation: the sub-process becomes a polynomial in the crossed variable.

paper can be understood as a unitarization of the pion pole in the crossed channel on a

partial-wave basis. In this case, the dispersion relation (2.36) provides a model-independent

representation of the contribution of resonant effects in the ππ spectrum.

In the case of (g− 2)µ kinematics, we are interested only in space-like momenta of the

virtual photons. The lines of fixed-(s, t, u) therefore never enter the double-spectral regions,

see figure 10. This implies that a partial-wave expansion is valid without restrictions. This

is true even in the case of the pion box, which provides the opportunity to check the

partial-wave formalism in a case where we know the full result. However, one has to bear

in mind that the double-spectral representation for the pion box differs from the “1disc”

and “2disc” boxes: in the case of the pion box, there are only two-pion intermediate states,

hence only three box topologies exist and there are only three double-spectral regions. Each

fixed-(s, t, u) representation reconstructs already all three double-spectral contributions, so

that the full result can be obtained from a fixed-(s, t, u) dispersion relation separately.

Hence, in a symmetrized version for the pion-box one has to take one third of the sum of

fixed-(s, t, u) representations:

Ππ-box
i (s, t, u) =

1

3

(
1

π

∫ ∞

4M2
π

dt′
Im Ππ-box

i (s, t′, u′)

t′ − t +
1

π

∫ ∞

4M2
π

du′
Im Ππ-box

i (s, t′, u′)

u′ − u

+
1

π

∫ ∞

4M2
π

ds′
Im Ππ-box

i (s′, t, u′)

s′ − s +
1

π

∫ ∞

4M2
π

du′
Im Ππ-box

i (s′, t, u′)

u′ − u

+
1

π

∫ ∞

4M2
π

ds′
Im Ππ-box

i (s′, t′, u)

s′ − s +
1

π

∫ ∞

4M2
π

dt′
Im Ππ-box

i (s′, t′, u)

t′ − t

)
, (2.37)

and the relation is exact.

2.3 Sum rules for the BTT scalar functions

The Lorentz decomposition of the HLbL tensor is only unique up to transformations that

do not introduce kinematic singularities, hence there is a fair amount of freedom in choosing
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p

q23 = 0

q23 = 4M2
π

q 22
=
0

q 22
=
4M

2π

q
2 1
=
0

q
2 1
=
4M

2
π

(a) A point p inside the (g − 2)µ integration region is selected and defines the external kinematics.

p

ρst ρsu

ρtu

s = 0

s = 4M2
π

fixed s = q23

fixed
t
=
q 22

t
=
0

t
=
4M

2π

fix
ed

u
=
q
2 1

u
=
0

u
=
4M

2
π

(b) Mandelstam diagram for the selected kinematics of point p. The double-spectral regions for the

pion box are shown. Lines of fixed s, t, and u running through the point p with (s, t, u) = (q23 , q
2
2 , q

2
1)

are shown. They do not intersect any double-spectral region.

Figure 10. For (g−2)µ kinematics, the paths of the single-variable dispersion integrals never enter

any double-spectral region, which enables a partial-wave expansion.
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a particular representation. One important aspect of such transformations concerns the

fact that the different mass dimensions of the Lorentz structures imply different mass

dimensions of the scalar functions Πi, which must be reflected in a different asymptotic

behavior. Indeed if we assume, as it is natural, a uniform asymptotic behavior of the whole

HLbL tensor, i.e. in all Mandelstam variables and for all tensor components, this implies

that functions multiplying Lorentz structures of higher mass dimension should fall down

even faster for asymptotic values of the Mandelstam variables. In order to have a predictive

framework, we require, that all BTT scalar functions satisfy unsubtracted (i.e. parameter-

free) dispersion relations, and in particular that those multiplying the Lorentz structures

with lowest mass dimensions fall down like the inverse of the Mandelstam variables at

infinity. This hypothesis, which will be tested later on, implies that the HLbL tensor

behaves asymptotically as

Πµνλσ � s, t, u, (2.38)

and that the BTT scalar functions behave (up to logarithmic corrections) according to:

Π1,Π4 �
1

s
,

1

t
,

1

u
,

Π7,Π19,Π37,Π49 �
1

s2
,

1

t2
,

1

u2
,

Π31 �
1

s3
,

1

t3
,

1

u3
,

(2.39)

with analogous asymptotics for the functions related by crossing symmetry. Under this

assumption, the functions Π1, . . . ,Π6 fulfill an unsubtracted dispersion relation. However,

as they fall down to zero even faster, the functions Π7, . . . fulfill not only unsubtracted

dispersion relations, but even a set of sum rules. These sum rules ensure that the result for

the HLbL tensor is independent of the choice of the tensor decomposition: the difference

between the Mandelstam representations for one set of scalar coefficient functions and a

second, equally valid set of functions will vanish as a consequence of the sum rules (also

known as “superconvergence relations” [62]).

Consider for example Π7 for fixed t = tb = q2
2 +q2

4. At this kinematic point, the Tarrach

singularity is absent and Π7 = Π̃7 is unambiguously defined (up to the redundancy in 4

space-time dimensions), see [31]. It fulfills an unsubtracted fixed-t dispersion relation:4

Π7

∣∣
t=tb

=
1

π

∫ ∞

s0

ds′
Im Π7(s′, tb,Σ−tb−s′)

s′−s +
1

π

∫ ∞

u0

du′
Im Π7(Σ−tb−u′, tb, u′)

u′ − u , (2.40)

where s0 and u0 denote the threshold in the respective channel. Due to the asymptotic

behavior, s Π7 fulfills an unsubtracted dispersion relation as well:

s Π7

∣∣
t=tb

=
1

π

∫ ∞

s0

ds′
s′Im Π7(s′, tb,Σ−tb−s′)

s′ − s +
1

π

∫ ∞

u0

du′
(Σ−tb−u′)Im Π7(Σ−tb−u′, tb, u′)

u′ − u .

(2.41)

4All imaginary parts are understood to be evaluated on the upper rim of the cut in the respective channel.
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We subtract this equation once using

1

s′ − s =
1

s′
+

s

s′(s′ − s) (2.42)

as well as

1

s′ − s =
1

Σ− tb − u′ − (Σ− tb − u)
= − 1

u′ − u (2.43)

in the u-channel integral to obtain:

Π7

∣∣
t=tb

=
1

s

(
1

π

∫ ∞

s0

ds′Im Π7(s′, tb,Σ− tb − s′)−
1

π

∫ ∞

u0

du′Im Π7(Σ− tb − u′, tb, u′)
)

+
1

π

∫ ∞

s0

ds′
Im Π7(s′, tb,Σ− tb − s′)

s′ − s +
1

π

∫ ∞

u0

du′
Im Π7(Σ− tb − u′, tb, u′)

u′ − u .

(2.44)

The comparison with (2.40) gives the following sum rule:

1

π

∫ ∞

s0

ds′Im Π7(s′, tb,Σ− tb − s′)−
1

π

∫ ∞

u0

du′Im Π7(Σ− tb − u′, tb, u′) = 0. (2.45)

In the case of Π31, an even higher-degree sum rule is fulfilled. Starting from the

unsubtracted fixed-s dispersion relation

t2 Π31

∣∣
s=sb

=
1

π

∫ ∞

t0

dt′
t′2Im Π31(sb, t

′,Σ−sb−t′)
t′ − t +

1

π

∫ ∞

u0

du′
(Σ−sb−u′)2Im Π31(sb,Σ−sb−u′, u′)

u′ − u ,

(2.46)

with sb = q2
3 + q2

4, two subtractions lead to

Π31

∣∣
s=sb

=
1

t2

(
1

π

∫ ∞

t0

dt′t′Im Π31(sb, t
′,Σ−sb−t′)−

1

π

∫ ∞

u0

du′(Σ−sb−u′)Im Π31(sb,Σ−sb−u′, u′)
)

+
1

t

(
1

π

∫ ∞

t0

dt′Im Π31(sb, t
′,Σ− sb − t′)−

1

π

∫ ∞

u0

du′Im Π31(sb,Σ− sb − u′, u′)
)

+
1

π

∫ ∞

t0

dt′
Im Π31(sb, t

′,Σ−sb−t′)
t′ − t +

1

π

∫ ∞

u0

du′
Im Π31(sb,Σ−sb−u′, u′)

u′ − u . (2.47)

Both large brackets have to vanish, producing two independent sum rules for Π31. We have

verified these sum rules explicitly in the case of sQED, see section 3.2.

2.4 Relation to observables

In section 2.2, we have derived the form of the dispersion relation for general two-pion

contributions to (g − 2)µ, writing the results (2.36) and (2.37) for a generic BTT function

Πi. In a next step, we want to use this dispersion relation for the actual input in the

(g−2)µ master formula (2.25). Our goal is to establish via unitarity a relation between the

two-pion contribution to (g− 2)µ and helicity amplitudes for the sub-process γ∗γ(∗) → ππ.

While the BTT decomposition solves the problem of kinematic singularities, the 54

scalar functions Πi have the disadvantage to form a redundant set: there are 11 Tarrach
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redundancies [31] and two further ambiguities in four space-time dimensions [58], as the

number of helicity amplitudes for HLbL scattering is 41. Furthermore, in the on-shell limit

of the external photon contributions from its longitudinal polarization must not survive.

This reduces the number of helicity amplitudes to 33×2
2 = 27. In the limit of (g− 2)µ kine-

matics, the number of independent amplitudes is further reduced to 19, see section 2.1.2.

Note, however, that this limit applies to the outer kinematics in the master formula and

not to the imaginary parts inside the dispersion integrals, where one Mandelstam variable

is integrated over and thus not fixed to (g − 2)µ kinematics (2.23).

While working with a redundant set of functions may, at first sight, seem as a minor

nuisance which should in the final result take care of itself and lead to a unique and

correct answer, this is not the case in our context. The origin of the problem is that

(i) establishing the relation between the physical observables (i.e. the helicity amplitudes)

and the BTT functions, (ii) projecting on partial waves, and (iii) writing down dispersion

relations, are not necessarily commuting operations. In [31], we constructed single-variable

dispersion relations that are free of the Tarrach redundancies. However, for most of the

scalar functions, we only found a dispersion relation in one of the three channels, which

was sufficient to obtain the dispersive reconstruction of the pion box. For general two-

pion contributions (2.36) we need all three fixed-(s, t, u) dispersion relations. Furthermore,

the fact that longitudinal polarizations of the external photon do not contribute is not

immediately manifest in dispersion relations for the BTT functions Πi. In order to solve

all these problems we must construct another basis that is appropriate for the kinematics in

the imaginary parts of the dispersion integrals. The scalar functions of this basis, which we

will call Π̌i, are in one-to-one correspondence with the 27 singly-on-shell helicity amplitudes.

In section 2.4.1, we explain how to derive these singly-on-shell basis functions Π̌i. In

the construction, we make use of the sum rules for the BTT scalar functions Πi, derived

in section 2.3. Readers who are not interested in the technical details of the derivation

may skip the following subsection and jump directly to section 2.4.2, where we present

the solution for the Π̌i functions. As a by-product in the derivation of the singly-on-shell

basis, we find a set of 15 sum rules for fixed-t kinematics, presented in section 2.4.3. These

physical sum rules are of relevance for the construction of the input on γ∗γ(∗) → ππ and can

be considered a generalization of certain sum rules for forward HLbL scattering from [63].

2.4.1 Construction of the singly-on-shell basis

The most efficient way to obtain a representation for the two-pion HLbL contribution to

(g − 2)µ involving only physical helicity amplitudes is the construction of a basis {Π̌i}
for singly-on-shell kinematics that can be used together with unsubtracted single-variable

dispersion relations. In such a basis, contributions from longitudinal polarizations of the

external photon are manifestly absent. As we will see, this construction is possible due

to the presence of the sum rules for the BTT scalar functions derived in section 2.3. The

rather surprising fact that contributions from unphysical polarizations are not trivially

absent in a representation involving redundancies is explained in appendix E.1.
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Let us define the transformation from the BTT functions to Π̂i as the 54×54 matrix t:

Π̂i =

54∑

j=1

tijΠj . (2.48)

In terms of the Lorentz structures T̂µνλσi , both the 11 Tarrach redundancies (r) and the

two ambiguities in four space-time dimensions (a) can be written as linear relations:

54∑

i=1

T̂µνλσi rij = 0, j = 1, . . . , 11,

54∑

i=1

T̂µνλσi aij = 0, j = 1, 2. (2.49)

Next, we study the unphysical polarizations: they multiply structures that are propor-

tional to q2
4 or qσ4 . Hence, we determine all linear dependencies of the tensor structures in

the limit q2
4, q

σ
4 → 0, which leads to a matrix u of rank 25:

54∑

i=1

(
lim

q24 ,q
σ
4→0

T̂µνλσi

)
uij = 0, j = 1, . . . , 25, rank(u) = 25. (2.50)

If we join u with the two 4d ambiguities, the rank is 27:

rank(u, a) = rank(u, a, r) = 27. (2.51)

Since 54 − 27 = 27, this is consistent with the fact that in the singly-on-shell limit there

are 27 independent helicity amplitudes. In this limit, the 11 Tarrach redundancies r are

linearly dependent on a and u. Moreover, in the singly-on-shell limit the transformations

u and a can be interpreted as an ambiguity in the scalar functions:

Π̂i 7→ Π̂i +

27∑

j=1

ūij∆j , (2.52)

where we denote by ū the 54× 27 matrix (u, a).

We consider now the limit q2
4 → 0 and t→ q2

2, which is relevant for the fixed-t dispersion

relation. For a suitable choice of u and a, we still have rank(ū) = 27 in this kinematic limit.

The goal is now to find all linear combinations of scalar functions Π̂i that are invariant

under the transformation (2.52) and satisfy an unsubtracted dispersion relation. Hence,

we have to determine the matrix p̂, such that

p̂ki


Π̂i +

27∑

j=1

ūij∆j


 = p̂kiΠ̂i, (2.53)

for arbitrary ∆j , which corresponds to the null-space of ū:

54∑

i=1

p̂kiūij = 0. (2.54)
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However, the requirement that p̂kiΠ̂i satisfy an unsubtracted dispersion relation does not

allow arbitrary p̂. Here, the sum rules for the BTT scalar functions Πi, derived in sec-

tion 2.3, are employed in an essential way: the linear combinations

54∑

i=1

p̂kiΠ̂i

∣∣∣∣∣q24=0

t=q22

=
54∑

i,j=1

p̂kitijΠj

∣∣∣∣∣q24=0

t=q22

=:
54∑

j=1

pkjΠj

∣∣∣∣∣q24=0

t=q22

(2.55)

must only involve coefficients pkj that depend linearly on s for j ≥ 7 or at most quadrat-

ically for j ∈ {31, . . . , 36}, because the scalar functions Πj satisfy the linear sum rule for

j ≥ 7 and the quadratic sum rule for j ∈ {31, . . . , 36}. Meanwhile, the coefficients pkj can

have an arbitrary dependence on the virtualities q2
i , which in the dispersion relation are

fixed external quantities. Hence, we write

pkj(s) =

2∑

l=0

pkjls
l (2.56)

and bear in mind the mentioned restrictions for pkj1 and pkj2. Solving this linear algebra

exercise is the major problem of the calculation. With the help of computer algebra, we

obtain a 42× 162 matrix (pkj0, pkj1, pkj2), whose contraction pkj(s) has again rank 27 and

is in one-to-one correspondence with the 27 singly-on-shell helicity amplitudes.

In a last step, we consider the limit s → q2
3 (which is now equivalent to q4 → 0) and

search for linear relations

Π̂i

∣∣∣
q4=0

=

42∑

k=1

54∑

j=1

bikpkj(q
2
3)Πj

∣∣∣
q4=0

, i = 1, . . . , 11, 13, 14, 16, 17, 39, 50, 51, 54, (2.57)

for all the functions contributing to (g− 2)µ, where the coefficients bik are functions of the

virtualities q2
1, q2

2, and q2
3. The solution of this system is not unique: pkj is a 42×54 matrix

of rank 27, hence there exist 15 null relations

0 =

42∑

k=1

nikpkj(q
2
3), i = 1, . . . , 15, (2.58)

again with coefficients nik depending only on q2
1, q2

2, and q2
3.

With the constructed solution for pkj , we can build a singly-on-shell basis by selecting

a convenient set of 27 independent linear combinations. We choose the basis functions Π̌i

in such a way that only the first 19 contribute to (g − 2)µ:

Π̌i(s; q
2
i ) :=

42∑

k=1

54∑

j=1

bgikpkj(s)Πj

∣∣∣∣∣q24=0

t=q22

, i = 1, . . . , 19, (2.59)

where {gi} := G = {1, . . . , 11, 13, 14, 16, 17, 39, 50, 51, 54}.
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2.4.2 Scalar functions for the two-pion dispersion relations

In section 2.4.1, we have detailed the derivation of the 27 singly-on-shell basis functions

Π̌i. These functions have the following four important properties.

1. They are linear combinations of the BTT functions Πi for fixed-t with coefficients

depending on s only in such a way that the sum rules in section 2.3 allow an unsub-

tracted dispersion relation for the Π̌i:

Π̌i

∣∣∣∣∣q24=0

t=q22

=
1

π

∫ ∞

4M2
π

ds′
Im Π̌i(s

′, q2
2, u
′)

s′ − s +
1

π

∫ ∞

4M2
π

du′
Im Π̌i(s

′, q2
2, u
′)

u′ − u . (2.60)

2. In the limit q4 → 0, a subset of 19 functions reproduces the input for the master

formula (2.25) for (g − 2)µ:

Π̌i

∣∣∣
s=q23

= Π̂gi

∣∣∣
q4=0

, i = 1, . . . , 19. (2.61)

3. They are free from Tarrach redundancies [31] and the ambiguity in four space-time

dimensions [58].

4. A basis change relates them to the 27 singly-on-shell helicity amplitudes, hence the

imaginary parts in the dispersion integrals (2.60) can be expressed in terms of physical

helicity amplitudes for γ∗γ∗ → ππ and γ∗γ → ππ.

The first point reflects the need to obtain a parameter-free prediction for the two-pion con-

tribution to (g−2)µ. The second point implies that we can construct a dispersive represen-

tation for Π̂i of the form (2.36) (or (2.37) for the pion box), by summing fixed-(s, t, u) repre-

sentations. The fixed-t representation is given directly by (2.60), while fixed-s and fixed-u

representations follow from the crossing relations (2.16). The last two properties mean that

we can relate the two-pion contribution to (g− 2)µ to observable quantities. In particular,

longitudinal polarizations for the external photon must drop out in the limit q2
4 → 0.

The 19 functions contributing to (g − 2)µ can be written as (for q2
4 = 0 and t = q2

2)

Π̌i = Π̂gi + (s− q2
3)∆̄i + (s− q2

3)2 ¯̄∆i, (2.62)

where {gi} = G = {1, . . . , 11, 13, 14, 16, 17, 39, 50, 51, 54} and where

∆̄i =
54∑

j=7

d̄ijΠj ,
¯̄∆i =

36∑

j=31

¯̄dijΠj (2.63)

are given explicitly in appendix D. The coefficients d̄ij and ¯̄dij depend only on q2
1, q2

2,

and q2
3. To verify that the functions Π̌i fulfill unsubtracted fixed-t dispersion relations,

– 25 –



J
H
E
P
0
4
(
2
0
1
7
)
1
6
1

we observe

1

π

∫
ds′

Im Π̌i(s
′)

s′ − s =
1

π

∫
ds′

Im Π̂gi(s
′)

s′ − s

+
1

π

∫
ds′

(s′ − q2
3)Im ∆̄i(s

′)

s′ − s +
1

π

∫
ds′

(s′ − q2
3)2Im ¯̄∆i(s

′)

s′ − s

=
1

π

∫
ds′

Im Π̂gi(s
′)

s′ − s

+ (s− q2
3)

1

π

∫
ds′

Im ∆̄i(s
′)

s′ − s + (s− q2
3)2 1

π

∫
ds′

Im ¯̄∆i(s
′)

s′ − s
+

1

π

∫
ds′Im ∆̄i(s

′) +
1

π

∫
ds′(s+ s′ − 2q2

3)Im ¯̄∆i(s
′)

= Π̂gi(s) + (s− q2
3)∆̄i(s) + (s− q2

3)2 ¯̄∆i(s)

= Π̌i(s),

(2.64)

where we have used the sum rules for the BTT functions:

∫
ds′Im Πi(s

′) = 0, i ∈ {7, . . . , 54},
∫
ds′s′Im Πi(s

′) = 0, i ∈ {31, . . . , 36},
(2.65)

and written both channels schematically as one integral. This proves that the dispersion

relation for Π̌i is indeed fulfilled. In particular, the limit s → q2
3 provides a fixed-t repre-

sentation for Π̂gi , the input for the (g − 2)µ master formula. The solutions for fixed-s and

fixed-u follow immediately from the crossing relations (2.16) and (2.18).

Unfortunately, it turns out that it is not possible to find a representation for the

functions Π̌i with coefficients d̄ij and ¯̄dij in (2.63) free of all kinematic singularities. This

is a final relic of the redundancy in the tensor decomposition which is, however, not a

real problem at all. Indeed the contribution of ∆̄i and ¯̄∆i in the dispersion relation for

Π̂gi vanishes due to the sum rules, and the same is true for the residue of any kind of

kinematic singularity in the coefficients d̄ij and ¯̄dij . The residue is defined in terms of

physical quantities only and can thus be subtracted explicitly, to obtain a representation

that is manifestly free of kinematic singularities.

Using the above sum rules, we can optimize the representation to a certain degree. We

have chosen our preferred representation in appendix D according to the following criteria:

• We have avoided for scalar functions Πi that receive S-wave contributions to mix into

other functions in (2.62).

• We have made the singularity structure of the coefficients d̄ij and ¯̄dij as simple as

possible.

• We have optimized the convergence of the partial-wave representation of (g− 2)µ for

the pion box.
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The minimal singularity structure for the coefficients d̄ij and ¯̄dij consists of simple poles

in 1/(q2
1 + q2

3) and singularities of the type 1/λ(q2
1, q

2
2, q

2
3), where λ(a, b, c) := a2 + b2 + c2

−2(ab+ bc+ ca) is the Källén triangle function. The first singularity lies on a straight line

outside the (g − 2)µ integration region, see figure 3. Writing

λ123 := λ(q2
1, q

2
2, q

2
3) = −1

3
Σ̃2(1− r2), (2.66)

we see that the second type of singularity lies on the border of the (g − 2)µ integration

region. In the (g − 2)µ master formula (2.25), we subtract the residue of this singularity

at r = 1, which vanishes due to the sum rules, to obtain a representation without any

kinematic singularities in the (g − 2)µ integration region.

2.4.3 Physical sum rules

In the derivation of the singly-on-shell basis functions Π̌i, we have encountered the 15 null

relations (2.58), which lead to sum rules involving only physical (singly-on-shell) quantities.

We build the 15 functions

Ni(s; q
2
i ) :=

42∑

k=1

54∑

j=1

nikpkj(s)Πj

∣∣∣∣∣q24=0

t=q22

, i = 1, . . . , 15. (2.67)

By using the null relations (2.58), we subtract zero on the right-hand side and obtain

Ni(s; q
2
i ) =

42∑

k=1

54∑

j=1

nik
(
pkj(s)− pkj(q2

3)
)

Πj

∣∣∣∣∣q24=0

t=q22

=

42∑

k=1

54∑

j=7

nik
(
pkj(s)− pkj(q2

3)
)

Πj

∣∣∣∣∣q24=0

t=q22

,

(2.68)

where the second equality follows from the fact that pkj(s) = pkj(q
2
3) is constant for j < 7.

For j ≥ 7, pkj(s) is linear in s or quadratic for j ∈ {31, . . . , 36}. Hence, we can write

pkj(s)− pkj(q2
3) = (s− q2

3)p̃kj(s), j ≥ 7, (2.69)

where p̃kj is either constant or linear in s for j ∈ {31, . . . , 36}. Inserting Ni into a dispersion

integral leads to 15 linear combinations of the sum rules for the scalar functions, discussed

in section 2.3:

1

π

∫
ds′

ImNi(s
′)

s′ − q2
3

=

42∑

k=1

nik

54∑

j=7

1

π

∫
ds′p̃kj(s

′)Im Πj(s
′)

∣∣∣∣∣q24=0

t=q22

= 0. (2.70)

These 15 sum rules are special: they are free of any ambiguity and only involve physical

helicity amplitudes, i.e. amplitudes with a transversely polarized external photon. They

can be used to modify the fixed-t representations (2.62) of the 19 Π̌i functions contributing

to (g − 2)µ. The 15 sum rules can be written in very compact form in terms of the singly-
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on-shell basis functions Π̌i, defined in appendix D:

0 =

∫
ds′Im Π̌i(s

′), i = 7, 8, 9, 10, 12, 13, 16, 20, 21, 22, 23, 24,

0 =

∫
ds′Im

(
Π̌11(s′) + Π̌18(s′)− Π̌19(s′)

)
,

0 =

∫
ds′Im

(
Π̌15(s′)− Π̌18(s′) + Π̌19(s′)

)
,

0 =

∫
ds′Im

(
Π̌17(s′)− Π̌18(s′) + Π̌19(s′)

)
,

(2.71)

where fixed-t kinematics is implicit. These sum rules are related to certain sum rules

for forward HLbL scattering derived in [63], although we have derived them for a different

kinematic situation (non-forward scattering but q2
4 = 0). A detailed comparison is provided

in appendix E.2.

2.5 Helicity amplitudes and partial-wave expansion

In order to determine the two-pion contribution to the scalar functions in the master

formula (2.25), we write fixed-(s, t, u) dispersion relations of the form (2.36), where we

take only the contribution of the two-pion intermediate state to the imaginary parts into

account. The scalar functions that fulfill single-variable dispersion relations and reproduce

the scalar functions in the master formula are given in (2.62). The last missing piece in the

formalism for two-pion contributions to (g − 2)µ is thus the link with helicity amplitudes

and partial waves for γ∗γ(∗) → ππ.

Unitarity determines the imaginary part of the scalar functions, which is the input

in the dispersion relations, and is most conveniently expressed in the basis of helicity

amplitudes, expanded into partial waves: for helicity partial waves the unitarity relation

is diagonal. Furthermore, the input on γ∗γ(∗) → ππ is available in the form of helicity

partial waves: these are in principle observable quantities, even though given the absence

of double-virtual data they will have to be reconstructed dispersively by means of the

solution of a system of Roy-Steiner equations [28, 31, 55]. In section 4, we will provide a

first estimate of the two-pion rescattering contribution by solving the Roy-Steiner equations

for S-waves, using a pion-pole LHC and ππ phase shifts based on the inverse-amplitude

method [64–69].

The step from the singly-on-shell basis to the basis of helicity amplitudes for HLbL

is again rather tedious. The helicity amplitudes can be easily expressed in terms of BTT

scalar functions or the singly-on-shell basis by contracting the HLbL with appropriate

polarization vectors, but expressing the scalar functions in terms of helicity amplitudes

requires the analytic inversion of a 27 × 27 matrix, which is a formidable task. Here,

we present the solution to this problem and discuss the subtleties of the partial-wave

expansion in connection with (g − 2)µ. In section 2.5.1, we recall the definitions for the

helicity amplitudes from [31]. In section 2.5.2, we comment on the implication of the sum

rules for the partial waves. In section 2.5.3, we discuss the result for the dispersion relation

in terms of helicity partial waves, generalizing the S-wave result of [28] to arbitrary partial

waves. Some technical parts of the calculation are relegated to appendix F.
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2.5.1 Unitarity relation in the partial-wave picture

Although the direct inversion of the 27 × 27 matrix is feasible, see appendix F.2 for a

summary of how to achieve this task, there is a more elegant way to derive the partial-wave

unitarity relation without the need for a full inversion. We checked that both derivations

lead to identical results, but pursue the latter, more physical approach in the main part of

the paper.

The strategy that avoids the inversion of the matrix describing the basis change relies

on the following idea: by expanding the sub-process γ∗γ∗ → ππ into helicity partial waves,

we can explicitly calculate the phase-space integral in the unitarity relation and determine

the imaginary part as a sum of products of helicity partial waves. The phase-space integrals

become more and more complicated for higher partial waves, but due to the fact that

unitarity is diagonal for helicity partial waves, the contribution of arbitrary partial waves

is determined as soon as the S-, D-, and G-wave discontinuities are calculated.

In phenomenological applications, we expect the contribution of partial waves beyond

D-waves to be negligible. However, the calculation of higher partial waves allows us to

check the convergence of the partial-wave series to the full result in the test case of the

pion box and provides a very strong test of the formalism for the single-variable partial-

wave dispersion relations. The numerical checks of the convergence will be discussed in

section 3.3.

In the following, we define the helicity amplitudes for HLbL and the sub-process

γ∗γ(∗) → ππ. The definitions of angles and polarization vectors can be found in [31].

The helicity amplitudes of γ∗γ∗ → ππ are defined as

Hλ1λ2 = ei(λ2−λ1)φελ1µ (q1)ελ2ν (q2)Wµν(p1, p2, q1). (2.72)

For two off-shell photons, there are in principle 32 = 9 helicity combinations. However,

due to parity conservation and with our convention for the polarization vectors, we have

the relation

H−λ1−λ2 = (−1)λ1+λ2Hλ1λ2 , (2.73)

which implies that only 32−1
2 + 1 = 5 amplitudes are independent:

H++ = H−−, H+− = H−+, H+0 = −H−0, H0+ = −H0−, H00. (2.74)

Similarly, for the HLbL helicity amplitudes, defined by

Hλ1λ2,λ3λ4 = ελ1µ (q1)ελ2ν (q2)ελ3λ
∗
(−q3)ελ4σ

∗
(q4)Πµνλσ(q1, q2, q3), (2.75)

there are 34 helicity amplitudes, but only 34−1
2 + 1 = 41 independent ones.

We introduce rescaled helicity amplitudes that remain finite in the limit q2
i → 0:

Hλ1λ2 =: κ1
λ1κ

2
λ2H̄λ1λ2 , Hλ1λ2,λ3λ4 =: κ1

λ1κ
2
λ2κ

3
λ3κ

4
λ4H̄λ1λ2,λ3λ4 , (2.76)

where

κi± = 1, κi0 =
q2
i

ξi
, (2.77)
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and ξi refers to the normalization of the longitudinal polarization vectors. Since only the

H̄ amplitudes appear in the final results, this procedure avoids any confusion that might

originate from a particular choice of normalization.

We define the helicity partial-wave expansion for γ∗γ∗ → ππ by

H̄λ1λ2(s, t, u) =
∑

J

(2J + 1)dJm0(z)hJ,λ1λ2(s), (2.78)

wherem = |λ1−λ2|, z is the cosine of the scattering angle, and dJm1m2
(z) denotes the Wigner

d-function. For HLbL, we expand the helicity amplitudes as follows into partial waves:

H̄λ1λ2,λ3λ4(s, t, u) =
∑

J

(2J + 1)dJm1m2
(z)hJλ1λ2,λ3λ4(s), (2.79)

where m1 = λ1 − λ2, m2 = λ3 − λ4.

Unitarity is diagonal for helicity partial waves, i.e.

Imππ
s hJλ1λ2,λ3λ4(s) = ηiηf

σπ(s)

16πS
hJ,λ1λ2(s)h∗J,λ3λ4(s), (2.80)

where S is the symmetry factor of the two pions and

ηi =

{
−1 if λ1 − λ2 = −1,

1 otherwise,
ηf =

{
−1 if λ3 − λ4 = −1,

1 otherwise
(2.81)

account for the sign convention in (2.78). We find the relation

Imππ
s hJλ1λ2,−λ3−λ4(s) = Imππ

s hJλ1λ2,λ3λ4(s), (2.82)

where the ratio of ηf factors compensates the sign (−1)λ3+λ4 from (2.73).

The HLbL tensor is written in terms of the redundant BTT Lorentz decomposition as

Πµνλσ =
54∑

i=1

Tµνλσi Πi =
43∑

i=1

Bµνλσi Π̃i. (2.83)

For fixed t = q2
2 and q2

4 = 0, we have defined the singly-on-shell basis functions Π̌i. The

helicity amplitudes form a basis of the HLbL tensor, hence

Πi =

41∑

j=1

cijH̄j , Π̃i =

41∑

j=1

c̃ijH̄j , Π̌i =

41∑

j=1

čijH̄j , j = {λ1, λ2, λ3, λ4}. (2.84)

The coefficients cij contain 13 redundancies, the c̃ij still two (in four space-time dimen-

sions). In the relation for Π̌i, fixed-t kinematics is implicit and the coefficients čij are free

from redundancies.
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We define the following “canonical” ordering of j:

j ∈ {1 = {++,++}, 2 = {++,+0}, 3 = {++,+−}, 4 = {++, 0+}, 5 = {++, 00},
6 = {++, 0−}, 7 = {++,−+}, 8 = {++,−0}, 9 = {++,−−}, 10 = {+0,++},

11 = {+0,+0}, 12 = {+0,+−}, 13 = {+0, 0+}, 14 = {+0, 00}, 15 = {+0, 0−},
16 = {+0,−+}, 17 = {+0,−0}, 18 = {+0,−−}, 19 = {+−,++}, 20 = {+−,+0},
21 = {+−,+−}, 22 = {+−, 0+}, 23 = {+−, 00}, 24 = {+−, 0−}, 25 = {+−,−+},
26 = {+−,−0}, 27 = {+−,−−}, 28 = {0+,++}, 29 = {0+,+0}, 30 = {0+,+−},
31 = {0+, 0+}, 32 = {0+, 00}, 33 = {0+, 0−}, 34 = {0+,−+}, 35 = {0+,−0},
36 = {0+,−−}, 37 = {00,++}, 38 = {00,+0}, 39 = {00,+−}, 40 = {00, 0+},
41 = {00, 00}}, (2.85)

and the subsets

{lj}j := {5, 14, 23, 32, 37, 38, 39, 40, 41},
{kj}j := {1, 2, 3, 4, 10, 19, 28},
{k̄j}j := {9, 8, 7, 6, 18, 27, 36},
{nj}j := {11, 12, 13, 20, 21, 22, 29, 30, 31},
{n̄j}j := {17, 16, 15, 26, 25, 24, 35, 34, 33}. (2.86)

The meaning of these subsets is the following: the subset {lj}j corresponds to helicity

amplitudes with H̄j̄ = ±H̄j , where j̄ := {λ1, λ2,−λ3,−λ4}. For the subset {kj}j , the

Wigner d-functions for j and j̄ are identical up to a sign, while for the subset {nj}j this is

not the case.

The imaginary parts of the scalar functions are given by

Imππ
s Π̌i =

41∑

j=1

∑

J

čij(2J + 1)dJ
mj1m

j
2

(z)Imππ
s hJj (s)

=
∑

J

[
9∑

j=1

čilj (2J + 1)dJlj (z) Imππ
s hJlj (s)

+
7∑

j=1

(
čikj + ζj čik̄j

)
(2J + 1)dJkj (z) Imππ

s hJkj (s)

+

9∑

j=1

(
činjd

J
nj (z) + čin̄jd

J
n̄j (z)

)
(2J + 1)Imππ

s hJnj (s)

]
, (2.87)

where the signs

{ζj}j = {+,−,+,−,+,+,+} (2.88)

come from the relation

dJ−m1−m2
(z) = (−1)m1−m2dJm1m2

(z) = dJm2m1
(z). (2.89)
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The explicit Wigner d-functions are

{dJlj}j = {dJ00, d
J
10, d

J
20,−dJ10, d

J
00,−dJ10, d

J
20, d

J
10, d

J
00},

{dJkj}j = {dJ00,−dJ10, d
J
20, d

J
10, d

J
10, d

J
20,−dJ10},

{dJnj}j = {dJ11,−dJ21, d
J
1−1, d

J
21, d

J
22, d

J
2−1, d

J
1−1,−dJ2−1, d

J
11},

{dJn̄j}j = {dJ1−1, d
J
2−1, d

J
11, d

J
2−1, d

J
2−2, d

J
21, d

J
11, d

J
21, d

J
1−1}, (2.90)

where the signs are due to the use of relation (2.89).

In order to identify the coefficients čilj and (čikj + ζj čik̄j ), it is sufficient to know the

contribution to the unitarity relation from the lowest partial waves hJlj and hJkj (which are

either S- or D-waves). However, as the Wigner d-functions dJnj are different from dJn̄j , we

need to know the contribution from the two lowest partial waves hJnj in order to identify

the coefficients činj and čin̄j separately. Therefore, the generalization to arbitrary partial

waves is possible as soon as the contributions from S-, D-, and G-waves are determined.

The explicit calculation of the partial-wave unitarity relation involves rather compli-

cated phase-space integrals, see appendix F.1. By calculating the fully-off-shell unitarity

relation, projecting onto BTT, and working out the imaginary parts of the functions Π̌i,

we have verified explicitly that the coefficients čij for the longitudinal polarization λ4 = 0

vanish. Therefore, čij is effectively an invertible 27 × 27 matrix. As mentioned above, we

have also computed the matrix čij by direct inversion of the basis change from helicity

amplitudes to the scalar functions, see appendix F.2. The fact that the result agrees with

the one from the phase-space calculation provides a very strong cross check, and in addition

the full inversion allows one to separate the čikj and čik̄j coefficients.

2.5.2 Approximate partial-wave sum rules

Before returning to the final result, we comment on the role of the sum rules in the context

of a partial-wave expansion. In section 2.4.3, we have derived a set of 15 sum rules for the

Π̌i functions, which, after a basis change, can be written in terms of the 27 singly-on-shell

helicity amplitudes for HLbL scattering. By construction, these sum rules only hold true

for the full helicity amplitudes. In particular, when expanding the imaginary part of the

helicity amplitudes into partial waves and truncating the partial-wave series, there is no

reason why the sum rules should still be satisfied exactly: sum-rule violations of a size

consistent with higher partial waves are expected, so that the sum rules are fulfilled only

approximately. This has some important consequences.

Due to the presence of the sum rules, the formal relation between the master formula

input Π̂i at q4 = 0 and the singly-on-shell basis functions Π̌i is not unique, but can be

modified by linear combinations of the sum rules. If the sum rules hold exactly, all these

representations are equivalent. Violating the sum rules by a truncation of the partial-

wave series implies that a dependence on the precise representation of the Π̌i functions is

introduced. Our preferred representation of the Π̌i functions, discussed in section 2.4.2 and

appendix D, leads to a fast convergence of the partial-wave expansion in the test case of

the pion box, see section 3, but we also checked other variants and convinced ourselves in
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each case that indeed the sum-rule violations are consistent with a meaningful partial-wave

expansion and only slight losses in the rate of convergence.

The dependence on the representation of the Π̌i functions or the violation of the sum

rules concerns only the truncated higher partial waves. Hence, we can reverse the argument:

with the assumption that sufficiently high partial waves are negligible, the included partial

waves have to fulfill the sum rules, which also removes the dependence on the representa-

tion. This can be used as a check of or even a constraint on the input for the γ∗γ∗ → ππ

helicity partial waves, in a similar way as sum rules for forward HLbL scattering have been

used to derive constraints on transition form factors of higher resonances [63, 70, 71].

Out of the 15 sum rules, only a single one involves helicity amplitudes starting with

S-waves. If we truncate the partial-wave expansion after S-waves, this sum rule reads

0 =

∫ ∞

4M2
π

ds′
1

s′−q2
3

1

λ12(s′)

(
2Imh0

++,++(s′)− (s′ − q2
1 − q2

2)Imh0
00,++(s′)

)
+ higher waves,

(2.91)

where λ12(s) := λ(s, q2
1, q

2
2) denotes the Källén triangle function. Verifying that the cor-

responding sum rule is approximately fulfilled for the γ∗γ∗ → ππ amplitudes constructed

in section 4 provides an important check on the calculation. In fact, it is precisely this

sum rule that proves that the S-wave result derived here based on the BTT formalism and

the one from [28] are equivalent. We note that in the limit of forward kinematics the sum

rule (2.91) reduces to the S-wave approximation of the sum rule (27b) in [63].

2.5.3 Result for arbitrary partial waves

The calculations of the previous sections allow one to reconstruct the full result for the

dispersion relation for HLbL two-pion contributions to (g − 2)µ. The imaginary part of

the functions Π̌i, which have to be inserted into the dispersion integrals, are provided

by (2.87). Evaluated at s = q2
3, the dispersion relations give the s-channel contribution

for the fixed-t representation of all 19 Π̂i functions that contribute to (g − 2)µ. Using the

crossing relations (2.16) and (2.18), we obtain the five other contributions: the u-channel

contribution for fixed-t as well as both channels in the fixed-s and fixed-u representations.

Hence, all six integrals in a dispersion relation for the functions Π̂i of the form (2.36)

or (2.37) can be calculated.

The crucial ingredient in this calculation is the basis change čij from scalar functions to

helicity amplitudes, which enables the generalization of the S-wave result of [28] to arbitrary

partial waves. The matrix čij contains two types of ostensible kinematic singularities:

1. The kinematic singularities of the singly-on-shell basis Π̌i are present, as explained

in section 2.4.2. In the dispersion relation, their residues vanish due to the sum rules,

hence they can be subtracted explicitly in the master formula for (g − 2)µ.

2. Additional kinematic singularities (−q2
2)−n/2, n = 1, . . . , 4, show up in the coefficients

čij . They are introduced by the basis change to helicity amplitudes, i.e. they cancel

against kinematic zeros in the helicity amplitudes, present in (2.87) in the Wigner-d

functions for fixed-t kinematics.

– 33 –



J
H
E
P
0
4
(
2
0
1
7
)
1
6
1

Unfortunately, the matrix čij is too lengthy to be shown here in full, but is provided as

supplementary material in the form of a Mathematica notebook.5

In contrast, the explicit results for the two-pion dispersion relation in the S-wave

approximation are very compact:

Π̂J=0
4 =

1

π

∫ ∞

4M2
π

ds′
−2

λ12(s′)(s′ − q23)2

(
4s′Imh0++,++(s′)− (s′+q21−q22)(s′−q21+q22)Imh000,++(s′)

)
,

Π̂J=0
5 =

1

π

∫ ∞

4M2
π

dt′
−2

λ13(t′)(t′ − q22)2

(
4t′Imh0++,++(t′)− (t′ + q21 − q23)(t′ − q21 + q23)Imh000,++(t′)

)
,

Π̂J=0
6 =

1

π

∫ ∞

4M2
π

du′
−2

λ23(u′)(u′ − q21)2

(
4u′Imh0++,++(u′)− (u′+q22−q23)(u′−q22+q23)Imh000,++(u′)

)
,

Π̂J=0
11 =

1

π

∫ ∞

4M2
π

du′
4

λ23(u′)(u′ − q21)2

(
2Imh0++,++(u′)− (u′ − q22 − q23)Imh000,++(u′)

)
,

Π̂J=0
16 =

1

π

∫ ∞

4M2
π

dt′
4

λ13(t′)(t′ − q22)2

(
2Imh0++,++(t′)− (t′ − q21 − q23)Imh000,++(t′)

)
,

Π̂J=0
17 =

1

π

∫ ∞

4M2
π

ds′
4

λ12(s′)(s′ − q23)2

(
2Imh0++,++(s′)− (s′ − q21 − q22)Imh000,++(s′)

)
, (2.92)

where the dependence of the helicity amplitudes on the virtualities is not written explicitly.

This result agrees with [30]. It slightly differs from the S-wave result presented in [28],

but, as explained in the previous section, this difference is precisely of the form of the sum

rule (2.91) and thus simply related to a different choice of basis.

The above result is given in a form that corresponds to the dispersion relation (2.36).

In order to apply it to the pion box, one has to use (2.37), hence the dispersion integrals

in (2.92) need to be multiplied by a factor 2/3. For the proper evaluation of the ππ-

rescattering corrections, the contribution of the pion box to the partial waves has to be

subtracted: we define the operator S, which takes care of the symmetry factor and the

subtraction of the pole × pole term [28]. The imaginary part for the ππ-rescattering

contribution is then given by

Imππ
s hJλ1λ2,λ3λ4(s) = ηiηf

σπ(s)

16π
S
[
hJ,λ1λ2(s)h∗J,λ3λ4(s)

]
, (2.93)

where

S
[
hc
J,λ1λ2(s)hc∗

J,λ3λ4(s)
]

:= hc
J,λ1λ2(s)hc∗

J,λ3λ4(s)−NJ,λ1λ2(s)N∗J,λ3λ4(s),

S
[
hn
J,λ1λ2(s)hn∗

J,λ3λ4(s)
]

:=
1

2
hn
J,λ1λ2(s)hn∗

J,λ3λ4(s).
(2.94)

The superscripts refer to charged (c) and neutral (n) pions, respectively, and NJ,λiλj denotes

the partial-wave projection of the pure pion-pole term, explicitly given in appendix G.

2.6 Summary of the formalism

Arguably the most important result of this paper, especially in view of future applications

and generalizations, concerns the derivation of the Π̌i functions, which allows us to establish

5In this notebook, we make use of FeynCalc [72, 73].
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a direct correspondence between singly-on-shell helicity amplitudes and the scalar functions

Π̄i that enter the master formula (2.25) for the HLbL contribution to (g − 2)µ. The key

quantities in this construction are the various scalar amplitudes, a glossary of which is

provided in table 1, including a reference to the equation where they are defined and a

short definition and explanation. They can be roughly divided into four classes: first, the

Πi and Π̃i are related to the general BTT decomposition of the HLbL tensor, irrespective

of any application to (g − 2)µ or dispersion relations. Second, the Π̂i and Π̄i isolate

the functions actually relevant for (g − 2)µ, by forming suitable subsets and taking the

appropriate kinematic limit, but are otherwise still completely general. Third and fourth,

the Π̌i are constructed as the crucial intermediate step in the derivation of single-variable

partial-wave dispersion relations, by eliminating redundancies in the representation and

thereby allowing a well-defined transition to helicity amplitudes H̄j . In combination with

partial-wave unitarity, this last step completes the derivation of the dispersion relation for

two-pion intermediate states in the HLbL contribution to (g − 2)µ.

3 The pion box: test case and numerical evaluation

The interest in the pion box is twofold. On the one hand, it gives a unique meaning to

the notion of a pion loop, by virtue of its dispersive definition as two-pion intermediates

with a pion-pole LHC, and is expected to provide the most important contribution to

HLbL scattering beyond the pseudoscalar poles. Phenomenologically, the pion box is fully

determined by the pion vector form factor, which allows us to pin down its numerical value

to very high precision, as we will show in section 3.1 including an error analysis for the

form factor input.

On the other hand, the pion box constitutes an invaluable test case for the partial-

wave formalism that we have developed in section 2. Given a certain representation of

the pion vector form factor, the full pion box is known exactly, see appendix C. Since

the partial-wave expansion and the single-variable dispersion relations are valid not only

for the rescattering contribution but also for the pion box, provided the correct prefactor

in (2.37) according to the counting of double-spectral regions is taken into account, we

can use the pion box to check whether the partial-wave representation converges to the

full result upon resummation of the partial waves, and we can study the details of the

convergence behavior numerically.

In a similar way, the pion box provides a test case for the sum rules for the HLbL

scalar functions. In section 3.2 we demonstrate that they are indeed fulfilled, which is a

prerequisite for the unsubtracted single-variable dispersion relations derived in section 2. In

section 3.3, we investigate the convergence behavior of its partial-wave representation and

discuss the implications for applications beyond the pion box, such as the ππ-rescattering

contribution discussed in section 4.

3.1 Evaluation of the full pion box

For the numerical evaluation of the pion box, the representation in terms of Feynman-

parameter integrals given in appendix C proves most efficient. This representation is based
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funcs. # eq. relevant

kinematics

description explanations

Πi 54 (2.7) 4 off-shell BTT scalar

functions

redundant set; free of kinematic singular-

ities and zeros; full crossing symmetry

Π̃i 43 (2.10) 4 off-shell basis true off-shell basis away from 4 space-time

dimensions; no Tarrach redundancies, but

two ambiguities in 4 space-time dimen-

sions; kinematic singularities, see [31]

Π̂i 54 (2.12) 4 off-shell “basis” change

for (g − 2)µ

redundant set; free of kinematic singulari-

ties and zeros; crossing symmetry for pho-

tons 1, 2, and 3

Π̂gi 19 (2.15) q4 = 0 contributing to

(g − 2)µ

subset of 19 functions Π̂i that contribute

to (g − 2)µ: {gi} = {1, . . . , 11, 13, 14, 16,

17, 39, 50, 51, 54}
Π̄i 12 (2.22) q4 = 0 scalar functions

in master

formula

correspond to the 19 functions Π̂i con-

tributing to (g−2)µ modulo crossing sym-

metry q1 ↔ −q2

Π̌i 27 (2.62) fixed t = q2
2,

q2
4 = 0

singly-on-shell

basis

fulfill unsubtracted dispersion relations;

kinematic singularities depending on q2
1,

q2
2, and q2

3 only; contain in the limit q4 → 0

as a subset the 19 functions Π̂i contribut-

ing to (g − 2)µ

H̄j 41 (2.76) 4 off-shell helicity ampli-

tudes

off-shell HLbL helicity amplitudes; com-

plicated kinematic singularities; simple

unitarity relation

H̄j

∣∣∣
λ4 6=0

27 3 off-shell singly-on-shell

helicity ampli-

tudes

helicity amplitudes for the case of an ex-

ternal on-shell photon

Table 1. Scalar functions appearing in the formalism for the two-pion HLbL contribution to (g−2)µ.

on the equivalence of the pion box with the FsQED amplitude [28], which we proved in [31].

It requires the numerical evaluation of two-dimensional Feynman integrals with the pion

vector form factor as the only input. For a reliable evaluation of the pion-box contribution

to (g− 2)µ, we therefore need a precise representation of the pion vector form factor in the

space-like region.

Since about 95% of the final pion-box (g − 2)µ integral originate from virtualities

below 1 GeV, it is most critical that the low-energy properties be correctly reproduced.

Experimentally, the available constraints derive from e+e− → π+π− data, which determine

the time-like form factor [74–79], and space-like measurements by scattering pions off an

electron target [80, 81]. We have also checked that our representation is consistent with

extractions of the space-like form factor from e−p → e−π+n data [82–85], although due

to the remaining model dependence of extrapolating to the pion pole we do not use these

data in our fits. To obtain a representation that allows us to simultaneously fit space-
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and time-like data, and thereby profit from the high-statistics form factor measurements

motivated mainly by the two-pion contribution to HVP, we adopt the formalism suggested

in [86, 87] (similar representations have been used in [88–93]), whose essential ingredients

will be briefly reviewed in the following.

The form factor is decomposed according to

F Vπ (s) = Ω1
1(s)Gρω(s)Ginel(s). (3.1)

The Omnès factor

Ω1
1(s) = exp

{
s

π

∫ ∞

4M2
π

ds′
δ1

1(s′)

s′(s′ − s)

}
(3.2)

would provide the exact answer if only the elastic ππ channel contributed to the unitarity

relation of the form factor. It is fully determined by the P -wave phase shift δ1
1 . Next, Gρω

describes the isospin-violating coupling to the 3π system, which becomes relevant in the

vicinity of the ρ peak as reflected by ρ–ω mixing. In practice, a one-parameter ansatz

Gρω(s) = 1 + ερω
s

sω − s
, sω =

(
Mω − i

Γω
2

)2

, (3.3)

proves indistinguishable from a dispersively improved version that eliminates the imaginary

part below the 3π threshold [86, 87]. Finally, Ginel parameterizes the effect of higher

inelastic channels. We use a conformal mapping

Ginel(s) = 1 +

p∑

i=1

ci
(
z(s)i − z(0)i

)
, z(s) =

√
sπω − s1 −

√
sπω − s√

sπω − s1 +
√
sπω − s

, (3.4)

where sωπ = (Mω +Mπ)2 denotes the threshold where phenomenologically 4π inelasticities

first start to set in and the second parameter is fixed at s1 = −1 GeV2. The ππ phase

shift is taken from the extended Roy-equation analysis of [94], which determines δ1
1 up to

sm = (1.15 GeV)2 in terms of its values at sm and sA = (0.8 GeV)2. Our representation

thus involves 3 + p free parameters: the ρ–ω mixing parameter ερω, the two values of the

phase shift at sm and sA, and p parameters from the conformal expansion of Ginel. This

representation ensures that the form factor behaves as 1/s asymptotically as long as the

phase shift approaches π, up to logarithms in agreement with the expectation from pertur-

bative QCD [95–99]. We impose this asymptotic behavior by smoothly extrapolating δ1
1 to

π from the boundary sm of the applicability of the Roy solution, but checked that introduc-

ing effects from ρ′, ρ′′ excitations as suggested in [40] does not impact the space-like form

factor. The form of Ginel can be further constrained by requiring that the imaginary part

exhibit the expected P -wave behavior and respect the Eidelman– Lukaszuk bound [100],

but again the impact on the space-like form factor proves to be small.

We fit this representation simultaneously to the space-like data from [81] as well as

one of the time-like data sets [74–79] (restricted to data points below 1 GeV). Moreover,

we varied s1, p = 1, 2, and constructed an error band for the uncertainties in δ1
1 apart from

the phase shifts at sm and sA. We find that the results for the space-like form factor are

extremely stable to all these variations, the largest effect being produced by the differences
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Figure 11. Left: space-like pion form factor from our dispersive fit in comparison to data from

NA7 [81] and JLab [83–85] (the latter are not included in the fit). The error band represents the

variation observed between different time-like data sets. Right: pion form factor in the time-like

region from the combined fit to NA7 and [77], chosen here for illustrative purposes only. Fits to

the other time-like data sets look very similar and lead to the same numerical results within the

accuracy quoted in (3.5).

between the time-like data sets. For the accuracy required in HLbL scattering we can

therefore simply take the largest variation among them as an uncertainty estimate, without

having to perform a careful investigation of the statistical and systematic errors that are

crucial when combining the different data sets for HVP. The result for the space-like form

factor is shown in figure 11, leading to a numerical evaluation6 for the pion box of

aπ-box
µ = −15.9(2)× 10−11. (3.5)

3.2 Verification of sum rules

In section 2.3, we have presented sum rules for the BTT scalar functions that follow from

a uniform asymptotic behavior of the HLbL tensor and ensure the independence from the

choice of the tensor basis. These sum rules prove essential for the derivation of single-

variable dispersion relations that can be used with input on the γ∗γ∗ → ππ helicity partial

waves. Furthermore, an important consequence of the BTT sum rules are the physical sum

rules in section 2.4.3, which can be expressed in terms of helicity amplitudes.

An important test case for our partial-wave formalism is the pion box: the fact that

we know the full result allows us to test the convergence behavior of the partial-wave

approximation. Before turning to the tests of the full formalism in section 3.3, here we check

that the sum rules as a necessary prerequisite for the single-variable dispersion relations

are indeed fulfilled in the case of the pion box. Due to the equivalence of the pion box with

the FsQED amplitude [28, 31], these tests can be directly performed with sQED.

Although we have formulated the sum rules in terms of the BTT functions Πi, an

explicit calculation must avoid the Tarrach ambiguities present in this set. In section 2.3,

6The multidimensional integrals required for the numerical evaluation of (2.25) are performed using

the CUBA library [101].
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we have derived the sum rules at a certain kinematic point where the ambiguity vanishes.

The most convenient and complete method to check the sum rules uses the basis coefficient

functions Π̃i, see [31]. In this set, the Tarrach redundancy is traded for kinematic singular-

ities. We remove these singularities by multiplying the Π̃i functions with the denominators

of the Tarrach poles, i.e. we consider

q3 · q4Π̃7 = q3 · q4Π7 − q2 · q3q2 · q4Π31,

q3 · q4Π̃9 = q3 · q4Π9 + q1 · q4Π22,

q3 · q4Π̃19 = q3 · q4Π19 + q1 · q4q2 · q3Π31,

q1 · q2q3 · q4Π̃21 = q1 · q2q3 · q4Π21 − q1 · q4q2 · q3Π22,

q1 · q2Π̃36 = q1 · q2Π43 + q1 · q4Π37.

(3.6)

The functions Π̃1, . . . , Π̃6 are not involved in sum rules, while the functions Π̃39, . . . , Π̃43

vanish in sQED. All the remaining functions are related to the ones above by crossing.

Apart from q1·q2q3·q4Π̃21, the combinations in (3.6) have a mass dimension that suggests an

asymptotic behavior� s−1, t−1, u−1. The BTT sum rules can therefore be formulated as the

requirement that the functions in (3.6) fulfill an unsubtracted Mandelstam representation.

In contrast, in [31] we only verified that subtracted Mandelstam representations which

follow from unsubtracted ones for the BTT functions Πi are actually fulfilled.

In analogy to [31], we extract the sQED double-spectral densities of these functions

from the explicit expression of the loop calculation in terms of Passarino-Veltman ampli-

tudes [102, 103]: in such a decomposition into scalar loop functions the double-spectral

densities are given by the coefficients of the D0 functions times the D0 spectral densities.

By inserting the double-spectral densities into an unsubtracted Mandelstam representation

of the form

1

π2

∫
ds′dt′

ρst(s
′, t′)

(s′ − s)(t′ − t) +
1

π2

∫
ds′du′

ρsu(s′, u′)

(s′ − s)(u′ − u)
+

1

π2

∫
dt′du′

ρtu(t′, u′)

(t′ − t)(u′ − u)
,

(3.7)

we have verified numerically that the functions (3.6) are reproduced. Surprisingly, even

q1 · q2q3 · q4Π̃21 fulfills an unsubtracted Mandelstam representation, which is not expected

from the mass dimension and implies an even higher sum rule in the case of sQED. Single-

variable dispersion relations then follow from the Mandelstam representation in the ap-

propriate limit, including the explicit cases discussed in section 2.3. While the imagi-

nary parts for the single-variable dispersion relations extracted in this way need to be

calculated numerically, it is also possible to obtain analytic expressions starting from a

Feynman-parameter representation of the BTT functions. The results again confirm the

validity of the sum rules, in agreement with the more general approach via the Mandelstam

representation.

Although the sum rules for the BTT scalar functions are crucial ingredients in the

derivation of the single-variable dispersion relations, the physical sum rules (2.71) have

a more direct significance as they are formulated in terms of physical quantities for the

kinematics of the (g−2)µ single-variable dispersion integrals, and thus allow one to impose

constraints on the γ∗γ∗ → ππ helicity amplitudes used as input for a numerical evaluation.
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We have verified that these sum rules are fulfilled in the case of the pion box, by extracting

the imaginary parts of the Π̌i functions from the sQED calculation and calculating the

integrals numerically. These sQED tests thereby allow one to establish the validity of

nearly all sum rules — except for the last one involving Π̌17 − Π̌18 + Π̌19 = Π̃40 − Π̃41,

which vanishes identically in sQED. It should be stressed that the underlying assumptions

follow solely from demanding a uniform asymptotic behavior of the HLbL tensor, but as

the discussion in appendix E.2 shows, similar conclusions can be drawn from Regge models

as well. Together with the explicit checks in the case of sQED there is therefore compelling

evidence for our assumptions regarding the asymptotic behavior of the HLbL tensor.

3.3 Convergence of the partial-wave representation

In the following, we perform tests of the helicity partial-wave dispersion relations devel-

oped in section 2 by applying the formalism to the pion box. In this case, a dispersion

relation of the form (2.37) has to be used in order to account for the fact that only three

different double-spectral regions are present. We emphasize that in this test case each

single-variable dispersion relation reconstructs the full pion box. Therefore, we can test

the three channels separately — each must converge to the full result upon resummation

of the partial-wave series.

The input for the γ∗γ∗ → ππ helicity partial waves in the case of the pion box is given

by the partial-wave projection of the pure pion-pole terms, see appendix G. In order to

simplify the convergence checks, we use a simple vector-meson dominance representation

for the pion vector form factor:

F Vπ,VMD(q2) =
M2
ρ

M2
ρ − q2

. (3.8)

Such a form factor leads to aπ-box, VMD
µ = −16.4×10−11, which is very close to the full result

obtained with the dispersive representation of the form factor discussed in section 3.1. The

convergence behavior of the partial-wave expansion is not affected by the details of the

form factor implementation.

Since our formalism for single-variable dispersion relations is valid for arbitrary partial

waves, we can extend these tests in principle to an arbitrary angular momentum J . In

practice, our numerical implementation becomes less reliable for large values of J , so that

we performed the numerical tests up to J = 20 and estimated the truncation error by

extrapolation.

The HLbL contribution to (g − 2)µ is given as a sum of 12 terms in the master for-

mula (2.25), which, in principle, are completely independent. However, in the case of the

pion box it turns out that especially for the lower partial waves a numerical cancellation

occurs that leads to a faster convergence of aµ than for the individual terms. Therefore,

we define the following vector in the 12-dimensional space of the contributions to the mas-

ter formula:

aHLbL
µ :=

{
aHLbL
µ,i

}
i
,

aHLbL
µ,i :=

α3

432π2

∫ ∞

0
dΣ̃ Σ̃3

∫ 1

0
dr r

√
1− r2

∫ 2π

0
dφTi(Q1, Q2, τ)Π̄i(Q1, Q2, τ), (3.9)
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fixed-s fixed-t fixed-u average

Jmax δJmax ∆Jmax δJmax ∆Jmax δJmax ∆Jmax δJmax ∆Jmax

0 100.0% 100.0% −6.2% 35.4% −6.2% 35.4% 29.2% 55.4%

2 26.1% 50.8% −2.3% 5.6% 7.3% 8.0% 10.4% 20.9%

4 10.8% 28.2% −1.5% 2.1% 3.6% 3.9% 4.3% 11.0%

6 5.7% 16.1% −0.7% 1.1% 2.1% 2.2% 2.4% 6.2%

8 3.5% 9.6% −0.4% 0.6% 1.3% 1.4% 1.5% 3.7%

10 2.3% 5.9% −0.2% 0.4% 0.9% 1.0% 1.0% 2.4%

12 1.7% 3.8% −0.1% 0.3% 0.7% 0.7% 0.7% 1.6%

14 1.3% 2.5% −0.1% 0.2% 0.5% 0.5% 0.6% 1.1%

16 1.0% 1.7% −0.0% 0.2% 0.4% 0.4% 0.4% 0.7%

18 0.8% 1.2% −0.0% 0.1% 0.3% 0.3% 0.4% 0.5%

20 0.7% 0.9% −0.0% 0.1% 0.3% 0.3% 0.3% 0.4%

Table 2. Convergence of the partial-wave expansion in the case of the pion box: the three single-

variable dispersion relations and their average are compared. See main text for the definition of the

relative deviations.

so that

aHLbL
µ =

12∑

i=1

aHLbL
µ,i . (3.10)

In order to quantify the convergence behavior, we define the following two quantities: the

relative deviation between the full pion-box contribution to (g − 2)µ and its partial-wave

approximation

δJmax := 1−
aπ-box, PW
µ,Jmax

aπ-box
µ

, (3.11)

as well as the analogous quantity in the 12-dimensional space of the contributions to the

master formula

∆Jmax :=

∣∣∣aπ-box, PW
µ,Jmax

− aπ-box
µ

∣∣∣
∣∣aπ-box
µ

∣∣ , (3.12)

where | · | denotes the 12-dimensional Euclidean norm. Due to cancellations between the

12 terms in the master formula, δJmax will indicate a faster convergence than ∆Jmax , which

is more robust against cancellations.

Table 2 shows the results of a detailed study of the convergence behavior of the partial-

wave representation for the test case of the pion box. Both measures δJmax and ∆Jmax for

the deviation from the full pion box result are displayed for fixed-s, fixed-t, and fixed-

u dispersion relations, as well as for the average of the three single-variable dispersion
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relations (2.37). In this context we use the notion of fixed-(s, t, u) as follows: it defines the

dispersion relation for each of the six representatives in (2.15), while the remaining scalar

functions are obtained via the crossing relation (2.16). In particular, this implies that in

the so-called fixed-s evaluation, we do use a fixed-s dispersion relation for Π̂1, but a fixed-t

dispersion relation for Π̂2 and a fixed-u dispersion relation for Π̂3.

Next, we comment on the following two observations:

1. The S-wave approximation shows a particular pattern: the fixed-s representation

vanishes, while fixed-t and -u agree.

2. The fixed-s representation exhibits a slower convergence than the other two dispersion

relations.

In order to understand the first point, consider the explicit S-wave representation for the

Π̂i functions, (2.92). We note that S-waves contribute only to the s-channel discontinuities

in Π̂4 and Π̂17, while the t- and u-channel discontinuities for these two functions start with

D-waves (the situation for the other functions follows from crossing symmetry). A discon-

tinuity in the s-channel contributes to a fixed-t and fixed-u dispersion relation, while in a

fixed-s dispersion relation the integral runs only over t- and u-channel discontinuities. This

means that in the fixed-s representation in table 2, no S-wave discontinuity is encountered

at all, hence in this representation the first non-vanishing contribution is obtained from

D-waves. Furthermore, because the S-wave s-channel discontinuity has no angular depen-

dence, it contributes identically to a fixed-t and fixed-u dispersion relation, which makes

the fixed-t and fixed-u results in table 2 agree at Jmax = 0.

The second point can be understood as follows. For each of the six representatives

in (2.15) the s-channel is special with respect to the other two. This is due to the fact that

the associated Lorentz structure exhibits an s-channel symmetry, either C12, C34, or both,

the only special case being Π̂39, which is totally crossing symmetric in all three channels.

For instance, the Lorentz structure T̂µνλσ1 is the one that belongs to the s-channel (pseudo-

scalar) π0-pole contribution to HLbL scattering, while T̂µνλσ4 can be related to an s-channel

scalar amplitude, which manifests itself as the S-wave s-channel ππ contribution. It is

therefore not surprising that even in the case of the pion box, the s-channel discontinuity for

the functions (2.15) is more important than the other two discontinuities. Since this is the

discontinuity that evades the fixed-s dispersion relation, we observe a slower convergence

pattern in this case.

We have performed these convergence tests not only with our preferred representation

for the Π̌i functions, but also with different versions that are modified by terms that vanish

due to the sum rules (2.71). While the exact numbers do differ — as expected given the fact

that the sum rules only hold for the full amplitudes but not the individual partial waves —

the sum rule violations in the case of the pion box due to the partial-wave approximation

are reasonably small and the overall picture remains the same.

To fully understand the partial-wave convergence of the pion box we also studied the

remaining deviation from the full result at J = 20. Empirically, we observe that the size
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Figure 12. Extrapolation of the partial-wave results for the fixed-(s, t, u) representations as well

as their average, see main text for details.

of the individual terms for given J is well described by a fit function7

aπ-box, PW
µ,J ∼ cJx, (3.13)

which in a double-log plot produces the straight lines in figure 12. The fact that the

first few terms do not fall on this line indicates that the form (3.13) is only asymptotic,

and might also be related to the abovementioned cancellations for low J (the fit therefore

excludes the points for J ≤ 6). The figure shows that the rate of convergence is actually

similar for fixed-s and fixed-u, both of which yield an exponent x ≈ −3, while the fixed-t

representation converges with x ≈ −4. The slower convergence of the fixed-s results seen

in table 2 is therefore a remnant of the missed S-wave contribution that leads to larger

deviations for small J , not the overall rate of convergence. The resummation of the terms

with J > 20 based on the fit function then removes all remaining discrepancies, providing

a strong check of the partial-wave formalism developed in section 2.

Finally, we discuss the consequences for the application of the formalism to the case

of two-pion contributions beyond the pion box, most importantly the unitarity (or rescat-

tering) correction. The most important difference is related to the fact that for these

applications, instead of (2.37), the dispersion relation (2.36) applies, where due to the dif-

ferent double-spectral regions an overall factor 1/2 instead of 1/3 is required. However, this

means that for the rescattering contribution the slower convergence of the fixed-s dispersion

relation is of no significance: let us assume that an important resonant contribution shows

up in a partial wave in the s-channel. This resonance will be captured by the fixed-t and

fixed-u dispersion relation (though not by the fixed-s dispersion relation). Since the full

result is given by the sum of the three dispersion relations weighted by 1/2, this behavior

7We thank Martin J. Savage for suggesting this ansatz.
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is actually expected and the absence of the resonance in the fixed-s representation does

not impact the average in the symmetric representation (2.36) (in contrast to the pion box,

where the missed S-wave contribution needs to be recovered by the higher partial waves).

Therefore, the average in the case of the pion box in table 2 should rather be regarded as a

worst-case scenario — for the convergence behavior in the case of rescattering contributions

the fixed-t and fixed-u dispersion relations are more representative.

The second important difference concerns the presence of resonances in the rescatter-

ing contribution, a feature that does not occur in the pion box. We expect the rescattering

contribution to be dominated by resonant effects, whereas the convergence behavior es-

tablished for the pion box can be understood as a weighting of the partial waves. In the

truncated partial-wave series, the resonances in the included partial waves are fully re-

produced. The approximate fulfillment of the sum rules indicates then whether neglected

higher partial waves still play an important role, to the effect that the size of the sum-rule

violations allows one to estimate the accuracy of the calculation.

4 Application: two-pion rescattering

The natural application of the partial-wave formalism developed in the main part of this

paper concerns ππ rescattering effects, which can be considered a unitarization of the pure

pion-pole LHC that defines the pion box. To isolate this contribution, it suffices to subtract

the pure pion-pole piece in the partial-wave unitarity relation, and insert for the remainder

phenomenological input for the γ∗γ∗ → ππ partial waves. The construction of such input is

by itself challenging, given that direct experimental results, at least for the doubly-virtual

case, are not expected in the near future.

In the on-shell case, available data on γγ → ππ [104–109] (in combination with γγ →
K̄K [110–116]) are now sufficient to perform a partial-wave analysis [117], but such an

approach appears unrealistic to control the dependence on the photon virtualities. However,

approaches that exploit more comprehensively the analytic properties of the amplitude,

see [54, 55, 118] for on-shell photons, can be extended towards the off-shell case with limited

data input required to determine parameters, as demonstrated for the singly-virtual process

in [56]. The essential features of the generalization towards the doubly-virtual case, i.e. the

appearance of anomalous thresholds for time-like kinematics [57] and the modifications to

tensor basis and kernel functions [28, 31], have already been laid out in previous work, but

the practical implementation involves a number of challenges: due to the strong coupling

between the ππ/K̄K channels in the isospin-0 S-wave a single-channel analysis is limited to

rather low energies [54, 56, 117, 118], assumptions for the LHC and number of subtractions

need to be carefully studied to reliably assess the sensitivity to the high-energy input in the

dispersive integrals [55], a full analysis of the generalized Roy-Steiner equations [28, 31, 55]

involves solving coupled S- and D-wave systems of various helicity projections, and last

but not least constraints on the γ∗γ∗ → ππ amplitudes from asymptotic behavior and the

sum rules derived in section 2.4.3 need to be incorporated. A full analysis along these lines

will be left for future work.
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To obtain a first estimate of rescattering effects, we concentrate on S-waves and con-

sider a further simplified system: first, we use ππ phase shifts from the inverse-amplitude

method, which reproduces the phenomenological phase shifts as well as the f0(500) prop-

erties at low energies, and in addition allows one to separate the ππ rescattering from the

K̄K channel in a well-defined manner, all while providing a reasonable extrapolation for

high energies. In addition, we restrict ourselves to a pion-pole LHC in the solution of the

Roy-Steiner equations, which has the advantage that the off-shell behavior is still described

by the pion vector form factor. In the following, we lay out the details of this calculation,

and discuss the consequences for rescattering effects in (g − 2)µ.

4.1 γ∗γ∗ → ππ helicity partial waves from the inverse-amplitude method

Unitarization within the inverse-amplitude method (IAM) [64–69] is based on the observa-

tion that elastic unitarity

Im t(s) = σπ(s)|t(s)|2 (4.1)

for a ππ partial-wave amplitude t(s) implies

Im
1

t(s)
= −σπ(s), (4.2)

which together with the chiral expansion t(s) = t2(s) + t4(s) + O(p6) and perturbative

unitarity

Im t2(s) = 0, Im t4(s) = σπ(s)|t2(s)|2, (4.3)

already concludes the naive derivation of the IAM prescription

tIAM(s) =
1

Re 1
t(s) − iσπ(s)

=

(
t2(s)

)2

t2(s)− t4(s)
. (4.4)

However, in the single-channel case the IAM approach can be justified much more

rigorously based on dispersion relations, where the only approximation involves replacing

the LHC by its chiral expansion [119]. In this way, one can also remedy the fact that the

standard IAM fails to correctly reproduce the Adler zero [120, 121], and is thus not fully

consistent with chiral symmetry. The modified form of the IAM (mIAM) becomes [119]

tmIAM(s) =

(
t2(s)

)2

t2(s)− t4(s) +AmIAM(s)
, (4.5)

where the additional term8

AmIAM(s) =

(
t2(s)

t′2(s2)

)2[ t4(s2)

(s− s2)2
− s2 − sA

(s− s2)(s− sA)

(
t′2(s2)− t′4(s2) +

t4(s2)t′′2(s2)

t′2(s2)

)]

(4.6)

ensures that the Adler zero sA = s2 + s4 +O(p6) occurs at its O(p4) position, i.e.

t2(s2) = 0, t2(s2 + s4) + t4(s2 + s4) = 0. (4.7)

8For ππ scattering the expression simplifies because t′′2 (s2) = 0 and t2(s)/t′2(s2) = s− s2.
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Figure 13. I = 0 (left) and I = 2 (right) ππ S-wave phase shifts from the IAM (black solid

line), in comparison to the Bern (red dashed line) [94, 124] and Madrid/Krakow (blue dot-dashed

line) [125] Roy-equation analyses.

This form of the IAM thus correctly describes the low-energy phase shifts as well as res-

onance properties, and has indeed been used in recent years to determine the quark-mass

dependence of σ and ρ resonances [122, 123]. For our purposes, the single-channel IAM for

ππ scattering conveniently separates the ππ channel from its mixing to K̄K in the vicinity

of the f0(980) and defines a reasonable continuation to high energies, without compromising

the low-energy physics.

We use the 1-loop IAM with low-energy constants as specified in [123], which produces

the phase shifts shown in figure 13. As expected, there is good agreement throughout,

apart from the fact that the IAM I = 0 phase shift avoids the rise related to the f0(980)

and the coupling to the K̄K channel. We also checked that the σ properties [126] are

reproduced: for the pole position we find
√
sσ = (0.443 + i0.217) GeV, to be compared

to
√
sσ = (0.441 + i0.272) GeV [127] and similar numbers from other recent dispersive

extractions [118, 128]. Accordingly, the width comes out a bit too low, as does the residue

at the pole gσππ. This deviation is consistent with earlier IAM analyses, see e.g. [122] for

the analogous calculation including the mIAM correction, and can certainly be tolerated to

obtain an estimate for the HLbL rescattering contribution, which, after all, only requires the

amplitude on the real axis, not the analytic continuation into the complex plane where the

slight discrepancy in the width would matter most. Similarly, one can check the coupling to

two photons |gσγγ/gσππ| ∼ 0.014, well in line with |gσγγ/gσππ| = 0.014 and 0.015 from [55]

and [118], respectively.

With the input for the ππ phase shifts specified, the γ∗γ∗ → ππ amplitudes follow

by solving the generalized Roy-Steiner equations derived in [28, 31] for doubly-virtual

kinematics. For the S-waves, these dispersion relations take the form (isospin indices are

suppressed for the time being)

h0,++(s) = ∆0,++(s)+
1

π

∫ ∞

4M2
π

ds′
[(

1

s′−s−
s′−q2

1−q2
2

λ12(s′)

)
Imh0,++(s′)+

2q2
1q

2
2

λ12(s′)
Imh0,00(s′)

]
,

h0,00(s) = ∆0,00(s)+
1

π

∫ ∞

4M2
π

ds′
[(

1

s′−s−
s′−q2

1−q2
2

λ12(s′)

)
Imh0,00(s′)+

2

λ12(s′)
Imh0,++(s′)

]
,

(4.8)
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with LHC singularities represented by the inhomogeneities ∆0,++(s) and ∆0,00(s). These

equations can be rewritten as

h0,++(s)±
√
q2

1q
2
2 h0,00(s) = ∆0,++(s)±

√
q2

1q
2
2 ∆0,00(s) (4.9)

+
s−
(√

q2
1∓
√
q2

2

)2

π

∫ ∞

4M2
π

ds′
Im
[
h0,++(s′)±

√
q2

1q
2
2 h0,00(s′)

]

(s′ − s)
(
s′ − (

√
q2

1 ∓
√
q2

2)2
) .

The new combinations still fulfill Watson’s theorem [129]

Im
[
h0,++(s)±

√
q2

1q
2
2 h0,00(s)

]
= sin δ0(s)e−iδ0(s)

[
h0,++(s)±

√
q2

1q
2
2 h0,00(s)

]
θ
(
s− 4M2

π

)
,

(4.10)

so that the dispersion relation reduces to a standard Muskhelishvili-Omnès (MO) prob-

lem [130, 131], whose solution reads

h0,++(s)±
√
q2

1q
2
2 h0,00(s) = ∆0,++(s)±

√
q2

1q
2
2 ∆0,00(s) (4.11)

+
Ω0(s)

(
s−

(√
q2

1 ∓
√
q2

2

)2)

π

∫ ∞

4M2
π

ds′
[
∆0,++(s′)±

√
q2

1q
2
2 ∆0,00(s′)

]
sin δ0(s′)

(s′ − s)
(
s′ − (

√
q2

1 ∓
√
q2

2)2
)
|Ω0(s′)|

,

with the Omnès function

Ω0(s) = exp

{
s

π

∫ ∞

4M2
π

ds′
δ0(s′)

s′(s′ − s)

}
. (4.12)

For convenience, we finally rewrite the result in terms of the original helicity amplitudes

according to

h0,++(s) = ∆0,++(s)

+
Ω0(s)

π

∫ ∞

4M2
π

ds′
sin δ0(s′)

|Ω0(s′)|

[(
1

s′−s−
s′−q2

1−q2
2

λ12(s′)

)
∆0,++(s′)+

2q2
1q

2
2

λ12(s′)
∆0,00(s′)

]
,

h0,00(s) = ∆0,00(s)

+
Ω0(s)

π

∫ ∞

4M2
π

ds′
sin δ0(s′)

|Ω0(s′)|

[(
1

s′−s−
s′−q2

1−q2
2

λ12(s′)

)
∆0,00(s′)+

2

λ12(s′)
∆0,++(s′)

]
.

(4.13)

For a pion-pole LHC ∆0,++(s) and ∆0,00(s) simply correspond to the partial-wave pro-

jection of the Born terms, given in appendix G, which shows that the dependence on the

virtualities, apart from the modified kernel functions in the MO solution, is still governed

by the pion vector form factor. In particular, the corresponding factor F Vπ (q2
1)F Vπ (q2

2) can

be moved out of the integrals in (4.13), so that one can simply calculate a reduced am-

plitude, with the dependence on the pion form factors fully factorized. Further, in the

solution of Roy-Steiner equations, a MO representation similar to (4.13) is often required

for the low-energy region only, in order to match to some known high-energy input, and

to this end a finite matching point is introduced [55, 132–135]. In case the amplitudes are
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Figure 14. Comparison of the γγ → ππ S-waves from this work (black solid line) to the different

subtraction schemes from [55] as indicated. Upper/lower panel: left/right corresponds to I = 0/2

and charged/neutral channel, respectively, as explained in the main text.

assumed to vanish above the matching point, it effectively acts as a cutoff both in (4.13)

and in the Omnès function. We will use this variant of the MO solution to estimate the

sensitivity to the high-energy extrapolation of the phase shifts, referring for more details

of its implementation to [55, 132].

Finally, the justification why an unsubtracted representation such as (4.13) is still

expected to provide a decent description is two-fold: first, by removing the K̄K intermedi-

ate states the Omnès functions are smoothened considerably around the nominal f0(980)

position, which eliminates most of the need for subtractions necessary otherwise in a single-

channel description to suppress the corresponding peak in the Omnès function. Second,

while in general a precision description does require subtractions [54, 55], we observe in

the on-shell case that the results particularly for the charged channel are reasonably close

to the twice-subtracted variants studied in [55], see figure 14 for a cutoff Λ = 1 GeV. The

upper panel shows the modulus |hI0,++| for isospin I = 0 and I = 2, which for the un-

subtracted IAM emerges remarkably close to the twice-subtracted variant in both cases.

However, this agreement is largely driven by the projection of the Born term, while a more

realistic picture can be obtained by considering the rotated amplitudes

|h0,++|c =
1√
3
|h0

0,++|+
1√
6
|h2

0,++|, |h0,++|n =
1√
3
|h0

0,++| −
√

2

3
|h2

0,++|, (4.14)
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and subtracting the Born term in the charged channel. In this way, we find that the

agreement is still very good for the charged combination, while the neutral channel is

less well reproduced based on the pion-pole LHC alone, see lower panel in figure 14. To

improve the quantitative agreement, the introduction of subtraction constants becomes

unavoidable. These subtraction constants can be identified with pion polarizabilities and

were taken from 2-loop ChPT [136, 137] in [55]. The agreement in the charged channel

implies that the corresponding sum rules for the subtraction constants, just based on the

pion-pole LHC, are reasonably well fulfilled, while significant corrections are expected in

the neutral channel. This interplay with the pion polarizabilities will be discussed in more

detail in section 4.3. For the moment, the fact that the dominant rescattering correction is

generated by the charged-pion intermediate states, with neutral pions first entering at three-

loop order in the chiral expansion, ensures that the Roy-Steiner solution (4.13) captures the

phenomenology of unitarity corrections to the pion-pole LHC, i.e. the rescattering effects

required to unitarize the pion-box contribution.

4.2 A first numerical estimate of the ππ-rescattering contribution to (g− 2)µ

Based on the amplitudes calculated from (4.13) we are now in the position to present a first

numerical evaluation for the S-wave ππ rescattering effects. For simplicity, we use a VMD

pion form factor, which proves to be very close to a full phenomenological determination

extrapolated from the time-like region [138], see section 3.1. Restoring isospin indices,

symmetry factors, virtualities, and subtracting the corresponding isospin projection of the

pion-pole terms NJ,λ1λ2 , the relevant imaginary parts in the HLbL integral become

Imh0,I
++,++

(
s; q2

1, q
2
2, q

2
3, 0
)

=
σπ(s)

32π

(
hI0,++(s; q2

1, q
2
2)hI0,++(s; q2

3, 0)− cIN0,++(s; q2
1, q

2
2)N0,++(s; q2

3, 0)
)
,

Imh0,I
00,++

(
s; q2

1, q
2
2, q

2
3, 0
)

=
σπ(s)

32π

(
hI0,00(s; q2

1, q
2
2)hI0,++(s; q2

3, 0)− cIN0,00(s; q2
1, q

2
2)N0,++(s; q2

3, 0)
)
, (4.15)

with isospin factors c0 = 4/3, c2 = 2/3.

The numerical results for the S-wave contribution then follow from (2.36) together with

the dispersive representation for the scalar functions derived in section 2. Since the full

integration becomes numerically costly — with the dispersion integral in (4.13), the (g−2)µ
dispersion integral, and three integrals in the master formula (2.25) this would amount to a

delicate 5-dimensional integral, wherein in addition the Omnès factor requires the numerical

evaluation of yet another integral — we calculate the γ∗γ∗ → ππ amplitudes on a three-

dimensional grid in (s, q2
1, q

2
2) and then interpolate in the remaining 4-dimensional (g− 2)µ

integration. Using up to 50 grid points in each variable the results become insensitive

to the interpolation uncertainty, and we obtain the values listed in table 3. As expected

based on the size of the phase shifts, the I = 2 contribution is much smaller than its

I = 0 counterpart, while in both cases the variation with respect to the cutoff amounts to

about one unit. Accordingly, this estimate can be interpreted as evidence for a rescattering
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cutoff 1 GeV 1.5 GeV 2 GeV ∞
I = 0 −9.2 −9.5 −9.3 −8.8

I = 2 2.0 1.3 1.1 0.9

sum −7.3 −8.3 −8.3 −7.9

Table 3. Results for the S-wave rescattering contribution to (g− 2)µ in units of 10−11. The cutoff

refers to the finite-matching-point analog of (4.13).

cutoff 1 GeV 1.5 GeV 2 GeV ∞
++,++ 6.3 6.5 6.4 6.1

I = 0 00,++ −6.8 −7.0 −6.8 −6.4

sum −0.6 −0.4 −0.4 −0.3

++,++ −1.3 −0.9 −0.7 −0.7

I = 2 00,++ 1.5 1.0 0.8 0.7

sum 0.2 0.1 0.1 0.0

Table 4. Contribution to the sum rule (2.91) from h0++,++ and h000,++ as well as their sum once

integrated over momenta and virtualities in the (g − 2)µ master formula as explained in the main

text, in units of 10−11.

contribution corresponding to f0(500) degrees of freedom of about −9×10−11 in the HLbL

contribution to (g − 2)µ.

Another check on our input for γ∗γ∗ → ππ follows from the sum rule (2.91). In

fact, it is precisely this sum rule that ensures that the S-wave rescattering contribution as

formulated in [28] and the one from section 2.5 are strictly equivalent. Furthermore, this

observation immediately suggests a way how to condense the full sum rule into a single

number: the difference between the two representations amounts to a shift in Π̂4 of the size

∆Π̂4 =
2

π

∫ ∞

4M2
π

ds′
1

(s′ − q2
3)λ12(s′)

(
2Imh0

++,++(s′)−
(
s′−q2

1−q2
2

)
Imh0

00,++(s′)
)
, (4.16)

and accordingly in Π̂5 and Π̂6 from crossing, so that the convolution in the (g − 2)µ inte-

gral should be done with the corresponding kernel function. Still subtracting the pion-pole

terms since the validity of the sum rule in sQED is already known, we find the results

for the separate contribution from h0
++,++ and h0

00,++ as listed in table 4. The expected

cancellation already works at the level of 10% with S-waves only, and even better for the

larger values of the cutoff. Such a 10% error on the actual rescattering contributions from

table 3 would yield a very similar uncertainty estimate as the variation observed from the

cutoff dependence before. In total, these results lead us to quote

aππ,π-pole LHC
µ,J=0 = −8(1)× 10−11 (4.17)

for the S-wave rescattering corrections to the pion-pole LHC.
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1 GeV 1.5 GeV 2 GeV ∞ ChPT

(α1 − β1)π
± [

10−4 fm3
]

5.4 5.8 5.8 5.7 5.7(1.0)

(α1 − β1)π
0 [

10−4 fm3
]

11.2 9.7 9.3 8.9 −1.9(2)

(α2 − β2)π
± [

10−4 fm5
]

19.9 20.1 20.0 19.9 16.2 [21.6]

(α2 − β2)π
0 [

10−4 fm5
]

28.4 27.1 26.7 26.3 37.6(3.3)

Table 5. Pion polarizabilities from the sum rules (4.19) for a pion-pole LHC and different values of

the cutoff Λ, in comparison to the chiral two-loop prediction from [136, 137]. The two numbers in the

case of the charged-pion quadrupole polarizability refer to two different sets of low-energy constants.

4.3 Role of the pion polarizabilities

The low-energy behavior of the on-shell γγ → ππ amplitudes is strongly constrained by the

pion polarizabilities, which therefore encode valuable information on the two-pion rescatter-

ing contributions to HLbL. The precise relation can be expressed in terms of the expansion

2α

Mπs
ĥ0,++(s) = α1 − β1 +

s

12
(α2 − β2) +O(s2) (4.18)

for the Born-term-subtracted on-shell amplitudes ĥ0,++ = h0,++ − N0,++. Here, α1 − β1

and α2 − β2 refer to dipole and quadrupole polarizabilities, respectively. The soft-photon

zero required as a consequence of Low’s theorem [139] ensures that ĥ0,++ indeed vanishes

for s→ 0.

Accordingly, the representation (4.13) implies the following sum rules for the pion

polarizabilities

Mπ

2α
(α1 − β1) =

[
∆0,++(s)−N0,++(s)

s

]

s=0

+
1

π

∫ ∞

4M2
π

ds′
sin δ0(s′)∆0,++(s′)

|Ω0(s′)|s′2 , (4.19)

Mπ

24α
(α2 − β2) =

[
∂

∂s

∆0,++(s)−N0,++(s)

s

]

s=0

+
1

π

∫ ∞

4M2
π

ds′
sin δ0(s′)∆0,++(s′)

|Ω0(s′)|s′2
(

Ω̇0(0)+
1

s′

)
,

where Ω̇0(0) denotes the derivative of the Omnès factor at s = 0 and the first term in each

line disappears for a pion-pole LHC.

The numerical evaluation for ∆0,++ = N0,++, see table 5, confirms the observation

from section 4.1 that the charged-pion amplitude is better reproduced than its neutral-

pion analog. In fact, the charged-pion dipole polarizability comes out in perfect agreement

with ChPT [137], as well as with the recent measurement by COMPASS (α1 − β1)π
±

=

4.0(1.2)stat(1.4)syst × 10−4 fm3 [140]. The quadrupole polarizability is more sensitive to

poorly-determined low-energy constants, but the sum-rule value lies within the range

quoted in [137] and is also close to (α2 − β2)π
±

= 15.3(3.7)× 10−4 fm5 obtained in [55] by

combining the more stable chiral prediction for the neutral-pion quadrupole polarizability

with a finite-matching-point sum rule for I = 2.

In contrast, both neutral-pion polarizabilities differ by about 10 units each from the full

result, a deficiency that signals the impact of higher contributions to the LHC, as we will
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demonstrate in the following. The next such contribution is generated by the exchange

of vector-meson resonances V = ρ, ω, whose impact can be roughly estimated within a

narrow-width approximation. Starting from a vector-pion-photon coupling of the form

LV πγ = eCV ε
µνλσFµν∂λπVσ, (4.20)

with coupling constant related to the partial width according to

ΓV→πγ = αC2
V

(M2
V −M2

π)3

6M3
V

, (4.21)

we obtain [54, 141]

∆V
0,++(s) = 2C2

V

[
− M2

V

σπ(s)
log

xV (s) + 1

xV (s)− 1
+ s

]
, xV (s) =

s+ 2(M2
V −M2

π)

sσπ(s)
. (4.22)

Unfortunately, the polynomial piece ∝ s is ambiguous and would even appear with a

different sign in an antisymmetric-tensor description of the vector-meson fields [54, 142]. It

is for this reason that in a full Roy-Steiner approach only the imaginary parts are employed,

while the low-energy parameters enter via subtraction constants. However, in order to

predict the numerical values of the polarizabilities in terms of the lowest contributions to

the LHC in γγ → ππ we do need the full amplitude in (4.22). Parameterizing the ambiguity

according to s→ ξV s, we find

Mπ

2α
(α1 − β1)V = 2C2

V

[
ξV −

M2
V

M2
V −M2

π

]
,

Mπ

24α
(α2 − β2)V = C2

V

M2
V (3M2

V −M2
π)

3(M2
V −M2

π)3
.

(4.23)

Adding ρ, ω contributions using masses and partial widths from [143], the quadrupole

polarizabilities are shifted by (α2−β2)π
±
V = 0.9×10−4 fm5 and (α2−β2)π

0

V = 10.3×10−4 fm5,

which explains how vector-meson contributions can restore agreement with ChPT for the

neutral pion without spoiling the charged channel. In fact, the hierarchy can be attributed

almost exclusively to the large ω → π0γ branching fraction

ΓωBR[ω → π0γ] + ΓρBR[ρ0 → π0γ]

ΓρBR[ρ± → π±γ]
∼ 12, (4.24)

which ensures that the same mechanism applies for the dipole polarizability as well.

In any case, such corrections are not contained in our estimate (4.17), but at least at

the on-shell point the impact is expected to be moderate due to the fact that the charged-

pion intermediate states are most important. In particular, the physics related to the

low-energy constants l̄6 − l̄5, which appear at two-loop level in the chiral expansion for

the HLbL tensor [48], only contribute to the charged-pion polarizability (a more detailed

comparison to ChPT is provided in appendix H). Our calculation therefore demonstrates

in a model-independent way that such next-to-leading-order corrections are moderate in

size, in agreement with [50], but in contradiction to the large corrections suggested in [49].

This conclusively settles the role of the charged-pion dipole polarizability in the HLbL

contribution to (g − 2)µ.
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5 Conclusions

In this paper we presented an in-depth derivation of the general formalism required for

the analysis of two-pion-intermediate-state contributions to HLbL scattering in (g − 2)µ.

As a first step we gained a detailed understanding of the properties of the HLbL tensor,

including its decomposition into scalar functions, projection onto helicity amplitudes, and

the relation between the different sets we needed to introduce in the course of our derivation,

see table 1. Some of the more subtle issues that arose in this derivation are related to the

fact that, in order to write down dispersion relations for the HLbL tensor, we had to start

with a redundant set of functions. At first sight, the relation between the latter and the

physically observable helicity amplitudes seems to suffer from ambiguities. To show that

this arbitrariness is only apparent we invoked a set of sum rules, which follow from a simple

assumption on the asymptotic behavior of the HLbL tensor. These sum rules allowed us

to construct a basis for kinematics with one single on-shell photon (singly-on-shell) that

satisfies unsubtracted dispersion relations. In addition they lead to physically relevant

sum rules that constrain the helicity amplitudes for γ∗γ∗ → ππ. After working out the

basis change from the singly-on-shell basis to helicity amplitudes, we combined this general

formalism with a partial-wave expansion to address two-pion-rescattering contributions.

In a second step we thoroughly tested our formalism using the example of the pion

box, whose full result is known thanks to an exact relation to the scalar QED pion loop

we established earlier. In particular, we demonstrated that the sum rules that follow from

our assumptions on the asymptotic behavior of the HLbL tensor are fulfilled. Moreover we

studied whether the partial-wave expansion of the pion box converges to the full answer

after resummation, and demonstrated that it does so sufficiently quickly. Given that the

pion-box contribution can be expressed exactly in terms of the pion vector form factor —

much as the HVP contribution of two pion intermediate states is completely determined

by this form factor — we showed that by fitting a dispersive representation of the pion

vector form factor to a combination of space- and time-like data, the space-like form factor

required for the HLbL application can be constrained to a very high precision, leading to

aπ-box
µ = −15.9(2)× 10−11 for the pion-box contribution.

The main motivation for developing a partial-wave framework is to be able to calcu-

late rescattering corrections, since only in a partial-wave basis for helicity amplitudes do

unitarity relations become diagonal. Accordingly, as a first application of the formalism

developed here we studied the unitarization of the pion box, a correction whose evaluation

requires the use of partial-wave amplitudes. Concentrating on S-wave ππ-rescattering ef-

fects, we presented a first numerical estimate, which, together with the pion-box evaluation,

combines to

aπ-box
µ + aππ,π-pole LHC

µ,J=0 = −24(1)× 10−11 (5.1)

for the leading two-pion contributions to (g − 2)µ. The improvement in accuracy with

respect to previous model-dependent analyses is striking. It derives: (i) from our model-

independent approach based on dispersion relations that allows us to express this contri-

bution, in a rigorous way, in terms of hadronic observables, and (ii) from the fact that

all quantities needed in this calculation (the pion vector form factor and the ππ S-wave
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phase shifts) are very well known. Remaining two-pion contributions that have not been

addressed yet are likely to lead to larger uncertainties, but given that the error quoted

in (5.1) lies an order of magnitude below the experimental accuracy goal, we are confident

that the final estimate for the total HLbL contribution should be sufficiently accurate to

make these measurements of (g − 2)µ a sensitive test of the Standard Model.

Many of the technical advances described here are not specific to the two-pion interme-

diate state but completely general and thus lay the groundwork for a full phenomenological

analysis of HLbL scattering. Armed with these, we are now poised to study other contri-

butions and apply further refinements to the numerical analysis of the two-pion channel

and beyond.
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A Transformed tensor decomposition for the contribution to (g − 2)µ

For the calculation of (g− 2)µ, we make a linear transformation of the BTT tensor decom-

position:

Πµνλσ =

54∑

i=1

Tµνλσi Πi =

54∑

i=1

T̂µνλσi Π̂i. (A.1)

Only 19 of the new structures T̂µνλσi contribute to (g−2)µ, which is the minimal number of

independent contributions in the (g− 2)µ kinematic limit. The symmetry under q1 ↔ −q2

reduces this to 12 terms in the master formula.

A.1 Tensor structures

Here, we give the tensor structures T̂µνλσi explicitly in terms of the BTT structures [31]. The

19 structures contributing to (g − 2)µ are defined in (2.13). The remaining 35 structures,

which do not contribute to (g − 2)µ, are defined by

T̂µνλσi = Tµνλσi , i=12, 15, 18, 23, 24, 27, 28, 29, 30, 32, 35, 36, 37, 38, 41, 44, 45, 48, 49, 52, 53,

T̂µνλσ19 = q1 · q3T
µνλσ
4 + Tµνλσ7 + Tµνλσ19 ,

T̂µνλσ31 = −q1 · q3q2 · q3T
µνλσ
4 − q2 · q3T

µνλσ
7 − q1 · q3T

µνλσ
8 + Tµνλσ31 ,

T̂µνλσ40 = Tµνλσ40 − Tµνλσ39 ,

T̂µνλσ42 = −q1 · q3(Tµνλσ2 + Tµνλσ4 + Tµνλσ6 )− Tµνλσ11 + Tµνλσ16 − Tµνλσ17

+ Tµνλσ42 − Tµνλσ51 − Tµνλσ54 , (A.2)
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together with the crossed structures

T̂µνλσ20 = C12[T̂µνλσ19 ], T̂µνλσ21 = C23[T̂µνλσ19 ], T̂µνλσ22 = C23[C12[T̂µνλσ19 ]],

T̂µνλσ25 = C12[C23[T̂µνλσ19 ]], T̂µνλσ26 = C13[T̂µνλσ19 ],

T̂µνλσ33 = C23[T̂µνλσ31 ], T̂µνλσ34 = C13[T̂µνλσ31 ],

T̂µνλσ46 = C13[T̂µνλσ40 ],

T̂µνλσ43 = C12[T̂µνλσ42 ], T̂µνλσ47 = C23[T̂µνλσ42 ].

(A.3)

A.2 Scalar functions

In terms of the BTT functions Πi, the transformed scalar functions Π̂i that contribute to

(g − 2)µ are defined in (2.15) and (2.16). The ones that do not contribute to (g − 2)µ are

given by:

Π̂i = Πi, i = 12, 15, 18, . . . , 38, 41, . . . , 45, 47, 48, 49, 52, 53,

Π̂40 =
1

3
(−Π39 + 2Π40 −Π46) , Π̂46 = C13[Π̂40].

(A.4)

B New kernel functions for the master formula

Compared to [31], we choose a different basis for the Lorentz structures contributing to

(g − 2)µ in order to preserve crossing symmetry between all three off-shell photons. This

modifies slightly the kernel functions in the master formula (2.21).

The kernel functions T1, . . ., T9 are identical to the ones in [31], while T10 = 1
2T

[31]
10 . For

completeness, here we provide the full set of the new kernels, superseding section E.2 in [31]:

T1 =
Q2

1τ
(
σE1 − 1

) (
σE1 + 5

)
+Q2

2τ
(
σE2 − 1

) (
σE2 + 5

)
+ 4Q1Q2

(
σE1 + σE2 − 2

)
− 8τm2

µ

2Q1Q2Q2
3m

2
µ

+X

(
8
(
τ2 − 1

)

Q2
3

− 4

m2
µ

)
,

T2 =
Q1

(
σE1 − 1

) (
Q1τ

(
σE1 + 1

)
+ 4Q2

(
τ2 − 1

))
− 4τm2

µ

Q1Q2Q2
3m

2
µ

+X
8
(
τ2 − 1

) (
2m2

µ −Q2
2

)

Q2
3m

2
µ

,

T3 =
1

Q2
3

(
− 2

(
σE1 + σE2 − 2

)

m2
µ

− Q1τ
(
σE1 − 1

) (
σE1 + 7

)

2Q2m2
µ

+
8τ

Q1Q2

− Q2τ
(
σE2 − 1

) (
σE2 + 7

)

2Q1m2
µ

+
Q2

1

(
1− σE1

)

Q2
2m

2
µ

+
Q2

2

(
1− σE2

)

Q2
1m

2
µ

+
2

Q2
1

+
2

Q2
2

)

+X

(
4

m2
µ

− 8τ

Q1Q2

)
,

T4 =
1

Q2
3

(
4
(
τ2
(
σE1 − 1

)
+ σE2 − 1

)

m2
µ

− Q1τ
(
σE1 − 5

) (
σE1 − 1

)

Q2m2
µ

+
4τ

Q1Q2

− Q2τ
(
σE2 − 3

) (
σE2 − 1

)

Q1m2
µ

+
2Q2

2

(
σE2 − 1

)

Q2
1m

2
µ

− 4

Q2
1
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+X

(
−8Q2

2τ
2

m2
µ

− 16Q2Q1τ

m2
µ

− 8Q2
1

m2
µ

+
16Q2τ

Q1
+ 16

))
,

T5 =
1

Q2
3

(
Q2

1

(
τ2
(
σE1 −1

) (
σE1 +3

)
+4
(
σE1 +σE2 −2

)

2m2
µ

− 4

Q2
2

)
−Q

2
2τ

2
(
σE2 −5

) (
σE2 −1

)

2m2
µ

+
Q3

1τ
(
σE1 − 1

) (
σE1 + 5

)

Q2m2
µ

+Q1

(
Q2τ

(
σE1 + 5σE2 − 6

)

m2
µ

− 12τ

Q2

)
+

2Q4
1

(
σE1 − 1

)

Q2
2m

2
µ

− 4τ2 +X

(
Q1

(
8Q2

(
τ3 + τ

)
− 2Q3

2τ

m2
µ

)
+Q2

1

(
32τ2 − 4Q2

2

(
τ2 + 1

)

m2
µ

)

+Q3
1

(
16τ

Q2
− 10Q2τ

m2
µ

)
− 4Q4

1

m2
µ

))
,

T6 =
1

Q2
3

(
Q2

1

(
τ2
((
σE1 − 22

)
σE1 − 8σE2 + 29

)
+ 2

(
−5σE1 + σE2 + 4

))

2m2
µ

+Q1



Q2τ

(
2τ2

((
σE2 − 3

)2 − 4σE1

)
− 26σE1 + σE2

(
σE2 − 12

)
+ 37

)

2m2
µ

− 4τ

Q2




+
Q2

2

(
τ2
(
−8σE1 +σE2

(
5σE2 −26

)
+29

)
−4
(
σE1 +2σE2 −3

))

2m2
µ

+
Q3

1τ
(
σE1 −9

) (
σE1 −1

)

2Q2m2
µ

+
Q3

2τ
(
σE2 − 9

) (
σE2 − 1

)

Q1m2
µ

+
8Q2τ

Q1
+

2Q4
2

(
1− σE2

)

Q2
1m

2
µ

+
4Q2

2

Q2
1

+X

(
Q2Q

3
1

(
8τ3 + 22τ

)

m2
µ

+
Q4

1

(
8τ2 − 2

)

m2
µ

+Q2
1

(
Q2

2

(
36τ2 + 18

)

m2
µ

− 8
(
τ2 + 1

)
)

+
Q4

2

(
8τ2 + 4

)

m2
µ

+Q1

(
Q3

2

(
8τ3 + 34τ

)

m2
µ

− 8Q2τ
(
τ2 + 5

)
)

− 16Q2
2

(
2τ2 + 1

)
− 16Q3

2τ

Q1

))
,

T7 =
1

Q2
3

(
Q2

1

(
2
(
σE1 + σE2 − 2

)
− τ2

((
σE1 + 10

)
σE1 + 8σE2 − 19

))

2m2
µ

+Q1

(
Q2τ

(
2τ2

(
σE2 − 5

) (
σE2 − 1

)
− 2σE1 + σE2

(
σE2 + 4

)
− 3
)

2m2
µ

− 4τ

Q2

)

+
Q2

2τ
2
(
σE2 − 5

) (
σE2 − 1

)

2m2
µ

+
Q3

1τ
(
σE1 − 9

) (
σE1 − 1

)

2Q2m2
µ

+ 4τ2

+X

(
Q2Q

3
1

(
8τ3 + 6τ

)

m2
µ

+Q1

(
2Q3

2τ

m2
µ

− 8Q2

(
τ3 + τ

))

+
Q4

1

(
8τ2 − 2

)

m2
µ

+Q2
1

(
2Q2

2

(
6τ2 − 1

)

m2
µ

− 8
(
τ2 + 1

)
)))

,
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T8 =
1

Q2
3

(
Q2

1

(
4

Q2
2

− 2
(
2τ2+1

) (
σE1 +σE2 −2

)

m2
µ

)
+Q1

(
4τ

Q2
− 4Q2τ

(
τ2+1

) (
σE2 −1

)

m2
µ

)

− 6Q3
1τ
(
σE1 − 1

)

Q2m2
µ

+
Q4

1

(
2− 2σE1

)

Q2
2m

2
µ

+X

(
Q4

1

(
8τ2+4

)

m2
µ

+Q3
1

(
8Q2τ

(
τ2+2

)

m2
µ

− 16τ

Q2

)
+Q2

1

(
Q2

2

(
8τ2+4

)

m2
µ

−16τ2

)))
,

T9 = Q2
3

(
σE1 − 1

Q2
2m

2
µ

+
σE2 − 1

Q2
1m

2
µ

− 2

Q2
1Q

2
2

)
+X

(
−2Q2

3

m2
µ

+
8Q2τ

Q1
+

8Q1τ

Q2
+ 8

(
τ2 + 1

))
,

T10 =
1

2Q2
3

(
− Q2

1

(
τ2
(
σE1 − 1

) (
σE1 + 3

)
+ 2

(
σE1 + σE2 − 2

))

m2
µ

− Q3
2τ
(
σE2 − 1

) (
σE2 + 3

)

Q1m2
µ

− Q2
2

(
τ2
(
σE2 − 1

) (
σE2 + 3

)
+ 2

(
σE1 + σE2 − 2

))

m2
µ

− Q3
1τ
(
σE1 − 1

) (
σE1 + 3

)

Q2m2
µ

+Q1

(
8τ

Q2
− Q2τ

((
σE1 + 4

)
σE1 + σE2

(
σE2 + 4

)
− 10

)

m2
µ

)
+

8Q2τ

Q1

+ 8τ2 +X
(
−16Q2

1

(
τ2 − 1

)
− 16Q2Q1τ

(
τ2 − 1

)
− 16Q2

2

(
τ2 − 1

))
)

+
X

2

(
4Q2Q1τ

m2
µ

+
4Q2

1

m2
µ

+
4Q2

2

m2
µ

)
,

T11 =
1

2m2
µQ1Q2

2Q
2
3

(
Q5

2τ
(
−6σE2 + σE2

2
+ 5
)

+ 8Q5
1

(
−σE1 + 2Q2

2

(
τ2 + 1

)
X + 1

)

+ 4Q2Q
4
1τ
(
−7σE1 + 2Q2

2

(
2τ2 + 9

)
X + 7

)

+ 4Q2
2Q

3
1

(
2τ2

(
−3σE1 − σE2 + 8Q2

2X + 4
)
− 2

(
σE1 + σE2 − 2

)
+ 5Q2

2X
)

+Q3
2Q

2
1τ
(

8τ2
(
−σE1 − σE2 + 2Q2

2X + 2
)
− 6σE1 − σE1

2 − 28σE2 + 16Q2
2X + 35

)

+ 2Q4
2Q1

(
τ2
(
−10σE2 + σE2

2
+ 9
)
− σE1 − 3σE2 + 2Q2

2X + 4
)

− 8m2
µ

(
−Q3

2τ + 2Q3
1

(
2Q2

2

(
4τ2X +X

)
− 1
)

+Q2Q
2
1τ
(
4Q2

2

(
τ2 + 3

)
X − 5

)

+Q2
2Q1

(
2τ2

(
Q2

2X − 1
)

+ 2Q2
2X − 1

)
+ 8Q2Q

4
1τX

))
,

T12 =
1

4m2
µQ1Q2Q2

3

(
Q2

2τ
(
−Q2

3σ
E
2

2
+Q2

2

(
6σE2 − 5

)
− 8m2

µ

)

− 2Q2Q
3
1

(
τ2
(
2σE1 + 8Xm2

µ − 1
)
− 3σE1 + σE2 + 8Xm2

µ + 2
)

+Q2
1τ
(
−2Q2

2

(
4τ2 − 5

) (
σE1 − σE2

)
+Q2

3σ
E
1

2
+ 8m2

µ + 8Q4
2

(
2τ2 − 3

)
X
)

+ 2Q3
2Q1

(
τ2
(
2σE2 + 8Xm2

µ − 1
)

+ σE1 − 3σE2 + 8Xm2
µ − 2Q2

2X + 2
)

+Q4
1τ
(
−6σE1 − 8Q2

2

(
2τ2 − 3

)
X + 5

)
+ 4Q2Q

5
1X

)
, (B.1)

– 57 –



J
H
E
P
0
4
(
2
0
1
7
)
1
6
1

where

X =
1

Q1Q2x
atan

(
zx

1− zτ

)
, x =

√
1− τ2,

z =
Q1Q2

4m2
µ

(1− σE1 )(1− σE2 ), σEi =

√
1 +

4m2
µ

Q2
i

,

Q2
3 = Q2

1 + 2Q1Q2τ +Q2
2.

(B.2)

C Feynman-parameter representation of the pion box

In the limit q4 → 0, the pion-box contribution to the scalar functions that appear in the

master formula can be written as a two-dimensional Feynman parameter integral:

Π̂π-box
i (q2

1, q
2
2, q

2
3) = F Vπ (q2

1)F Vπ (q2
2)F Vπ (q2

3)
1

16π2

∫ 1

0
dx

∫ 1−x

0
dy Ii(x, y), (C.1)

where

I1(x, y) =
8xy(1− 2x)(1− 2y)

∆123∆23
,

I4(x, y) =
4(1− x− y)(1− 2x− 2y)∆21

∆2
321

(
(1− 2x− 2y)2

∆321
− 1− x(3− 2x)− y(3− 2y)

∆21

)

+
16xy(1− 2x)(1− 2y)

∆321∆21
,

I7(x, y) = −8xy(1− x− y)(1− 2x)2(1− 2y)

∆3
123

,

I17(x, y) =
16xy2(1− 2x)(1− 2y)

∆123∆23

(
1− x− y

∆123
+

1− y
∆23

)
,

I39(x, y) =
8xy(1− x− y)(1− 2x)(1− 2y)(1− 2x− 2y)

∆3
123

,

I54(x, y) = −8xy(1− x− y)(1− 2x)(1− 2y)(x− y)

∆321∆21

(
1

∆321
+

1

∆21

)
, (C.2)

and

∆ijk = M2
π − xyq2

i − x(1− x− y)q2
j − y(1− x− y)q2

k,

∆ij = M2
π − x(1− x)q2

i − y(1− y)q2
j .

(C.3)

The remaining functions entering the master formula can be obtained with the crossing

relations (2.16).

D Scalar functions for the two-pion dispersion relations

Here, we give the explicit solution for the scalar functions Π̌i, which fulfill unsubtracted

single-variable dispersion relations and only depend on physical helicity amplitudes. First,
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we define the following linear combinations of BTT functions:

ΠA := Π47 + Π49 −Π51,

ΠB := Π41 −Π42 + Π45,

ΠC := Π38 + Π47 −Π51 + Π52,

ΠD := Π27 −Π28 − 2Π49 + 2Π52 − 2Π53,

ΠE := Π41 −Π45,

ΠF := Π42 −Π45 −Π53,

ΠG := Π15 + Π16 −Π24 −Π27 −Π28 + Π38 + Π47 −Π52 + Π54,

ΠH := Π12 + Π41 + Π53,

ΠI := 4Π16 + Π23 − 4Π27 −Π30 + Π37 + Π38 + Π41 + 2Π42 + Π43 −Π45 + Π47 + Π49

+ 3Π51 − 7Π52 + 6Π53 + 3Π54,

ΠJ := Π23 + Π30 −Π37 −Π38 −Π41 + 2Π42 −Π43 −Π45 −Π47 −Π49+Π51 −Π52+Π54,

ΠK := Π50 −Π51 + Π54, (D.1)

as well as Πc
i := C13

[
Πi

]
.

The 19 functions that contribute to (g − 2)µ can be written in the form (for q2
4 = 0

and t = q2
2)

Π̌i = Π̂gi + (s− q2
3)∆̄i + (s− q2

3)2 ¯̄∆i, (2.62)

where {gi} = {1, . . . , 11, 13, 14, 16, 17, 39, 50, 51, 54},

∆̄1 = −1

2
ΠA +

q2
2q123

λ123
ΠB +

q2
123

2λ123
ΠC −

q2
2q312

λ123
Πc
C ,

∆̄2 = −Σq312(q2
1 − q2

3)

2λ123(q2
1 + q2

3)
ΠB −

Σq312(2q2
1 + q312)

4λ123(q2
1 + q2

3)
ΠC +

Σq312(2q2
3 + q312)

4λ123(q2
1 + q2

3)
Πc
C

− q312

4(q2
1 + q2

3)
ΠD −

Σ

4(q2
1 + q2

3)
ΠE +

Σq312(q2
2 + 2q312)

4λ123(q2
1 + q2

3)
ΠK ,

∆̄3 = −C13

[
∆̄1

]
,

∆̄4 =
1

2
Πc
A +

q231(q2
1 − q2

2)

λ123
ΠB −

q312(q2
1 − q2

2)

λ123
ΠC +

2q2
3(q2

1 − q2
2)

λ123
Πc
C −

1

2
ΠF −

q2
2q312

λ123
ΠK ,

∆̄5 = −1

2
ΠA+

1

2
Πc
A+

2q2
2(q2

1−q2
3)

λ123
ΠB+

(
1

2
+
q2

2(q312+2q2
1)

λ123

)
ΠC−

(
1

2
+
q2

2(q312+2q2
3)

λ123

)
Πc
C

+
q312(2q312 + q2

2)Σ

4λ123(q2
1 + q2

3)
ΠK ,

∆̄6 = −C13

[
∆̄4

]
,

∆̄11 = −∆̄15 = −∆̄17 = − 2q2
2

λ123
ΠB −

q123

λ123
ΠC −

q231

λ123
Πc
C ,

∆̄14 = − Σ(q2
1−q2

3)

λ123(q2
1 +q2

3)
ΠB−

Σ(q312+2q2
1)

2λ123(q2
1 +q2

3)
ΠC+

Σ(q312+2q2
3)

2λ123(q2
1 +q2

3)
Πc
C−

1

2(q2
1 +q2

3)
(ΠD−ΠE) ,

∆̄18 =
q123

λ123
ΠB +

2q2
1

λ123
ΠC −

q312

λ123
Πc
C ,

∆̄19 = −C13

[
∆̄18

]
, (D.2)
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and

¯̄∆2 =
q2

2

4(q2
1 + q2

3)
Π36,

¯̄∆14 = − 1

2(q2
1 + q2

3)
Π36. (D.3)

All other ∆̄i and ¯̄∆i are zero. We use the abbreviations qijk := q2
i +q2

j −q2
k, Σ = q2

1 +q2
2 +q2

3,

and λ123 := λ(q2
1, q

2
2, q

2
3) for the Källén function.

We define five additional scalar functions Π̌i that appear in sum rules:

Π̌20 := q312ΠG − q231ΠH +
q312(s− q2

1 − q2
2)

2
Π35 +

q123q231

2
Π36,

Π̌21 := C13

[
Π̌20

]
,

Π̌22 := λ123Π23 − 2q2
3q123ΠB − q2

312ΠC + 2q2
3q312Πc

C + λ123Πc
F ,

Π̌23 := C13

[
Π̌23

]
,

Π̌24 := q2
1ΠI + q2

2ΠJ + q2
3Πc

I − 2(q2
1 − q2

3)(s− q2
3)Π36.

(D.4)

The singly-on-shell basis consists of 27 elements. The three functions Π̌25, Π̌26, and Π̌27

are not given explicitly as they have no significance in the connection with (g − 2)µ.

E Basis change and sum rules

E.1 Unphysical polarizations

In the following, we explain why unphysical polarizations are not trivially absent in any

representation. In short, although unphysical polarizations cannot contribute to any ob-

servable, the absence of such unphysical contributions is manifest only if the basis is well

chosen. Otherwise, their apparent contribution vanishes only due to the presence of sum

rules for the scalar functions.

Suppose we have a decomposition of the HLbL tensor into a “physical” and an “un-

physical” piece,

Πµνλσ = Πµνλσ
phys + Πµνλσ

unph =
∑

i

Tµνλσi,physΠ
phys
i +

∑

i

Tµνλσi,unphΠunph
i , (E.1)

where the scalar functions Πphys
i are linear combinations of helicity amplitudes with only

transverse polarizations of the external photon. The scalar functions Πunph
i contain also

contributions from the longitudinal polarization. Because these scalar functions cannot

contribute to an observable, the unphysical tensor structures have to fulfill

Tµνλσi,unph ∝ qσ4 , q2
4. (E.2)

Such structures do not contribute to (g − 2)µ, because the derivative with respect to qρ4
either vanishes for q4 → 0 or is symmetric in ρ↔ σ.

Next, we apply the following transformation, which mixes the physical and unphysi-

cal part:

Tµνλσa,physΠ
phys
a + Tµνλσb,unphΠunph

b = Tµνλσa,phys

(
Πphys
a + αΠunph

b

)
+
(
Tµνλσb,unph − αT

µνλσ
a,phys

)
Πunph
b .

(E.3)
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Because not all tensor structures have the same mass dimension, the coefficient α can be di-

mensionful, e.g. α = q3·q4 if the mass dimension of Tµνλσb,unph is larger by two units than the one

of Tµνλσa,phys, all while avoiding kinematic singularities. The new structure
(
Tµνλσb,unph − αT

µνλσ
a,phys

)

still cannot contribute to (g− 2)µ if α ∝ q4. However, we have introduced a new combina-

tion of unphysical and physical helicity amplitudes into the scalar coefficient functions of

Tµνλσa,phys. If we make such a transformation in the discontinuity appearing in an s-channel

dispersion integral, the factor α = q3 · q4 becomes in the (g − 2)µ limit

q3 · q4 → −
1

2
(s′ − q2

3), (E.4)

where we have replaced the Mandelstam variable s by the integration variable of the dis-

persion integral s′. This factor cancels with the Cauchy kernel 1/(s′ − q2
3), producing an

apparent polynomial contribution that depends on both physical and unphysical helicity

amplitudes. As shown in section 2.3 this polynomial contribution actually vanishes due to

sum rules, but in practice it can be tedious to identify the combination of physical and

unphysical helicity amplitudes that corresponds to this vanishing polynomial, and, worse,

in a partial-wave expansion these sum rules are only fulfilled after resumming all partial

waves. Since the above example implies that setting by hand only the unphysical polar-

izations to zero leads to a wrong result, a practical implementation requires a basis where

this contribution is manifestly absent from the beginning. The construction of this basis

is performed in section 2.4.1.

E.2 Comparison to forward-scattering sum rules

In [63], sum rules have been derived for the case of forward HLbL scattering. In the

following, we compare them to our fixed-t sum rules derived in section 2.4.3. To this end,

we consider the case of general forward kinematics, i.e.

q3 = −q1, q4 = q2, (E.5)

which implies for the Lorentz invariants

t = 0, u = 2q2
1 + 2q2

2 − s, q2
3 = q2

1, q2
4 = q2

2. (E.6)

The common limit of forward and singly-on-shell fixed-t kinematics is obtained for q2
2 → 0.

It is convenient to define the variable [144]

ν := q1 · q2 =
1

4
(s− u). (E.7)

In the case of forward scattering, only eight independent helicity amplitudes exist [144].

Consistently, starting with the BTT decomposition (2.7) and taking the limit of forward

kinematics, only eight independent Lorentz structures survive. Interestingly, the two am-

biguities in four space-time dimensions [58] disappear, but even for forward kinematics one

redundancy of Tarrach’s type remains [52]. Therefore, the forward HLbL tensor can be

written as

Πµνλσ
FW =

9∑

i=1

Tµνλσi,FW ΠFW
i , (E.8)

– 61 –



J
H
E
P
0
4
(
2
0
1
7
)
1
6
1

where the tensor structures are given by

Tµνλσ1,FW =
1

2

(
Tµνλσ1 +Tµνλσ3

)
, Tµνλσ2,FW = Tµνλσ5 ,

Tµνλσ3,FW =
1

2

(
Tµνλσ4 +Tµνλσ6

)
, Tµνλσ4,FW =

1

2

(
Tµνλσ9 +Tµνλσ10

)
,

Tµνλσ5,FW =
1

2

(
Tµνλσ15 +Tµνλσ16

)
, Tµνλσ6,FW =

1

4

(
Tµνλσ49 +Tµνλσ51 +Tµνλσ52 +Tµνλσ54

)
,

Tµνλσ7,FW =
1

2

(
Tµνλσ4 −Tµνλσ6

)
, Tµνλσ8,FW =

1

2

(
Tµνλσ1 −Tµνλσ3 −Tµνλσ4 +Tµνλσ6

)
,

Tµνλσ9,FW =
1

4

(
Tµνλσ19 −Tµνλσ24 −Tµνλσ26 +Tµνλσ29

)
,

(E.9)

with BTT structures on the right-hand side of the equations evaluated in the limit (E.5).

The redundancy reads

ν Tµνλσ6,FW + q2
1q

2
2 T

µνλσ
7,FW = 0. (E.10)

In terms of the BTT functions, the forward scalar functions are given by

ΠFW
1 = Π1 + Π3 − ν

(
Π49 −Π51 −Π52 + Π54

)
,

ΠFW
2 = Π5 − ν

(
Π49 −Π51 −Π52 + Π54

)
,

ΠFW
3 = Π4 + Π6 + q2

1

(
Π7 + Π11 + Π13 + Π17

)
+ q2

2

(
Π8 + Π12 + Π14 + Π18

)

− q2
1q

2
2

(
Π31+Π32+Π34+Π35

)
+ν
(
Π20−Π23−Π25+Π30−Π49+Π51+Π52−Π54

)
,

ΠFW
4 = Π9 + Π10 −Π21 −Π22,

ΠFW
5 = Π15 + Π16 −Π27 −Π28,

ΠFW
6 = −1

2

(
Π19 + Π24 + Π26 + Π29

)
− ν

2

(
Π31 + Π32 −Π34 −Π35

)

−Π37−Π38−Π40−Π43−Π44−Π46−Π47−Π48+Π49+Π51+Π52+Π54,

ΠFW
7 = Π1−Π3+Π4−Π6+ν

(
Π20+Π23+Π25+Π30

)
+q2

1

(
Π7−Π11−Π13+Π17−2Π50

)

+ q2
2

(
Π8 −Π12 −Π14 + Π18 − 2Π53

)
+ q2

1q
2
2

(
−Π31 −Π32 + Π34 + Π35

)
,

ΠFW
8 = Π1−Π3−

ν

2

(
Π19+Π24+Π26+Π29−2

(
Π37+Π38+Π40+Π43+Π44+Π46+Π47+Π48

))

− ν2

2

(
Π31 + Π32 −Π34 −Π35

)
,

ΠFW
9 = Π19 −Π24 −Π26 + Π29 + 2

(
Π49 −Π51 −Π52 + Π54

)
+ ν
(
Π31 + Π32 + Π34 + Π35

)
.

(E.11)

The functions ΠFW
i are even in ν for i = 1, . . . , 6 and odd for i = 7, 8, 9, which corresponds

to the crossing symmetries C13 or C24. We further have C12

[
C34

[
ΠFW

4

]]
= ΠFW

5 , while the

other seven functions are invariant under this transformation. According to our assumption

for the asymptotic behavior (2.39), all the functions ΠFW
i fulfill an unsubtracted dispersion

relation. Note, however, that due to the redundancy (E.10) ΠFW
6,7 enter in observables only

in the linear combination

q2
1q

2
2 ΠFW

6 − ν ΠFW
7 , (E.12)
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which requires a once-subtracted dispersion relation. The subtraction constant vanishes in

the quasi-real limit of one of the photons.

With our assumption for the asymptotic behavior, we find three physical sum rules:
∫
dν Im ΠFW

i (ν) = 0, i = 4, 5, 9. (E.13)

Due to the symmetry in ν, the first two are trivially fulfilled: the integrals over the left-

and right-hand cuts cancel. This leaves a single sum rule involving ΠFW
9 .

Next, we consider the basis change to helicity amplitudes. The eight forward-scattering

amplitudes are given by [63, 144]

HFW
1 := H++,++ +H+−,+−, HFW

2 := H++,−−, HFW
3 := H00,00,

HFW
4 := H+0,+0, HFW

5 := H0+,0+, HFW
6 := H++,00 +H+0,0−,

HFW
7 := H++,++ −H+−,+−, HFW

8 := H++,00 −H+0,0−, (E.14)

where the first six are even, the last two are odd in ν. With our conventions for the

polarization vectors, they are related to the scalar functions (E.11) by

HFW
1 = −(ν2 − q2

1q
2
2)ΠFW

1 − 2q2
1q

2
2ΠFW

2 − ν2ΠFW
3 − 2ν2q2

1ΠFW
4 − 2ν2q2

2ΠFW
5 − νq2

1q
2
2ΠFW

9 ,

HFW
2 = (ν2 − q2

1q
2
2)ΠFW

1 − ν2ΠFW
3 − νq2

1q
2
2ΠFW

9 ,

HFW
3 = −ΠFW

2 −ΠFW
3 − q2

1ΠFW
4 − q2

2ΠFW
5 − νΠFW

9 ,

HFW
4 = −q2

1ΠFW
2 − (q2

1)2ΠFW
4 − ν2ΠFW

5 ,

HFW
5 = −q2

2ΠFW
2 − ν2ΠFW

4 − (q2
2)2ΠFW

5 ,

HFW
6 = q2

1q
2
2ΠFW

6 − νΠFW
7 + νΠFW

8 ,

HFW
7 = ν(q2

1q
2
2ΠFW

6 − νΠFW
7 ) + q2

1q
2
2ΠFW

8 ,

HFW
8 = −νΠFW

3 − 1

2
(ν2 + q2

1q
2
2)ΠFW

9 . (E.15)

In terms of the helicity amplitudes the sum rule reads
∫ ∞

ν0

dν
1

(ν2−q2
1q

2
2)2

(
ν Im

[
HFW

1 (ν)+HFW
2 (ν)+2q2

1q
2
2H

FW
3 (ν)−2q2

2H
FW
4 (ν)−2q2

1H
FW
5 (ν)

]

− 2(ν2 + q2
1q

2
2)ImHFW

8 (ν)

)
= 0, (E.16)

where ν0 denotes the threshold in ν. Taking the quasi-real limit q2
2 → 0 of this equation and

accounting for the different conventions for the polarization vectors, we reproduce the sum

rule (27b) of [63]. In addition, two more sum rules (superconvergence relations) were de-

rived in [63]. They originate in different assumptions about the asymptotic behavior based

on the Regge model of [144]. In table 6, we compare the assumptions on the asymptotic

behavior of the helicity amplitudes: concerning the number of subtractions needed in a

dispersion relation for the helicity amplitudes, this leads in most cases to identical results.9

9Note that even (odd) subtractions vanish for a function that is odd (even) in ν. This implies that for

HFW
2,4,5,8, the subtraction schemes are identical although the exact assumptions for the asymptotic behavior

slightly differ.
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this work ref. [63]

HFW
1 � ν1 � ναP (0)

HFW
2 � ν1 � ναπ(0)

HFW
3 � ν−1 � ναP (0)

HFW
4 � ν0 � ναP (0)

HFW
5 � ν0 � ναP (0)

HFW
6 � ν0 � ναπ(0)−1

HFW
7 � ν1 � ναπ(0)

HFW
8 � ν0 � ναπ(0)−1

Table 6. Comparison of the assumptions about the asymptotic behavior of the helicity amplitudes.

In [63], αP (0) ≈ 1.08 and απ(0) ≈ −0.014 was assumed.

For HFW
3 , our assumption is more restrictive. In fact, a similar behavior was used in [63] to

derive an additional sum rule for a low-energy constant in the effective photon Lagrangian,

stressing that this sum rule cannot be justified based on the Regge model of [144]. In our

approach this sum rule emerges naturally by demanding a uniform asymptotic behavior

of the HLbL tensor, which in turn determines the asymptotics of the BTT functions and

thereby of the helicity amplitudes. For HFW
6,7 , the assumption in [63] is more restrictive

and leads to two additional sum rules, eqs. (27a) and (27c) in [63].

We note that the constraints from gauge invariance that were determined in [63] based

on an effective photon Lagrangian are all implemented in the BTT decomposition of the

HLbL tensor and can be read off directly from the relations between the helicity amplitudes

and the BTT scalar functions. Finally, with the above description of forward scattering

in terms of BTT functions, we can easily establish the link to our sum rules derived for

singly-on-shell fixed-t kinematics. By setting q2
3 = q2

1 and taking the limit q2
2 → 0 in both

situations, we reach the common kinematic configuration, i.e. the case of singly-on-shell

forward scattering. We can then easily find the embedding of the forward sum rule into

the sum rules for the Π̌i functions:

lim
q22→0

ΠFW
9 = −2 lim

q22→0,

q23=q21

(
Π̌7 + Π̌11 − Π̌12 − Π̌15 + 2Π̌18 − 2Π̌19

)
, (E.17)

where the right-hand side is a combination of functions fulfilling the sum rules (2.71). We

also note that in the S-wave approximation, the sum rule (27b) of [63] reduces to the

forward limit of (2.91).

F Basis change to helicity amplitudes

F.1 Calculation of tensor phase-space integrals

If we consider only S-waves in γ∗γ∗ → ππ, the phase-space integral in the ππ unitarity

relation for HLbL is trivial and the unitarity relation factorizes. We have calculated the
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D-wave unitarity relation in [28] for an external on-shell photon and in [30] for the fully off-

shell case by using a tensor decomposition. In this approach, the unitarity relation requires

the calculation of tensor integrals with additional factors of the γ∗γ∗ → ππ scattering

angles, which are replaced by scalar products of external and internal (loop) momenta.

Then the unitarity relation can be written as contractions of external momenta with tensor

integrals that depend only on a single momentum and can be solved by a standard tensor

decomposition.

Unfortunately, with this method the expressions become very large, which makes the

computation already at the level of D-waves extremely inefficient. In order to avoid the

excessive amount of contractions in the calculation of the phase-space integral, here we

present an alternative way to calculate the tensor integrals directly by taking derivatives of

scalar integrals. This allows us to calculate even the G-wave unitarity relation, as required

for the present application in section 2.5. In the case of D-waves, we have checked that

both methods give the same result.

We first consider the scalar integrals with additional Legendre polynomials of the

scattering angles:

Inm0 :=

∫
d3p1

(2π)32p0
1

d3p2

(2π)32p0
2

(2π)4δ(4)
(
Q− p1 − p2

)
Pn(z′)Pm(z′′), (F.1)

where Q := q1 + q2 = q4 − q3 and z′, z′′ denote the scattering angles

z′ =
q2

1 − q2
2 − 2(q1 − q2) · p1

σπ(s)λ
1/2
12 (s)

, z′′ =
q2

3 − q2
4 + 2(q3 + q4) · p1

σπ(s)λ
1/2
34 (s)

(F.2)

with λ12(s) = λ(s, q2
1, q

2
2), λ34(s) = λ(s, q2

3, q
2
4). The HLbL scattering angle is defined as

z =
(q2

1 − q2
2)(q2

3 − q2
4) + s(t− u)

λ
1/2
12 (s)λ

1/2
34 (s)

. (F.3)

The angles fulfill

cos θ′′ = cos θ′ cos θ + sin θ′ sin θ cosφ′, (F.4)

where z = cos θ, z′ = cos θ′, z′′ = cos θ′′, and φ′ is the azimuthal angle of ~p1 in the centre-of-

mass frame. The phase-space integral can be understood as an integral over the variables

θ′ and φ′.

As a first step, direct calculation leads to

Inm0 =
1

16π2

∫ ∞

0
dp

p2

M2
π + p2

δ(Q0 − 2
√
M2
π + p2)

∫
dΩ Pn(z′)Pm(z′′)

=
1

8π
σπ(s)δnm

Pn(z)

2n+ 1
,

(F.5)

where we have used the addition theorem for the Legendre polynomials. Next, we define

P := q1 − q2 and R := q3 + q4 and write the angles as

z =
Q2(P ·R)− (P ·Q)(R ·Q)

((P ·Q)2 − P 2Q2)1/2((R ·Q)2 −R2Q2)1/2
,

z′ =
P ·Q− 2P · p1

σπ(Q2)((P ·Q)2 − P 2Q2)1/2
, z′′ =

2R · p1 −R ·Q
σπ(Q2)((R ·Q)2 −R2Q2)1/2

.

(F.6)
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Taking the derivatives of the angles with respect to Pµ and Rµ gives

∂z

∂Pµ
=

Q2

λ
3/2
12 (Q2)λ

1/2
34 (Q2)

(
Qµ
(
P 2(Q ·R)− (P ·Q)(P ·R)

)

+ Pµ
(
Q2(P ·R)− (Q · P )(Q ·R)

)

+Rµ
(
(P ·Q)2 − P 2Q2

))
,

∂z

∂Rµ
=

Q2

λ
1/2
12 (Q2)λ

3/2
34 (Q2)

(
Qµ
(
R2(P ·Q)− (P ·R)(Q ·R)

)

+ Pµ
(
(R ·Q)2 −R2Q2

)

+Rµ
(
Q2(P ·R)− (Q · P )(Q ·R)

))
,

∂z′

∂Pµ
=

Qµ − 2pµ1

σπ(Q2)λ
1/2
12 (Q2)

+ z′
Q2Pµ − (P ·Q)Qµ

λ12(Q2)
,

∂z′′

∂Rµ
=

2pµ1 −Qµ

σπ(Q2)λ
1/2
34 (Q2)

+ z′′
Q2Rµ − (R ·Q)Qµ

λ34(Q2)
,

∂z′

∂Rµ
=
∂z′′

∂Pµ
= 0. (F.7)

Observing that a loop momentum with an open Lorentz index, pµ1 , can be written in terms

of the derivative of a γ∗γ∗ → ππ angle with respect to Pµ or Rµ and functions of angles

and external momenta only, we can write all tensor integrals in terms of derivatives of

scalar integrals, since the phase-space integral does not depend on P or R. With this

method no additional contractions of Lorentz indices are necessary and the complexity of

the calculation is reduced significantly. This enables the calculation of the G-wave unitarity

relation.

Explicitly, we define tensor integrals involving factors of the scattering angles accord-

ing to:

Iµ1...µii,nm :=

∫
d3p1

(2π)32p0
1

d3p2

(2π)32p0
2

(2π)4δ(4)
(
Q− p1 − p2

)
pµ11 · · · pµi1 z′

n
z′′
m
. (F.8)

For the G-wave unitarity relation, we need to know the integrals Iµ1...µii,nm with i+n+m ≤ 8

and i ≤ 4. The scalar integrals with i = 0 can be calculated easily using (F.5):

I0,00 = I0,

I0,20 = I0,02 =
1

3
I0, I0,11 =

z

3
I0,

I0,40 = I0,04 =
1

5
I0, I0,31 = I0,13 =

z

5
I0, I0,22 =

1 + 2z2

15
I0,

I0,60 = I0,06 =
1

7
I0, I0,51 = I0,15 =

z

7
I0, I0,42 = I0,24 =

1+4z2

35
I0, I0,33 =

z(3+2z2)

35
I0,

I0,80 = I0,08 =
1

9
I0, I0,71 = I0,17 =

z

9
I0, I0,62 = I0,26 =

1+6z2

63
I0, I0,53 = I0,35 =

z(3+4z2)

63
I0,

I0,44 =
3 + 24z2 + 8z4

315
I0, (F.9)
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where

I0 =
1

8π
σπ(s), (F.10)

while all I0,nm with n+m odd vanish.

Next, we calculate the remaining integrals with i = 1, . . . , 4 successively using the

derivative trick. The integrals with n = m = 0 are pure tensor integrals and can be

cross-checked with the results from the tensor decomposition method.

In order to compute the integrals Iµ1,nm, we consider the following derivative:

∂

∂Pµ

(
z′
n+1

z′′
m
)

= (n+ 1)z′
n
z′′
m ∂z′

∂Pµ

= (n+ 1)z′
n
z′′
m

(
Qµ − 2pµ1

σπ(Q2)λ
1/2
12 (Q2)

+ z′
Q2Pµ − (P ·Q)Qµ

λ12(Q2)

)
. (F.11)

Since the phase-space integral does not depend on P or R, we can commute it with the

derivative and find

Iµ1,nm =
1

2
QµI0,nm +

σπ(s)λ
1/2
12 (s)

2

[
sPµ − (q2

1 − q2
2)Qµ

λ12(s)
I0,n+1m −

1

n+ 1

∂

∂Pµ
I0,n+1m

]
.

(F.12)

Similarly, the tensor integrals Iµν2,nm can be calculated by considering the double derivative

∂2

∂Pµ∂Pν

(
z′
n+2

z′′
m
)
. (F.13)

Finally, by taking multiple derivatives the tensor integrals Iµνλ3,nm and Iµνλσ4,nm can be

calculated.

F.2 Direct matrix inversion

The expressions for the helicity amplitudes in terms of the scalar coefficient functions in

the tensor decomposition are easily obtained by contracting the HLbL tensor with the

polarization vectors. Expressing the scalar functions in terms of the helicity amplitudes

requires the inversion of these relations. If we consider the singly-on-shell case, this amounts

to the inversion of a 27 × 27 matrix. The direct analytic inversion of a general matrix of

this size is not possible, but in this case it can be reconstructed along the following lines.

Let us define the basis change from the singly-on-shell helicity amplitudes to scalar

functions as

H̄j

∣∣∣
λ4 6=0

=

27∑

i=1

ηjiΠ̌i, (F.14)

where η is a 27 × 27 matrix. Its inverse is effectively the matrix č in (2.84) (restricted to

λ4 6= 0) that we need to determine in order to obtain the imaginary parts of the scalar

functions through unitarity.
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First, we note that the basis of helicity amplitudes suffers from the presence of kine-

matic singularities, which makes the expressions for η more involved. These singularities

can be removed by applying the general recipe of [62] for the construction of amplitudes

free of kinematic singularities: first, the singularities at the boundary of the physical region

can be removed by

Ĥj :=
(1 + z

2

)− 1
2
|m1+m2|(1− z

2

)− 1
2
|m1−m2|

H̄j , (F.15)

where m1 = λ1 − λ2, m2 = λ3 − λ4, and z is the cosine of the scattering angle. In our

case of fixed-t singly-on-shell kinematics, we have z =
s−q21+q22

λ
1/2
12 (s)

. Next, the parity-conserving

amplitudes

Ĥj ± Ĥj̄ (F.16)

are formed (see section 2.5.1 for the notation). Finally, the remaining singularities can be

removed by multiplying with the appropriate powers of
√
s, λ

1/2
12 (s), and λ

1/2
34 (s), see [62].

We note that the Martin-Spearman amplitudes constructed in this way are free of kinematic

singularities, but have an asymptotic behavior that is much worse than the one of the BTT

scalar functions.

Since all square-root singularities have been removed, the basis change from the scalar

functions Π̌i to the Martin-Spearman amplitudes is now meromorphic in s, q2
1, q2

2, and q2
3.

We determine all matrix entries with partly numerical methods as follows.

Numerically, the inversion of the 27× 27 matrix is straightforward. The denominators

of the meromorphic matrix entries can be guessed from the pole structure of the numerical

inversion: they are products of simple polynomials such as λ123, λ12(s), (q2
1 − q2

2 + q2
3)

etc. We calculate numerically the matrix inversion as a function of each of the Lorentz

invariants in turn, keeping the other three invariants fixed. A plot of the matrix entries

as a function of the varying variable reveals the poles and therefore the exact form of the

denominators. This simple but tedious task has to be performed for all 27 × 27 entries.

The remaining numerators are then polynomials of the form
∑

i+j+k+l=n

aijkls
i(q2

1)j(q2
2)k(q2

3)l, (F.17)

where the mass dimension of the numerator is 2n and known beforehand. In most cases,

n is a small number, although for very few entries we encounter a maximal value of n = 9,

which results in a polynomial with 220 terms. We perform the numerical inversion on a

grid consisting of 94 points in the four-dimensional space of s, q2
1, q2

2, and q2
3 and determine

the integer coefficients aijkl for each of the numerators of the 27×27 matrix entries by a fit.

In contrast to the determination of the denominators by hand, this fit of the numerators

can be easily automatized.

Combining the results with the (simple) basis change from helicity to Martin-Spearman

amplitudes then leads to the full analytic expression for the inverted basis change č. In par-

ticular, it is straightforward to check analytically that the matrix č determined partly with

numerical methods is indeed the exact inverse of η. The result is provided as supplementary

material in the form of a Mathematica notebook.
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G Partial-wave expansion of the γ∗γ∗ → ππ pion-pole contribution

In order to test the partial-wave formalism, we expand the pion-pole contribution to γ∗γ∗ →
ππ into partial waves. The scalar functions are given by [31] (with isospin conventions

from [28]):

Aπ1 = F Vπ (q2
1)F Vπ (q2

2)

(
1

t−M2
π

+
1

u−M2
π

)
,

Aπ4 = F Vπ (q2
1)F Vπ (q2

2)
2

s− q2
1 − q2

2

(
1

t−M2
π

+
1

u−M2
π

)
,

Aπ2 = Aπ3 = Aπ5 = 0.

(G.1)

The helicity amplitudes become:

H̄π
++ = H̄π

−− = F Vπ (q2
1)F Vπ (q2

2)

(
1

t−M2
π

+
1

u−M2
π

)(
− 1

2
(s− q2

1 − q2
2)

+
1

4
(s−4M2

π)

(
(s−q2

1−q2
2)+

(
(q2

1−q2
2)2

s
−(q2

1 +q2
2)

)
z2

)
2

s−q2
1−q2

2

)
,

H̄π
+− = H̄π

−+ = −F Vπ (q2
1)F Vπ (q2

2)
1

2
(s− 4M2

π)(1− z2)

(
1

t−M2
π

+
1

u−M2
π

)
,

H̄π
+0 = −H̄π

−0 = −F Vπ (q2
1)F Vπ (q2

2)
1

2

√
2

s
(s−4M2

π)z
√

1−z2
s+q2

1−q2
2

s−q2
1−q2

2

(
1

t−M2
π

+
1

u−M2
π

)
,

H̄π
0+ = −H̄π

0− = −F Vπ (q2
1)F Vπ (q2

2)
1

2

√
2

s
(s−4M2

π)z
√

1−z2
s−q2

1 +q2
2

s−q2
1−q2

2

(
1

t−M2
π

+
1

u−M2
π

)
,

H̄π
00 = −F Vπ (q2

1)F Vπ (q2
2)

(
1− 2(s−4M2

π)z2

s−q2
1−q2

2

)(
1

t−M2
π

+
1

u−M2
π

)
. (G.2)

We calculate the partial-wave expansion thereof:10

NJ,λ1λ2(s) :=
1

2

∫ 1

−1
dz dJm0(z)H̄π

λ1λ2(s, t(s, z), u(s, z)), (G.3)

where m = |λ1 − λ2|. With the relation

1

t−M2
π

= − 2

σπ(s)λ
1/2
12 (s)

1

x− z ,

1

u−M2
π

= − 2

σπ(s)λ
1/2
12 (s)

1

x+ z
,

(G.4)

where

x =
s− q2

1 − q2
2

σπ(s)λ
1/2
12 (s)

, (G.5)

10We use a different convention than in [31] and do not (anti-)symmetrize the partial waves with respect

to q21 ↔ q22 .
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we can calculate the pion-pole contribution to the helicity partial waves in terms of the

Legendre functions of the second kind, defined by

QJ(x) =
1

2

∫ 1

−1

PJ(z)

x− z dz. (G.6)

They satisfy the relations [145]

QJ(x)PJ−2(x) = PJ(x)QJ−2(x)− 2J − 1

J(J − 1)
x,

(J + 1)QJ+1(x) = (2J + 1)xQJ(x)− JQJ−1(x),

(G.7)

which, together with the recursion relation for the Legendre polynomials

(J + 1)PJ+1(x) = (2J + 1)xPJ(x)− JPJ−1(x) (G.8)

leads to the following expressions for the pion-pole helicity partial waves:

NJ,++(s) = FVπ (q21)FVπ (q22)

{
8

σπ(s)λ
1/2
12 (s)

(
sq21q

2
2

λ12(s)
+M2

π

)
QJ(x)+2δJ0

(q21−q22)2−s(q21+q22)

λ12(s)

}
,

NJ,+−(s) = FVπ (q21)FVπ (q22)
2sσπ(s)

λ
1/2
12 (s)

J

√
(J−2)!

(J+2)!

{
2xQJ−1(x)−

(
(J+1)−x2(J−1)

)
QJ(x)

}
,

NJ,+0(s) = FVπ (q21)FVπ (q22)
2
√

2sσπ(s)

λ
1/2
12 (s)

s+ q21 − q22
s− q21 − q22

√
J

J + 1
x
{
xQJ(x)−QJ−1(x)

}
,

NJ,0+(s) = FVπ (q21)FVπ (q22)
2
√

2sσπ(s)

λ
1/2
12 (s)

s− q21 + q22
s− q21 − q22

√
J

J + 1
x
{
xQJ(x)−QJ−1(x)

}
,

NJ,00(s) = FVπ (q21)FVπ (q22)
4

λ12(s)

{
(q21 − q22)2 − s2

σπ(s)λ
1/2
12 (s)

QJ(x) + 2s δJ0

}
. (G.9)

H Pion polarizability and γγ → ππ in ChPT

The one-loop amplitude for γγ → ππ takes the form [146, 147]

hc
0,++(s)

∣∣
ChPT

= N0,++(s) +
l̄6 − l̄5

48π2F 2
π

s− s

16π2F 2
π

(
1 + 2M2

πC0(s)
)
,

hn
0,++(s)

∣∣
ChPT

= −s−M
2
π

8π2F 2
π

(
1 + 2M2

πC0(s)
)
, (H.1)

where we have suppressed the arguments for the virtualities, l̄6− l̄5 refers to a combination

of SU(2) low-energy constants [148], and the loop function is given by

C0(s) =

∫ 1

0

dx

sx
log

[
1− x(1− x)

s

M2
π

]
. (H.2)

Unitarity is only fulfilled perturbatively, so that at the one-loop level

Imhc
0,++(s)

∣∣
ChPT

=
σπ(s)

3
N0,++(s)

(
2t00(s) + t20(s)

)
=

M2
π

8πF 2
π

log
1 + σπ(s)

1− σπ(s)
,

Imhn
0,++(s)

∣∣
ChPT

=
2σπ(s)

3
N0,++(s)

(
t00(s)− t20(s)

)
=
s−M2

π

4πF 2
π

log
1 + σπ(s)

1− σπ(s)
, (H.3)
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with tree-level ππ partial waves tIJ(s). Due to the pathological high-energy behavior of these

imaginary parts, the chiral amplitudes do not fulfill an unsubtracted dispersion relation,

but only a subtracted variant of the form

hc
0,++(s)

∣∣
ChPT

= N0,++(s) +
l̄6 − l̄5

48π2F 2
π

s+
s2

π

∫ ∞

4M2
π

ds′
Imhc

0,++(s′)
∣∣
ChPT

s′2(s′ − s) ,

hn
0,++(s)

∣∣
ChPT

= − s

96π2F 2
π

+
s2M2

π

π

∫ ∞

4M2
π

ds′
Imhn

0,++(s′)
∣∣
ChPT

s′3(s′ − s) , (H.4)

to be contrasted with

h0,++(s) = ∆0,++(s) +
s

π

∫ ∞

4M2
π

ds′
Imh0,++(s′)

s′(s′ − s) (H.5)

for the full amplitudes provided that the imaginary parts fall off sufficiently fast. If the

MO inhomogeneity is approximated by the Born term that is indeed the case, which, by

comparison to the chiral amplitudes, allows one to predict the derivatives at s = 0 and

thereby the pion polarizabilities within this approximation. At the one-loop level this

implies a sum rule for l̄6 − l̄5, whose numerical evaluation l̄6 − l̄5 = 2.7 . . . 2.9 for the same

range of cutoffs as in section 4.3 indeed comes out very close to the phenomenological

value l̄6 − l̄5 = 3.0(0.3) [137, 149, 150]. As discussed in section 4.3, only the charged-pion

polarizability is reproduced in this way, indicating that higher contributions to the LHC

are required in the case of the neutral pion.

In ChPT the value of l̄6 − l̄5 can be empirically understood in terms of resonance

saturation, explicitly one has [142, 151, 152]

l̄6 − l̄5
∣∣
sat

= 48π2 F
2
A

M2
A

∼ 24π2 F
2
π

M2
ρ

= 3.4, (H.6)

where FA and MA refer to decay constant and mass of axial resonances to be related to

pion decay constant and vector masses by short-distance constraints, see [151]. The fact

that resonance saturation indeed reproduces the empirical value of l̄6− l̄5 rather accurately

has motivated the construction of models based on explicit a1 resonances to incorporate the

corresponding effects related to the charged-pion polarizability into HLbL scattering [49,

50]. Our calculation makes use of an alternative strategy that exploits a sum rule for

the relevant low-energy parameters, largely saturating the phenomenological value. In

particular, in this framework the impact of higher contributions such as the a1 to the LHC

on the polarizability itself is expected to be small — in fact, the exchange of vector mesons

would contribute first — so that significant corrections would require a weighting in the g−2

integral that emphasizes kinematics away from s = 0, where the polarizabilities are defined.

Such contributions cannot a priori be excluded, all the more since the comparison with the

physical polarizability only determines the on-shell properties, but not the dependence on

the photon virtualities.
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[38] F. Stollenwerk, C. Hanhart, A. Kupść, U.-G. Meißner and A. Wirzba, Model-independent

approach to η → π+π−γ and η′ → π+π−γ, Phys. Lett. B 707 (2012) 184

[arXiv:1108.2419] [INSPIRE].

[39] F. Niecknig, B. Kubis and S.P. Schneider, Dispersive analysis of ω → 3π and φ→ 3π

decays, Eur. Phys. J. C 72 (2012) 2014 [arXiv:1203.2501] [INSPIRE].

[40] S.P. Schneider, B. Kubis and F. Niecknig, The ω → π0γ∗ and φ→ π0γ∗ transition form

factors in dispersion theory, Phys. Rev. D 86 (2012) 054013 [arXiv:1206.3098] [INSPIRE].

[41] M. Hoferichter, B. Kubis and D. Sakkas, Extracting the chiral anomaly from γπ → ππ,

Phys. Rev. D 86 (2012) 116009 [arXiv:1210.6793] [INSPIRE].
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