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Abstract 

Including structural information of trabecular bone improves the prediction of bone 

strength and fracture risk. However, this information is available in clinical CT scans, 

only for peripheral bones. We hypothesized that a correlation exists between the 

shape of the bone, its volume fraction (BV/TV) and fabric, which could be 

characterized using statistical modeling. High-resolution peripheral computed 

tomography (HR-pQCT) images of 73 proximal femurs were used to build a 

combined statistical model of shape, BV/TV and fabric. The model was based on 

correspondence established by image registration and by morphing of a finite element 

mesh describing the spatial distribution of the bone properties. Results showed no 

correlation between the distribution of bone shape, BV/TV and fabric. Only the first 

mode of variation associated with density and orientation showed a strong 

relationship (R
2
 > 0.8). In addition, the model showed that the anisotropic information 

of the proximal femur does not vary significantly in a population of healthy, 

osteoporotic and osteopenic samples. In our dataset, the average anisotropy of the 

population was able to provide a close approximation of the patient-specific 

anisotropy. These results were confirmed by homogenized finite element (hFE) 

analyses, which showed that the biomechanical behavior of the proximal femur was 

not significantly different when the average anisotropic information of the population 

was used instead of patient-specific fabric extracted from HR-pQCT. Based on these 

findings, it can be assumed that the fabric information of the proximal femur follows 

a similar structure in an elderly population of healthy, osteopenic and osteoporotic 

proximal femurs. 

 

Keywords: Statistical model, Bone properties, Proximal femur, Average fabric 

tensor, HR-pQCT  
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1 Introduction 

The introduction of micro-computed tomography enabled a detailed description of 

bone architecture. Many measures have been extracted from these images to quantify 

bone micro-architecture such as volume fraction, orientation, or trabecular thickness. 

Correlation of these morphometric measurements with bone mechanics showed that 

only two of these parameters – the bone volume fraction (BV/TV) and bone fabric – 

are responsible for 98% of the trabecular bone stiffness and yield strength [1,2]. More 

specifically, bone volume fraction showed a correlation of 80%-90% with bone 

stiffness and 79% correlation with yield strength, while bone fabric correlated up to 

10 – 20% with bone stiffness and 23% correlation with yield strength. Therefore, 

these parameters are critical to build patient-specific models and assess individual 

fracture risks.  

In the clinical situation, BV/TV can be estimated from Hounsfield Units (HU) 

reconstructed in CT scans. However, since it is not possible to obtain images of the 

bone micro-structure in vivo, several methods have been proposed to determine the 

most probable bone fabric from clinical resolution scans of the patient’s bone. Some 

authors proposed to estimate the local anisotropy based on the outer shape of the bone 

[3,4] or based on the principal directions obtained from FE calculations, either from 

the principal strains of a homogenous model [5] or during an iterative approach 

progressively refining the anisotropic directions based on the principle stresses [6,7]. 

These approaches provide a global estimation of the anisotropic direction, however 

the accuracy of the eigenvalues associated with these directions is unknown. Other 

methods have been proposed based on pre-existing knowledge of the bone 

architecture. Some approaches rely on machine learning techniques to model the 

anisotropic information as a function of bone shape and/or distribution of the bone 

mineral density (BMD) [8–10]. Other studies rely on existing high-resolution scans to 

estimate the fabric tensor for clinical CT. Hazrati and colleagues employed a database 

of high-resolution scans and assigned to the patient’s bone the anisotropy of the 

closest instance in a pre-existing database. A similar study has been conducted where 

a single template anisotropy was morphed into the shape of the patient’s bone [11]. 

Interestingly, while a single template was used to estimate bone anisotropy, the 

prediction error was in the same range as for the studies that employed a dataset of 

high-resolution scans [11]. This result questions the variability of bone anisotropy 
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among individuals and indicates that the good predictions reported previously could 

be a consequence of a low inter-subject variability. 

The variations in the structural parameters of bones were usually studied only for 

specific parts, e.g. femoral head or femoral neck [12–14] and were not compared to 

the corresponding bone morphology. Several studies aimed at providing a correlation 

between parameters describing the bone architecture with fracture risk [12,13] or with 

the age of the patients [14]. However, these parameters were estimated on a single or 

few regions of the proximal femur. To the best of our knowledge, only one study 

reported the local variations of the bone structural properties for the complete bone 

[15]. They found a large coefficient of variation for BV/TV and trabecular 

parameters, but the coefficient of variation was small for Structural Model Index 

(SMI) and degree of anisotropy (DA). The results of these studies appear 

contradicting; while some authors reported a change of the DA –for example 

associated with increased fracture risk [12,13]– other studies reported only local 

variation of the DA [14] or even insignificant variation of DA in a small population 

without fracture [15]. In addition, while all these models describe local variations of 

micro-architectural parameters, no study provides a full description of the spatial 

distribution of the BV/TV, bone fabric, and morphology and how these distributions 

vary between subjects.  

The aim of this study is to better characterize the distribution of bone fabric in the 

proximal femur of a population and to determine the variability of the overall fabric 

organization between individuals. Therefore, instead of using predictive or regression 

models, we build a generative model using principal component analysis (PCA), that 

finds the variations of bone parameters in a given population. Such model helps to 

analyze the relation among different bone parameters. The initial underlying 

hypothesis was that these parameters are strongly correlated, and that a combined 

statistical model could reveal these correlations. In addition, based on the combined 

statistical model, the bone fabric information could be recovered at any spatial 

position relying only on the shape and BV/TV extracted from clinical-level CT scans.  
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2 Material and Methods 

2.1 Dataset 

A dataset of 73 proximal femurs [16] was used to build a statistical model of bone 

properties. The bones were obtained from 37 individual donors, 18 males and 19 

females. The donors' ages were in the range of [46, 96] years with the average age of 

76 ± 11 years. Based on available DEXA images, 39% of proximal femurs (28 

samples) were classified as osteoporotic, 31% (23 samples) as osteopenic and 28% 

(20 samples) normal. Two samples had no DEXA scan available and were classified 

as unknown. From each bone, one HR-pQCT (Xtreme-CT, Scanco Medical, 

Switzerland) image with a spatial resolution of 0.082 × 0.082 × 0.082 mm was 

acquired. The images were obtained with an intensity of 900 µA and voltage of 

60 kV. The Bone Mineral Density (BMD) values extracted from the HR-pQCT image 

were calibrated based on machine’s settings. The BMD values then used to compute 

the BV/TV by applying reported calibration curve in the literature that maps BMD to 

the corresponding BV/TV [11,16]. The shafts of all samples were cropped such that 

they all have the same ratio between the shaft length and the neck length [9].  

2.2 Establishing Correspondences 

The first step in building a statistical model is to establish a spatial correspondence 

between the bones of the dataset. To build a statistical model relevant for bone 

biomechanical properties, correspondences must be established not only on the 

surface of the bone, but also for any points within the bone volume containing 

trabecular bone. For this reason, image registration was used to establish voxel-wise 

correspondences among the bones. This approach was chosen because image 

registration uses information on the outer shape as well as the bone intensity values 

inside the bone volume, which establishes a reliable correspondence also in the 

trabecular region [17]. Rigid, affine, and non-rigid image registrations were 

performed between the reference bone and each bone in the dataset. For the rigid 

registration, the bones were aligned with respect to the midpoint of the femoral neck 

[9]. It was followed by an affine registration to refine the global alignment. The final 

registration was performed using the B-spline method provided by the elastix 

software [18]. In this method multi-resolution grids are superimposed on the image. 
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At each resolution, the transformation is calculated as the sum of weighted B-spline 

basis functions on the control points of the grid.  

The reference bone was selected through an iterative process. In the first step, one 

image in the database was selected arbitrarily as the template bone. All images were 

registered to this template bone and a new template bone was constructed based on 

the average of the registration displacement vectors. The process of computing a new 

average bone and registering all images to the image of this new mean shape was 

repeated until convergence, when the average bone does not change anymore. Finally, 

the closest bone in the dataset to the average was selected by using the Frobenius 

norm of the stretch tensor of the local deformation gradient. In this step, all bones in 

the dataset were registered to this reference bone. 

An FE mesh of the reference bone with average edge length of 1 mm was created and 

morphed to all instances. This reference mesh was made of approximately 167000 

linear tetrahedral elements. The morphing was performed using the displacement 

vector fields (DVF) obtained from the image registration step. As a result, all the 

bones had an FE mesh with the same number of elements, and with nodes positioned 

at corresponding anatomical locations. 

2.3 Bone Volume Fraction and Fabric Information 

The material properties of the bone were assigned to each element of the mesh using 

the method proposed by Pahr and Zysset [19]. In this method a mesh grid with a given 

distance between nodes is overlaid on the image. For each grid point, a spherical 

region of interest (ROI) was extracted and the BV/TV as well as the fabric tensor are 

calculated for this ROI. The material properties of each element were calculated by 

linear interpolation of the values computed for the neighboring grid nodes of each 

element. 

In this study, the ROIs were selected as spheres having a diameter of 5.3 mm and the 

distance between grid points was equal to 2 mm. The BV/TV was extracted from the 

calibrated HR-pQCT scans and the Mean Intercept Length (MIL) method was used to 

estimate the fabric tensor of each ROI. In the final step, the FE mesh of all bones was 

aligned to the reference bone, using Procrustes analysis. The rotation found using 

Procrustes was then applied to the fabric tensors. 
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Figure 1. The pipeline for building statistical model of bone biomechanical properties. The statistical model 

of shape, BV/TV and anisotropy were built separately and were combined after appropriate normalization. 

The normalization weight of each model is calculated as the inverse of the sum of the eigenvalues (λj) of that 

model.  

2.4 Statistical Models 

The technique to build the statistical model was adapted from the procedure used to 

derive Statistical Appearance Models (SAM) [20]. Three distinct statistical models 

were computed: for 1) shape, 2) BV/TV, and 3) fabric tensor. The three models were 

combined in a second step. Each individual model was weighted to account for the 

different dimensionality of the respective reference models (Figure 1). 

PCA was used for building statistical models. The PCA technique fits a hyper-

ellipsoid to the input data, where the direction of largest diameters represent the 

direction of maximum variances in the data and the diameter length is the standard 

deviation in that direction [21]. To compute principal components, the data matrix X 

of size d × n (d is the dimension of each sample and n is the number of samples in the 

dataset) is centered ( ) by subtracting the average of the data from each sample. The 

data covariance matrix is then formed as: 

Statistical Model of 
Shape

Statistical Model of 
BV/ TV

Statistical Model of 
Anisotropy

Statistical model of 
bone properties

Ws ×  bs Wb ×  bb Wa ×  ba

Normalized parameters of 
bone properties 

p 2 {s,b,a}

W p = 1/(
X

j

λ
p
j )

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 7 

 (1) 

where superscript T stands for the transpose of the matrix. The spectral decomposition 

of the covariance matrix provides the eigenvectors and eigenvalues of the statistical 

model: 

 (2) 

 where Q contains the eigenvectors of matrix C and  is a diagonal matrix with 

eigenvalues on its main diagonal. If d > n (the data dimension is larger than the 

number of samples), the rank of matrix C is smaller or equal to n. In this case, to 

reduce the computational burden, the spectral decomposition is performed on the 

following matrix : 

 

 

(3) 

The eigenvalues ( ) computed in equations (2) and (3) are equal. Furthermore, the 

eigenvectors in equation (2) can be calculated as: 

 (4) 

2.4.1 Statistical Model of Shape 

The shape of each bone was represented by the coordinates of the centers of all the 

elements in the volumetric mesh. Each element was represented by a linear 

tetrahedron. The bone shape was represented as a matrix of size m × n, where n is the 

number of samples in the dataset and m = k × 3, with k is the number of elements in 

the mesh. PCA was applied to this matrix and the parameters of the model can be 

used to create a new sample shape as follows: 

 (5) 

where  describes the shape of a bone and  is the average shape of the bones in the 

dataset. The vector  contains the parameters of shape in the statistical model space 

and  is the matrix of the corresponding eigenvectors. Each eigenvector is called a 

“mode” of variation. With this approach, any bone in the dataset can be described by 

a set of scalar values . 
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2.4.2 Statistical Model of Bone Volume Fraction 

The same approach was used to build the model for the volume fraction. The BV/TV 

for all the bones in the dataset was described by a matrix of size k × n, where k is the 

number of elements in the mesh and n is the number of bones in the dataset. After 

PCA, BV/TV values for the new sample ( ) can be estimated with the following 

equation: 

 (6) 

where  is a vector with average BV/TV for each element in the dataset, contains 

the parameters of the BV/TV model and  is a matrix containing the corresponding 

eigenvectors.  

2.4.3 Statistical Model of Bone Fabric Tensor 

The anisotropic information is represented by orthogonal and positive-definite 

tensors. Applying arithmetic averaging and PCA calculations in the Euclidean space 

would result in invalid tensors that would not preserve these properties. One known 

problem is the tensor swelling effect [22]; With the arithmetic averaging, the 

determinant of the average tensor can become larger than the determinant of each 

individual tensor. In addition, covariance and PCA calculations are unable to preserve 

the positive definite property of the tensors (eigenvalues might become negative) 

[23]. To solve this problem, PCA was calculated in the log-Euclidean space as 

proposed by Arsigny et al. [22]. A logarithmic function was applied to each fabric 

tensor to map the tensors to the log-Euclidean space as follows: 

 

(7) 

where mi and mi are eigenvalues and eigenvectors of the fabric tensor M. The tensor 

M is normalized such that trace(M) = 3. The logarithm tensor was then vectorized as: 

 
(8) 

where Lij represents the element in the i
th

 row and j
th

 column of the log-tensor L. After 

concatenating the log-Euclidean vectors for all elements of each bone into one vector 
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x
i
, the fabric information for all bones in the dataset can be described by the matrix X, 

which size was 6k × n: 

 

(9) 

where k represents the number of elements and n is the number of bones in the dataset 

and superscript T represents the transpose of a vector. The anisotropy tensors for a 

new sample in the log-Euclidean space x
a
 were computed as: 

 (10) 

where  is the average of fabric tensors in the log-Euclidean space,  consists of 

the parameters of the fabric tensor anisotropy and  is a matrix containing the 

eigenvectors of the statistical model of anisotropy. While  is a scalar value, the 

reconstructed anisotropy  lies in the log-Euclidean space. Therefore, to reconstruct 

the anisotropy in the original Euclidean space, the procedures described by equations 

(7) and (8) should be inverted.  

2.4.4 The Combined Model 

To build a statistical model representing multimodal bone properties, an approach 

similar to the method used for statistical appearance modeling [20] was used. In our 

problem, the combined model was created by applying PCA to the combined scores 

of statistical models of the bone shape, BV/TV, and fabric. The combined scores were 

built as follows for the i
th

 bone in the dataset: 

 
 

(11) 

where , , and  are weighting parameters for shape, BV/TV, and anisotropy. 

The matrix Q contains the eigenvectors of the combined model and c is a vector 

formed by the scores of the combined model. Weights were required to normalize the 

initial model, because each initial model describes a different physical quantity. The 

weights were calculated as  
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(12) 

where p indicates either shape, BV/TV, or fabric and l j

p  are the eigenvalues of the 

corresponding bone properties. In the rest of paper, the 3-combined model phrase is 

used for the model including all three parameters of the bone.  

2.5 Model Evaluation 

2.5.1 Generalization Error 

This metric can be calculated using the leave-one-out method. A model is built based 

on all the samples except one (si), which is reconstructed by calculating its b 

parameters in the model space as: 

 (13) 

where s  is the average of samples in the dataset without si and Q contains the 

eigenvectors of the model. Since the model does not encode all the possible 

variability, the reconstructed sample will differ from the original sample. This 

difference measures the performance of the statistical model. The process is repeated 

until the errors of reconstructing all samples in the dataset are computed. The 

generalization ability of the selected model is inversely proportional to the average 

reconstruction error. 

Since in our dataset the bones were acquired from both legs of the donors, the 

reconstruction errors for each bone were calculated after excluding its pair from the 

training dataset. This precaution was taken to avoid a possible bias related to 

similarities between the left and right femurs of each individual.  

 For the fabric tensor, the error was measured with two metrics; the error on the 

reconstructed DA and the error on the principal fabric direction (PFD): 

 

(14) 

where, DA and m1 are the DA and principal direction extracted from HR-pQCT scan 

and  and  are the same quantities reconstructed using the model. The symbol 

“.” represents the inner product of two vectors.  
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2.5.2 Compactness 

The compactness is calculated as the ratio between the first m eigenvalues divided by 

the sum of all the eigenvalues from the model: 

 

C(m) =

l i

i=1

m

å

l i

i=1

d

å
,

 

(15) 

Compactness describes the distribution of the data. A small compactness value 

indicates that the fitted shape to data using PCA is close to a hyper-sphere and a high 

compactness represent distributed data along a few vectors. In this context, high 

compactness means that a large variability can be represented by a low number of 

modes.  

2.5.3 FE Simulations 

We performed FE simulations to evaluate the mechanical effect of predicting the bone 

fabric based on a statistical model. The mesh used to quantify BV/TV and fabric was 

also used for the FE calculations. Therefore, the output of the combined model is 

directly compatible with the finite element method. To avoid possible element 

distortion after mesh morphing, linear tetrahedral were used for the calculations (by 

comparing the output of FE analyses with quadratic elements, the linear elements 

were found to be valid for the mesh density used in our FE analyses). The cortical 

bone was defined by all the elements having a BV/TV over 0.5 as well as the surface 

elements of the mesh. These elements were assigned cortical bone properties, the rest 

of the elements were considered to be the trabecular bone, which properties were 

based on the local BV/TV and fabric. 

For this test, 10 left femurs (5 male and 5 female) were arbitrarily selected. Three of 

them were categorized as healthy, two as osteopenic and three as osteoporotic. Three 

different scenarios were tested: 1) with anisotropy extracted from HR-pQCT scans 

(original anisotropy), 2) using isotropic material properties and 3) employing the 

fabric tensor predicted using a statistical model. The bones were loaded in the stance 

position and an elastic-viscoplastic material model [24] was used to describe the 

tissue with previously published material constants provided in Table 1.  
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To validate the original model, the mechanical simulations were compared against 

experimental data. In the experiments, the head of the bones was displaced up to 

failure by a servo-hydraulic machine (Mini-Bionix, MTS system, USA) with a speed 

of 5 mm/min [25]. To show the importance of including bone fabric in hFE analysis, 

models with isotropic fabric were also compared to the mechanical tests. In this study, 

identical constitutive models and properties were used for both isotropic and 

orthotropic models. The isotropic models were defined by an isotropic fabric, having 

eigenvalues of one in each direction.  

Table 1: Mechanical parameters for the elastic-visco plastic model used in the finite element simulations 

[16].  

  
Ε0 

[GPa] 
ν0 

G0 

[GPa] 
k l 

σ0 

[MPa] 
χ0 

τ0 

[MPa] 
η M 

Yield 

ratio 

Trabecular 
Tension 12 0.249 3.913 1.878 1.076 81.6 -0.3 68.9 

1.2 4.0 0.66 
Compression      111.6 0.31  

Cortical 
Tension 12 0.34 4.47 1.0 1.0 72.0 -0.37 62.6 

Compression      108.0 0.49  

 

2.6 Statistical Analyses 

The relations between different modes of shape, BV/TV, and fabric tensor were 

compared using the coefficient of determination (R
2
). For the mechanical evaluation, 

the predicted ultimate force and displacement were compared between the different 

hFE models as well as with the experimental results. Linear regression and paired t-

test were used to compare these calculations as well as an ANCOVA test to compare 

the slope of the different regressions. For all statistical analyses, differences with p 

values smaller than 0.05 were considered to be statistically significant.  

3 Results 

3.1 Model Evaluation 

Four statistical models have been constructed based on the HR-pQCT datasets: three 

independent models for shape, BV/TV, and fabric as well as the 3-combined model. 

A qualitative comparison of the first modes of each individual model with the 

corresponding modes of the combined model indicated minor differences between 

both representations of the data, especially in the first mode of variation (Figure 2). 

As expected the overall influence on the bone shape, BV/TV, and DA decreased by 
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the increasing mode number. The samples created along each mode do not show a 

large difference between 3-combined model and the individual models. To better 

represent the underlying variation, the differences on the reconstructed bone 

parameters at ±2 times standard deviation (√𝝀𝒊
𝒑
) were calculated. The difference for 

parameter p (shape, BV/TV or anisotropy) in the mode of i can be expressed as 

). The first mode was very 

similar between the 3-combined and the individual model, but differences were 

visible in the second mode. However, the difference between the 3-combined and the 

individual models remained small compared to the average bone and did not 

significantly affect the overall distribution of bone shape, BV/TV, DA, or the fabric 

orientation. The difference in the principal orientation of the bone was represented as 

the angle between the principal directions of the reconstructed fabric tensor at ±2√𝝀𝒊
𝒑
 

distance from the mean tensor (Figure 2). While the average variation in the principal 

tensor direction in the first mode of the 3-combined model and individual tensor 

model was only 19 ± 22 degrees, for some elements the variation reached up to 90 

degrees. These elements were mostly located on the regions where the tensor is 

almost isotropic. Elements on the intertrochanteric line also showed a large variation 

of the orientation for different modes of the model. This region is located at the 

border between two different trabecular bone textures. Consequently, small variations 

in the location of elements can result in a difference of 90 degrees in the principal 

direction of the fabric tensor. 

The relationship between the different morphometric parameters was evaluated using 

the correlations between the parameters of the different statistical models; shape, 

BV/TV and fabric (Figure 3). For each bone, the “b-parameters” and all possible 

correlations between the parameters were quantified. No correlation was found except 

one between the first modes of BV/TV and fabric tensor models (R2 = 0.8). This 

strong correlation indicates that the change in overall bone density in the population 

(described by the first mode of BV/TV) is associated with a change in the bone fabric 

distribution. None of the other correlations was above R
2
 = 0.5. 
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Figure 2. The variation represented for (a) shape, (b) BV/TV, (c) and the fabric tensor by the first two 

modes of individual models and the 3-combined model. For each model, the bone variations for -2 and +2 

times the standard deviation (√𝝀𝒊
𝒑 ) from the average in direction of the corresponding modes are 

represented. The values for BV/TV and the tensor are shown on the average bone. The two rightmost 

columns show the absolute difference between the reconstructed parameters by -2 and +2 times the 

standard deviation with respect to the average. The difference in the fabric tensor orientation is shown as 

the angle between principal orientations of reconstructed tensor at the two extremes of each mode for each 

element. The color-maps are adapted for the differences in each mode for visualization purposes (Refer to 

the animations in supplementary material for a better visualization of different modes of the statistical 

models). 
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Figure 3. The correlation between the first three modes of shape, BV/TV, and tensor models are shown with 

respect to each other and with respect to age. The value given in each cell corresponds to the R2 of the 

correlation. A single strong correlation (R2 = 0.8) was found between the first mode of BV/TV and the first 

mode of tensor.  

The ability of different models to reproduce femoral bones has been evaluated using 

the generalization error (Figure 4). As expected, increasing the number of modes 

decreased the generalization error for the model of shape and BV/TV. The 

generalization error decreases respectively by 60% and 40% for the model of shape 

and BV/TV, compared to their values predicted by the mean bone. However, the 

generalization error remained nearly constant for increasing number of modes for the 

fabric tensor; the relative improvement was less than 1% for orientation and 10% for 

the DA when using all modes of the statistical model. In addition, the combined 

model showed a very similar behavior as each of the individual models. Of course, 

the number of modes was adjusted to describe the equivalent variability, i.e. the initial 

model of the 3-combined model corresponds to three modes of the individual models, 

since this single mode encodes at the time, shape, BV/TV and bone fabric. Again, the 

generalization error remained constant for the bone fabric, which indicates that little 

information is contained in the fabric model beyond its average and the initial mode. 
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In addition, the similarity between the generalization error of the individual and 

combined models further confirms the independence of the individual models and 

therefore indicates that the combined model does not encode additional correlation 

between the parameters. 

 

Figure 4. Normalized generalization error of each individual (dotted line) and 3-combined (solid line) 

models. The generalization ability of the model describing bone fabric is shown with two metrics; the error 

predicting the orientation and the error on the reconstructed DA (subsection 2.5.1). Two abscissa axes are 

shown in the figure, one on the bottom for 3-combined model, and one on the top for the individual models.  

Finally, the compactness of the three individual models was calculated. The shape 

model was the most compact model followed by the BV/TV model (Figure 5). For 

these models, the first mode accounts for about 50% of the variability in the 

population, while 30 modes are sufficient to represent 90% of the existing bone shape 

or intensity. On the other hand, the compactness of the tensor model was low, starting 

with 7% of the total energy for the first mode of the model and not changing much for 

other modes. These results suggest that there is no information in the different tensor 

modes and therefore only the average model is sufficient to describe the bone fabric 

for all the samples in the dataset. Instead of using statistical model to predict fabric 

tensor, we propose to use average bone fabric in the FE simulations. 
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Figure 5. The compactness of each individual model. The tensor model showed a low compactness; the 

initial model represent only 10% of the variability and almost all the modes are required to reach 90% of 

the variability. Compactness calculated for the bone shape and BV/TV correspond to previous reports [17].  

3.2 Mechanical Evaluation 

The FE simulations were performed for three models with (1) anisotropic information 

extracted from HR-pQCT scans (the original model), (2) the average anisotropy and 

(3) isotropic material properties. 

The numerical model was first validated against experimental data. Results showed 

that the FE calculation using the anisotropic information extracted from the HR-

pQCT scan was able to accurately predict the experimental measurements. On the 10 

samples used for the validation, the correlation between ultimate force calculated 

numerical and the experimental results was R
2
=0.81 with a slope of 1.02. The 

displacement at the maximum force in the force-displacement curve (ultimate 

displacement) was also accurately predicted with a correlation of R
2
=0.61 and a slope 

of 0.96. The results of the pairwise t-test indicated that there is no statistically 

significant difference between the experimental data and the simulation results. The 

comparison between isotropic material properties and the experiment shows that the 

isotropic material does not represent the biomechanical properties of the bone as 

accurately as the patient-specific anisotropy (Figure 6). While the correlation 

coefficient was similar to the patient-specific models, the slope of the isotropic 

calculations is about 0.85, which differs from the line of equality. Moreover, t-test 

showed a significant difference between the ultimate force and displacement 
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calculated using hFE model with isotropic material properties and the values 

measured in the experiments (pF = 0.01 and pU = 0.03). 

 

Figure 6. The ultimate force and displacement, calculated for patient-specific hFE model (red circles) and 

hFE model based on isotropic material (green diamonds) vs. the results measured in the experimental setup. 

The validated hFE model was used to evaluate the mechanical effect of different 

approach to assign bone fabric. The average fabric tensor (no mode of variation was 

included) was able to accurately estimate the ultimate force calculated by patient-

specific hFE model (error of about 4%), while the isotropic model showed a 

prediction error about 4.5 times higher (about 18.4%). A similar observation was 

obtained for the prediction of the ultimate displacement where the average fabric 

resulted in a small prediction error (about 3%), which was about 3 times lower than 

the prediction error achieved with the isotopic model (about 9%). In addition, no 

statistically significant difference was observed between the results calculated with 

the original model and the model based on average anisotropy (p=0.557 and p=0.076 

for respectively, ultimate force and ultimate displacement) while the comparison with 

the isotropic model showed statistically significant differences (p<0.001), compared 

to both the original model and the average anisotropy model. Finally, the ANCOVA 

test showed a statistically significant difference between average fabric tensor and 

isotropic material, for both ultimate force and ultimate displacement (p<0.001). 

(a) (b) 

y = 1.0229x
R² = 0.81199 y = 0.8551x

R² = 0.7895

0

2 

4 

6 

8 

10 

12 

14 

16 

18 

0 2 4 6 8 10 12 14 16 18 

h
F

E
 U

lt
. 

F
o

rc
e

 (
N

)

Experimental Ult. Force (N)

Ultimate Force

Original Anisotropy

Isotropic

one-to-one

y = 0.9646x
R² = 0.61263

y = 0.8726x
R² = 0.55121

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

h
F

E
 U

 (
m

m
)

Experimental U (mm)

Ultimate Displacement

Original Anisotropy

Isotropic

one-to-one

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 19 

 

Figure 7. The ultimate force and displacement, calculated for average anisotropy (blue triangles) and 

isotropic material (green diamonds) vs. the results calculated for original anisotropy based on HR-pQCT. 

In general, the model with average anisotropy provides similar FE results as the 

model directly derived from the patients’ HR-pQCT image. However isotropic 

material properties failed to predict the results of the patient-specific anisotropy. The 

results obtained with the average fabric tensor were similar to those obtained using 

the original anisotropy in the stance position while the isotropic material 

underestimates the ultimate force and displacement (Figure 7).  

4 Discussion 

Statistical models have been used to study the variation of bone properties, improve 

implant design and build patient-specific FE models [26–30]. However existing 

models focused on bone shape and to some extent to bone density, but overlooked the 

anisotropy of trabecular bone. Including fabric information in these statistical models 

would help to gain a deeper understanding of its variation in the population. In 

addition, this variation could be studied with respect to the shape of the bone as well 

as BV/TV using combined statistical models. 

While many studies analyzed the correlation of bone micro-architectural parameters 

to bone strength and fracture risk [1,12,31–34], the relations between the distribution 

of these parameters in the proximal femur were not known. However, these studies 

relied on correlations based on local bone properties and were not modeling the 

change of the overall distribution of bone density and fabric between specimens. Our 

results showed that there is no correlation between the distributions of bone shape, 

BV/TV, and fabric. Therefore it is not possible to gain information on the DA from 

the shape or density of the patient’s bone. A correlation was only found between the 
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first parameters of bone fabric and of the first mode of BV/TV, but all remaining 

correlations were insignificant. This finding is inline with previously published results 

showing that the DA was scarcely in correlation with BV/TV in the femoral head 

[35,36]. 

In addition, the statistical model of bone fabric indicated that trabecular bone 

orientation and DA did not vary significantly within the population. Therefore, the 

map of bone orientation in the proximal femur can be assumed to be constant among 

patients and that the average orientation is a good predictor of the patient’s fabric. Of 

course, the average orientation did not perfectly represent the individual bone 

orientation; the average difference between the principal orientation and the 

corresponding ground-truth was 17°, with 10.4% error on prediction of the DA. 

However, this prediction error corresponds to previous studies [7–9,11,37]. Two 

alternative techniques were tested to improve the prediction of fabric orientation 

compared to the global alignment obtained by Procrustes; first bone fabric was 

aligned based on the local orientation of the elements. The second approach relied on 

the orientation of the bone fabric based on the orientation of larger regions of the 

femur such as the femoral head, neck, greater trochanter, and shaft). The local 

adaptation of the fabric orientation improved the predictions of principal fabric 

orientation by two degrees, however it did not have measurable influence on the 

mechanical behavior. Based on this observation, we decided to use average anisotropy 

without local orientation adaptation, since this approach proved to provide a similar 

level of accuracy as more complex techniques. 

The stability of the bone orientation within the population was confirmed by 

mechanical simulation of the proximal femur using finite elements analyses; using the 

average bone fabric lead to mechanical results identical to the ground truth model 

directly built from HR-pQCT and significantly improve the mechanical simulations 

compared to a model relying on isotropic mechanical properties. The good prediction 

of the mechanical evaluation with the average anisotropy map is in agreement with 

previous results showing that morphing the fabric information of the template 

anisotropy is able to reproduce a mechanical behavior of the proximal femur. In this 

context, the average of the anisotropic calculated in the present work can be seen as 

the optimal approach to select the template anisotropy for the registration approach.  
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Only one existing study investigated the inter-individual variability of bone density 

and DA [15]; computational methods were used to study the inter-individual 

variability of BV/TV and DA in the entire proximal femur. A large variation was 

observed among the samples for the BV/TV while the inter-individual variability in 

DA was low. The outcomes of our statistical model also confirm that, not only the DA 

but also the distribution of fabric tensor in the proximal femur is near to constant and 

that large variation in the distribution of bone density were present in the statistical 

models of the population. Other studies focused on the age-dependence of the 

morphological parameters [14] and found a moderate correlation between age and DA 

for specific regions of the femoral head (R
2
  0.45). A similar correlation was found 

in the present study between age and the initial modes of the tensor model describing 

bone fabric (R
2
  0.43). However, it is important to note that the initial modes of the 

tensor model represent marginal information and that the correlation is therefore of 

limited value.  

It is important to have enough samples in the models to represent the anatomical 

variations present in a population. In this study, 73 bones were included in the 

statistical models. These samples were either healthy, osteoporotic or osteopenic, but 

were mostly obtained from an elderly population. It is difficult to define the number 

of samples required to build relevant models and to determine what is the extent of 

the population represented by our samples. To estimate the effect of changing the size 

of the dataset, the statistical analysis was repeated using only half of the bone 

samples. Only small differences could be observed when using the reduced models; 

the average reconstruction error was slightly higher with only 36 samples compared 

to the complete model, but the overall differences remained small. Therefore, the 

number of sample included in the model seems to be a valid representation of the 

population. Nevertheless, the model built in this study only represents the training 

datasets and the validity of the results is therefore limited to elderly healthy, 

osteopenic, and osteoporotic patients. 

Principal component analysis was used to represent the data and reduce the size of the 

model. The resulting modes of variations – described by the eigenvectors – are 

orthogonal, so it is possible to find the dependent and independent parameters among 

the bone. This property makes PCA a powerful tool in statistical modeling, but the 

“physical” interpretation of the different modes is difficult or even impossible beyond 
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the first few initial modes. However, most of the other matrix decomposition methods 

suffer from the same limitation and this approach was successful to establish 

correlation (or the absence of it) between the distributions of different bone 

parameters. Another limitation of PCA is that it finds only linear decomposition 

between parameters. Two sources of nonlinearities should be considered i) non-linear 

pattern in the distribution of anisotropy in the bone and ii) non-linear correlation 

between the distribution of anisotropy and bone shape or BV/TV. The first aspect has 

been considered and the analysis of the fabric tensors – which is positive semi-

definite – has been analyzed using the log-Euclidean framework proposed by Arigny 

et al. [22]. The results of this analysis indicated that there is no significant variation in 

bone anisotropy, which implies that no nonlinearity arises from the relationship 

between fabric tensor with shape and/or BV/TV. For these reasons – and in order to 

limit the complexity of the analysis – linear PCA was used in this study. 

The mechanical evaluations were performed with loading conditions corresponding to 

a stance position. With this loading environment, results showed that the average 

fabric orientation was able to reproduce the expected mechanical behavior. For a 

complete evaluation, additional loading conditions could be performed - typically, 

side fall. Nevertheless, Luisier et al. showed that the output of FE models with 

isotropic material properties is not significantly different from an FE model with 

anisotropic material properties [16]. Therefore, side-fall configuration is not expected 

to show the effect of anisotropy prediction on the bone stiffness. The cortical 

thickness was also not explicitly included in the FE model. Although, the mechanical 

simulations closely match the experimental data, a possible extension of the model is 

to build a statistical model describing the spatial distribution of the cortical thickness 

in the population. This information can be accurately derived from high-resolution 

scans and combined with the models of shape and/or bone intensity. 
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Based on these results, while it is not possible to accurately predict the fabric tensor 

distribution from the bone shape and the distribution of BV/TV, using the average 

fabric information makes it possible to predict the strength of the proximal femur. 

More studies on larger datasets - including pathological cases – as well as additional 

anatomical sites should be performed to confirm the conclusions of this study and 

show that it is possible to easily include fabric tensor information in the numerical 

simulation derived from clinical CT, provided that an average model of the 

anatomical site has been pre-established from high-resolution datasets. 
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6 Highlights 

 A statistical model of the biomechanical properties of the proximal femur was 

built based on 73 HR-pQCT scans  

 The correlation found among bone fabric, bone volume fraction, and bone 

shape was weak. 

 The average fabric tensor is good predictor of patient-specific fabric tensor 

extracted from HR-pQCT scan. 

 Finite element calculations based on the average bone orientation closely 

reproduces the bone strength obtained using patient-specific fabric tensor. 

 Fabric of the proximal femur follows a similar structure within the population, 

which can be leveraged to build patient-specific models.   
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