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Charmless Non-Leptonic B decays Javier Virto

1. Introduction and Motivation

1.1 Definitions

Non-leptonic B decays are exclusive decays of the form B→ h1 · · ·hn with hi any heavy or light
hadrons. Charmless non-leptonic decays are non-leptonic decays with no charmed hadrons in the
final state (and excluding cc̄ states). We will mostly focus on charmless decays to two (B→M1M2)
and three (B→M1M2M3) final mesons, but the generalities are common to all non-leptonic modes.

1.2 Non-leptonic B decays within the global arena of particle physics

There are a number of open issues in our understanding of the physics of the elementary
particles and their interactions which our current theory –the Standard Model (SM)– does not
seem to be able to answer. These questions are related to gauge symmetry, electroweak symmetry
breaking, flavor and CP (including baryogenesis), astrophysics and cosmology (dark matter, dark
energy and inflation), and gravity. Many extensions of the SM addressing some of these issues
have been put forward, and many are perfectly plausible given our current theoretical knowledge
and experimental record. While it is possible that purely theoretical work may narrow down in the
future the number of viable models, it is clear that the fast track is to obtain hints from experiment.
A more complete theory that addresses all or some of these issues, while at the same time sharing
the many outstanding successes of the SM, will very likely as well modify the predictions for
current and future laboratory experiments which study collisions and decays of known particles.
Establishing such deviations with respect to SM expectations will not only provide direct evidence
for the need of a non-trivial extension of the SM, but also specific hints of what this extension
should look like. This is arguably the most important task in particle physics today.

Testing the SM requires first to measure its free parameters precisely and to understand how
to make precision calculations. Most of the free parameters of the SM are related to flavor, such
as the entries of the CKM matrix –which govern the physics of flavor in the quark sector (flavor
transitions of hadrons). Non-leptonic B decays are an essential input in CKM fits, and necessary
for the direct measurement of the CKM angles α , β and γ (see e.g. [1]), thus providing, in addition,
valuable tests of the SM mechanism of CP violation. They also provide direct access to the study of
Bq− B̄q mixing (∆B = 2 transitions) through the interference of CP-conjugated decays into final CP
eigenstates. From the huge number of different non-leptonic B decays accessible experimentally,
some are mediated at tree level in the SM, while some arise only at the loop level; some are
dominated by a single SM amplitude, while some are the result of interference of two amplitudes
of similar size with different weak and strong phases. This results in very broad phenomenological
applications from SM studies to New Physics (NP) searches, and including hadronic physics.

1.3 Non-leptonic B decays in the context of strong interactions

Any process involving hadrons is probing the physics of QCD bound states in some way.
Therefore one is forced to either make full computations in a non-perturbative regime, or to isolate
the contributions sensitive to infrared (IR) physics, parametrize them by a few “universal” quanti-
ties, and subsequently (a) calculate them, (b) extract them from experiment, or (c) build observables
where these cancel out. So far, we can only calculate non-perturbatively a few simple objects such
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Charmless Non-Leptonic B decays Javier Virto

as decay constants (matrix elements like 〈0|d̄LγµbL|B̄〉) or form factors (matrix elements such as
〈π|d̄LγµbL|B̄〉). These calculations are based on numerical simulations (in the framework of Lattice
QCD, see e.g. [2]), or on operator product expansions and dispersion relations (within the frame-
work of QCD sum rules, see e.g. [3]). Decay constants and form factors are enough for predictions
of leptonic (e.g. B−→ `−ν̄` or Bs→ `+`−) and semileptonic (e.g. B−→ π0`−ν̄`) decays –at least
to leading order in QED–, but not for non-leptonic decays such as B→ ππ .

Isolating IR effects is a particular case of scale separation in quantum field theory, which
–if the scales are widely separated– is achieved most conveniently in the framework of effective
field theory (EFT). In the case of weak meson decays, a first step is to separate the scale of weak
interactions (∼ MW ) from the scale of hadronic physics (mb or lower). These leads to the Weak
Effective Theory (see e.g. [4]) where weak transitions are mediated by dimension-six operators:

LW = L no top
QCD+QED−

4GF√
2 ∑

p=u,c
λ
(D)
p

[
C1 Qp

1 +C2 Qp
2 + ∑

i=3···6,8
Ci Qi

]
+ · · · (1.1)

Here the CKM prefactors λ
(D)
p ≡VpbV ∗pD ensure the Wilson coefficients Ci are independent of CKM

elements in the SM once CKM unitarity is used, and we have only written down explicitly the
dimension-six operators most relevant for charmless non-leptonic b→ Dq̄q transitions, with D =

{d,s} and q = {u,d,s}. These include current-current operators Qp
1,2 ∼ (D̄p)(p̄b), QCD penguin

operators Q3···6 ∼ ∑q(D̄b)(q̄q) and the chormomagnetic operator Q8 ∼ D̄σ µνGµνb (see e.g. [5]).
Additional “evanescent” operators are needed for renormalization in dimensional regularization
at higher orders in QCD (see e.g. [6]). Non-leptonic B-decay amplitudes are then given by (this
notation is not standard):

A(B̄→ f ) = λ
(D)
u (T u

f +Pf )+λ
(D)
c (T c

f +Pf ) (1.2)

with

T p
f =−4GF√

2 ∑
i=1,2

Ci(µ)〈 f |Qp
i (µ)|B̄〉 , Pf =−

4GF√
2 ∑

i=3···6,8
Ci(µ)〈 f |Qi(µ)|B̄〉 . (1.3)

Note that in the case of charmless decays T c
f is purely the result of a penguin contraction (and thus

“T ” does not necessarily mean “Tree”).
For µ ∼ mb, the matrix elements of the operators do not depend on any scale larger than mb

(all the dependence on the weak and, possibly, NP scales is contained in Ci(µ)). At the same
time the Wilson coefficients do not depend on any IR scale and are thus perturbatively calculable.
The values of the Wilson coefficients Ci(µ) in the SM at the renormalization scale µ ∼ mb can be
calculated via the usual matching-and-running procedure, and are known to next-to-next-to-leading
logarithmic (NNLL) accuracy [7, 8, 6, 9, 10].

The challenge is to calculate the matrix elements 〈M1M2 · · · |Qi(µ)|B̄〉 in QCD. This is a very
complicated task, not completely understood so far, and which constitutes yet another strong mo-
tivation for the study of non-leptonic B decays: they teach us about QCD. One example: the soft-
collinear effective theory (with a wide range of applications, from heavy-meson decays to collider
physics and gravity, see e.g. [11]), was first developed to describe B-meson decays [12, 13, 14, 15].

2
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1.4 Soft-collinear factorization

The matrix elements 〈M1M2|Qi(µ)|B̄〉 at µ 'mb depend on three different momentum scales:
(1) a “hard” scale p2

h ∼m2
b associated to the energy of the process and the choice of renormalization

scale; (2) a “soft” scale p2
s ∼ Λ2

QCD associated with the dynamics of light degrees of freedom
within the B and light mesons; and (3) a “hard-collinear” scale p2

hc ∼ mbΛQCD associated with a
momentum transfer that would give a soft light parton in the B-meson a large energy (∼ mb) and
a low virtuality (∼ ΛQCD), so as to become part of one of the final mesons. Such a large-energy-
low-virtuality momentum is called a “collinear” momentum pc (note that p2

c ∼ ΛQCD). In the
two-body final state there are two different collinear momenta: pc and pc̄ in opposite directions,
corresponding to partons in M1 and M2. In the heavy-quark limit these three scales are widely
separated: p2

h� p2
hc� p2

s,c,c̄, calling for a scale separation within EFT. Scale separation leads often
to useful factorization “theorems”; in this case integrating out hard scales at the leading power leads
to “soft-collinear factorization” (see e.g. [16]) with decoupling of anti-collinear modes.

The first step is to integrate out from QCD the scale p2
h. This leads to an EFT called SCET-1.

The matching condition for a QCD operator Qi in terms of SCET-1 operators OI , OII is given by:

Qi =
∫

dt T̃ I(t)OI
i (t)+

∫
dt ds T̃ II(t,s)OII

i (t,s) (1.4)

OI
i (t) =

[
(χ̄Wc̄)(tn−)Γ1

i (W
†
c̄ χ)(0)

][
(ξ̄Wc)(0)Γ2

i hv(0)
]

(1.5)

OII
i (t,s) =

[
(χ̄Wc̄)(tn−)Γ3

i (W
†
c̄ χ)(0)

][
(ξ̄Wc)(0)Γ4

i (W
†
c i /D⊥cWc)(sn+)Γ5

i hv(0)
]

(1.6)

where χ , ξ and hv are collinear, anti-collinear and heavy quark fields, Wc,c̄ are collinear and anti-
collinear Wilson lines, n± are unit light-cone vectors in the collinear and anti-collinear directions,
and Γ

j
i are Lorentz structures. The functions T̃ I,II are perturbative Wilson coefficients that depend

only on the hard scale. In SCET-1 there are no leading power interactions between anti-collinear
and soft or collinear modes, and the anti-collinear sector decouples. Thus the matrix elements of
Qi are proportional to a light-cone distribution amplitude (LCDA) of a light meson:

〈M2|(χ̄Wc̄)(tn−)Γi(W
†
c̄ χ)(0)|0〉 ∼ φM2(t) , (1.7)

where it is assumed that M2 has anti-collinear momentum. The matrix elements of heavy-collinear
currents between B and M1 still depend on the hard-collinear scale. Hard-collinear modes are inte-
grated out at a second step, leading to an EFT called SCET-2, containing only soft and (anti)collinear
modes. Hard-collinear factorization works for OII , leading to:

〈M1|(ξ̄Wc)(0)Γi(W †
c i /D⊥cWc)(sn+)Γ′i hv(0)|B̄〉 ∼

∫
dω duJi(s,w,u)φB(ω)φM1(u) (1.8)

where Ji(s,ω,u) is a hard-collinear matching coefficient, which is perturbative provided the hard-
collinear scale

√
mbΛQCD is perturbative. Hard-collinear factorization fails for OI , so that the

form factor 〈M1|(ξ̄Wc)(0)Γhv(0)|B̄〉, which depends on soft and hard-collinear momenta, cannot
be factorized. This is a long-standing problem [17, 18, 19]. In practice, this is part of the full QCD
B→M1 form factor FBM1 , which appears in factorization formulas.

3
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2. Two-body decays

2.1 Factorization formula for two-body decays at the leading power

The arguments laid down in Section 1.4 lead to a factorization formula for charmless two-body
B decays at the leading power in ΛQCD/mb, first put forward in [20, 21]. It should be remarked that
after 20 years of intense research these papers are not outdated in any way and remain state-of-the-
art: much has been understood conceptually since then but the formulation has not changed a bit.
In essence, the matrix element of an operator Qi is given by:

〈M1M2|Qi|B̄〉= FBM1

∫
duT I

i (u)φM2(u)+
∫

dω dudvT II
i (ω,u,v)φB(ω)φM1(u)φM2(v), (2.1)

where FBM is a form factor in QCD, φM are LCDAs of light and heavy mesons, and the (pertur-
bative) “hard-scattering kernels” T I,II

i are related to the SCET matching coefficients T̃ I,II and Ji in
Section 1.4. The notation is such that M1 picks the B-meson spectator quark; if M2 can also pick
the spectator, there is an additional corresponding term proportional to FBM2 . T I(u) = 1+O(αs)

arises from vertex corrections already at the leading order, while T II(ω,u,v) = O(αs) starts at
next-to-leading order and involves spectator scattering, and it is power suppressed if M1 is heavy
(not in charmless decays).

The factoriztion formula (2.1) is valid only up to O(Λ/mb) corrections but (presumably) to
all orders in αs. Formally, this has been proven explicitly up to NNLO. Assuming that the SCET
contains all the relevant IR degrees of freedom (which is the standard assumption), leads to an
all-order proof. But this wouldn’t be the first time IR modes are missed.

2.2 Status of perturbative calculations

The original papers on QCDF (e.g. [22]) contain already all next-to-leading order (NLO) cor-
rections (i.e. O(αs)) to the hard-scatering kernels T I , T II for both tree and penguin topologies. The
calculation of next-to-next-to-leading order corrections (i.e. O(α2

s )) is a much more demanding
task, which has been almost completed during the last decade. These include: two-loop vertex
corrections [23, 24, 25] and two-loop penguin and one-loop chromomagnetic operator contribu-
tions [26, 27] to T I , as well as one-loop vertex corrections [28, 29, 30] and one-loop penguin
contributions [31, 32] to T II . This is summarized in Table 1. NNLO penguin contributions to T I

from Qc
1,2 are particularly difficult as they require the evaluation of a large number of two-loop

Feynmann integrals with three scales (mb,mc, umb), with a non-trivial threshold at ūm2
b ∼ 4m2

c [33].
Missing NNLO pieces include two-loop vertex and penguin corrections from the penguin opera-
tors Q3···6, which are nevertheless numerically subleading for tree decays.

At leading power, strong phases appear first at NLO. Therefore the first correction to CP asym-
metries comes from NNLO corrections. This is the main motivation for the NNLO calculation. CP
asymmetries will be discussed below.

2.3 Tree decays

Tree decays are those receiving vertex contributions from current-current operators. We take

4
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Table 1: Summary of the status of perturbative calculations of charmless two-body B decays in QCDF.

as an example B→ ππ . In this case the amplitudes are given by:
√

2A(B−→ π
−

π
0) = λ

(d)
u
[
a1(ππ)+a2(ππ)

]
Aππ (2.2)

−A(B̄0→ π
0
π

0) = λ
(d)
u
[
a2(ππ)− α̂

u
4 (ππ)

]
Aππ −λ

(d)
c α̂

c
4(ππ) Aππ (2.3)

and A(B̄0→ π+π−) = A(B̄0→ π0π0)+
√

2A(B−→ π−π0). Here we have ignored contributions
from electroweak penguins and annihilation topologies (although α̂

p
4 = α

p
4 +β

p
3 contains an anni-

hilation contribution β
p
3 ). a1 and a2 are color-allowed and color-suppressed tree amplitudes. α

p
4

contains penguin contractions of current-current operators, and will be considered later. Since
a1,2� α4, and λ

(d)
u ∼ λ

(d)
c , tree decays are dominated by the tree amplitudes a1,2. At NNLO [25]:

a1(ππ) = 1.009+[0.023+0.010 i]NLO +[0.026+0.028 i]NNLO

−
[

rsp

0.485

]{
0.015+[0.037+0.029 i]NLOsp +[0.009]tw3

}
= 1.00+0.01 i , (2.4)

a2(ππ) = 0.220− [0.179+0.077 i]NLO− [0.031+0.050 i]NNLO

+

[
rsp

0.485

]{
0.123+[0.053+0.054 i]NLOsp +[0.072]tw3

}
= 0.26−0.07 i , (2.5)

where rsp = 9 fπ f̂B/(mb f Bπ
+ (0)λB) is a normalization related to the hard-spectator contributions (i.e.

T II), most notably proportional to the inverse moment λ
−1
B of the B-meson LCDA. The perturbative

expansion is seen to be well behaved, taking into account that the NLO contribution to a2 lifts color
suppression, while the opposite is true for a1. These two amplitudes must be scale-independent,
and indeed the µ-dependence estabilizes at NNLO for the real parts (no so much for the imaginary
parts, as the LO contribution is real). Radiative corrections are relatively large, but significant
cancellations occur between the form factor and spectator terms. The color suppressed amplitude
is dominated by the spectator scattering contribution, and therefore the amplitude B̄→ π0π0 has a
strong dependence on λB (one finds a2 ∼ 0.26→ 0.51 when λB→ λB/2).

5
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For λB(1 GeV) = 0.35± 0.15, all branching fractions for tree decays (B→ ππ , B→ πρ ,
B→ ρρ) agree well with experimental measurements within uncertainties, except for very slight
tensions in B̄→ π+π−, B̄→ π−ρ+ and B̄→ π0ρ0, and a persistent significant tension in B̄→ π0π0:
106BR(B̄→ π0π0)th = 0.33+0.11+0.42

−0.08−0.17 vs. 106BR(B̄→ π0π0)exp = 1.55± 0.19. It turns out that
a lower value for λB(1 GeV) ∼ 0.20 improves the agreement of all these modes, and enhances
significantly 106BR(B̄→ π0π0) = 0.63+0.12+0.64

−0.10−0.42, bringing it closer to the experimental average,
but still far away. Notably, a new Belle analysis [34] reports 106BR(B̄→ π0π0)Belle = 0.90±0.16,
and would agree within uncertainties with the theory prediction, assuming such a low value for λB.

2.4 Penguin decays

Penguin decays are those for which vertex contributions from current-current operators are
either absent, or CKM suppressed with respect to penguin contractions (of c̄bs̄c operators) . Taking
as an example B̄→ Kπ , we have (ignoring electroweak penguins and annihilation topologies):

A(B−→ π
−K̄0) = λ

(s)
u α̂

u
4 (πK̄) AπK̄ +λ

(s)
c α̂

c
4(πK̄) AπK̄ (2.6)

√
2A(B−→ π

0K−) = λ
(s)
u

{[
a1(πK̄)+ α̂

u
4 (πK̄)

]
AπK̄ +a2(K̄π) AK̄π

}
+λ

(s)
c α̂

c
4(πK̄) AπK̄ (2.7)

A(B̄0→ π
+K−) = λ

(s)
u
[
a1(πK̄)+ α̂

u
4 (πK̄)

]
AπK̄ +λ

(s)
c α̂

c
4(πK̄) AπK̄ (2.8)

and
√

2A(B̄0 → π0K̄0) = −A(B− → π−K̄0) +
√

2A(B− → π0K−)−A(B̄0 → π+K−). Note that
λ
(s)
u /λ

(s)
s ∼ λ 2 ∼ 0.04 (with λ the Cabibbo parameter), so tree amplitudes are (at best) CKM

suppressed. The full penguin amplitude α̂
p
4 (πK̄)= ap

4(πK̄)+rK
χ a6(πK̄)+β

p
3 (πK̄) contains a scalar

penguin amplitude ap
6 and an annihilation amplitude β

p
3 . Both contributions are formally power

corrections and will be discussed separately below. The contributions from Q1,2 to the leading
penguin amplitudes ap

4 have been recently calculated at NNLO [27]:

au
4(πK̄)/10−2 = −2.87− [0.09+0.09i]V1 +[0.49−1.32i]P1− [0.32+0.71i]P2 (2.9)

+
[ rsp

0.434

]{
[0.13]LO +[0.14+0.12i]HV− [0.01−0.05i]HP +[0.07]tw3

}
=−2.46−1.94 i ,

ac
4(πK̄)/10−2 = −2.87− [0.09+0.09i]V1 +[0.05−0.62i]P1− [0.77+0.50i]P2 (2.10)

+
[ rsp

0.434

]{
[0.13]LO +[0.14+0.12i]HV +[0.01+0.03i]HP +[0.07]tw3

}
=−3.34−1.05 i .

Spectator scatering (proportional to rsp) is numerically small. The NNLO contribution is labeled
‘P2’, and it is found to be rather large and of the same order of the NLO penguin contributions.
It should be noted that in the case of ac

4 there is a strong cancellation at NLO (in the term labeled
‘P1’) between the two Q1 contributions with different color topologies. Thus the fact that the NNLO
correction is much larger than the NLO seems accidental. Stabilization of the µ dependence of the
real parts suggests the perturbative expansion is well behaved [27]. Again, the scale dependence of
the imaginary part is not significantly reduced at NNLO since the LO contribution is real.

Full NNLO phenomenology for penguin decays would require the missing two-loop matrix
elements of penguin operators Q3···6.

6
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2.5 CP asymmetries

Direct CP asymmetries require the interference of two amplitudes with different weak and
strong phases. Therefore they are governed by the penguin amplitude αc

4 and the imaginary parts
in tree and penguin amplitudes (strong phases). Since the leading-power leading-order amplitudes
are real, strong phases are either O(αs) or O(Λ/mB). Since αs/π ∼Λ/mb, it is plausible that power
corrections are O(1) effects in direct CP asymmetries. In addition, perturbative corrections to CP
asymmetries require tree and penguin amplitudes to NNLO, which is one of the main motivations
behind the calculations in Refs. [25, 27].

Direct CP asymmetries at NNLO for penguin decays have been discussed in [27]. In Table 2
we reproduce some of the results for B→ Kπ direct CP asymmetries. In this case NNLO correc-
tions are small because ap

4 is only a part of the penguin amplitude α̂
p
4 , and ap

6 is numerically large,
thereby diluting the effect. The ‘NNLO’ column does not include the annihilation contribution β

p
3

nor the twist-3 spectator scattering contributions. These are power suppressed but not calculable,
and induce a significant error in the predictions. Using a similar model for power suppressed non-
factorizable contributions as in [22] these are included in the column labeled ‘NNLO+LD’, with
the annihilation contribution β

p
3 giving the dominant effect. In this case the agreement with data is

improved, although uncertainties are inflated considerably. The prediction and experimental num-
ber for the quantity δ (πK) ≡ ACP(π

0K−)−ACP(π
+K−) is also given, which remains a “puzzle”

(see e.g. [35]). In the case of PV and VV final states such as ρK, πK∗, ρK∗, the NNLO contribution
to CP asymmetries can be important, depending on the role of the scalar penguin amplitude ac

6. In
any case it is a general feature that the long-distance annihilation contribution is very important
numerically. But experimental results for these PV and VV modes are still quite uncertain.

f NLO NNLO NNLO+LD Exp

π−K̄0 0.71+0.13+0.21
−0.14−0.19 0.77+0.14+0.23

−0.15−0.22 0.10+0.02+1.24
−0.02−0.27 −1.7±1.6

π0K− 9.42+1.77+1.87
−1.76−1.88 10.18+1.91+2.03

−1.90−2.62 −1.17+0.22+20.00
−0.22− 6.62 4.0±2.1

π+K− 7.25+1.36+2.13
−1.36−2.58 8.08+1.52+2.52

−1.51−2.65 −3.23+0.61+19.17
−0.61− 3.36 −8.2±0.6

π0K̄0 −4.27+0.83+1.48
−0.77−2.23 −4.33+0.84+3.29

−0.78−2.32 −1.41+0.27+5.54
−0.25−6.10 1±10

δ (πK̄) 2.17+0.40+1.39
−0.40−0.74 2.10+0.39+1.40

−0.39−2.86 2.07+0.39+2.76
−0.39−4.55 12.2±2.2

Table 2: Direct CP asymmetries (in percent) for πK final states (from Ref. [27]).

Direct CP asymmetries will most certainly lead to a clear picture of successes and failures of
leading-power factorization. So far the situation is rather confusing, with an “ununderstood pattern
of agreements and disagreements” (quoting [16]). More precise data will also contribute to clarify
the situation, with good prospects from LHCb and Belle-II.

2.6 Power corrections

Power corrections are the main source or uncertainty in the prediction of non-leptonic two-
body B-decay amplitudes. Some power corrections are calculable and numerically important. This
is the case of the scalar penguin amplitude ap

6(M1M2), which contributes to the full penguin am-
plitude α̂

p
4 (M1M2) = ap

4(M1M2)± rM2
χ a6(M1M2)+β

p
3 (M1M2). Here the plus (minus) sign applies

7
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when M1 is a pseudoscalar (vector) meson, and rM2
χ is a “kinematic” factor that contains a power

suppression and a chiral enhancement, e.g. rK
χ = 2m2

K/[mb(mq +ms)]. Numerically rχ ' 1, so al-
though the scalar penguin amplitude is power suppressed, it is numerally leading. This is not a
problem since this amplitude factorizes and it is therefore, calculable.

Other power corrections come from annihilation (e.g. β
p
3 ) and spectator scattering contribu-

tions (e.g. the terms labeled ‘tw3’ above), and do not always factorize. As discussed above, anni-
hilation contributions are relevant for CP asymmetries. Modelling these power-suppressed contri-
butions leads to large uncertainties in the QCDF predictions.

One possibility is to parametrize the weak annihilation (WA) contributions and determine
whether some pattern for WA can accomodate the data. A global fit to most the available data on
Bu,d,s→ PP,V P,VV modes [36] finds that the SM can reproduce the experimental results (with a
few exceptions) using one universal WA parameter for each decay system, and with no anomalously
large values for these parameters (that is, consistent with the most popular model e.g. [22]). The
exceptions are δ (πK) (thus not resolving the “∆ACP puzzle”) and, less significantly, the branching
ratio of B0 → K∗0φ , with a pull around ∼ 2σ . Removing the “universality” assumption for WA
will however ease all tensions (including ∆ACP), at the obvious cost of more freedom and little
predictivity. A similar analysis can be found in [37].

Another possibility is to look for theoretical quantities where non-factorizable contributions
cancel, either completely or approximately. An example is given in Ref. [38], where it is shown
how this cancellation takes place in the quantity ∆ f ≡ T u

f − T c
f [in the notation of Eq. (1.2)] for

certain penguin-mediated decays (for a list of such modes see [39]). Using the QCDF prediction
for this quantity one can predict certain relationships between observables which can help to test
branching ratios and direct CP asymmetries [38, 40] or to extract mixing angles from data [41, 39].

Now that perturbative calculations have reached the NNLO level, progress in the theoretical
study of non-leptonic two-body B decay amplitudes requires addressing power corrections system-
atically. This is strongly motivated given the experimental prospects for measurements of branching
fractions and CP asymmetries in two-body charmless B decays.

3. Three-body decays

3.1 Kinematics

While the kinematics of two-body decays is fixed, three-body decay amplitudes depend on
two kinematic variables. We consider a decay B̄(pB)→M1(p1)M2(p2)M3(p3). It is customary to
take these variables as two invariant masses of two pairs of final state particles (e.g. s12 and s13 with
si j ≡ 2(pi · p j)/m2

B). All physical kinematic configurations thus define a two-dimensional region
in the s12-s13 plane, which in the limit where all final particles are massless is a triangle defined
by s12 > 0, s13 > 0, s12 + s13 < 1. (We will assume massless decay products in the following
for simplicity, all the conclusions remaining valid.) The density plot of the differential decay rate
dΓ/ds12ds13 in that region is called a Dalitz plot.

The Dalitz plot can be divided in different regions with “characteristic” kinematics . The
central region corresponds to the case where all three final particles fly apart with large energy
(E ∼ mB/3) at ∼ 120o angles. The corners correspond to the case in which one final particle is

8
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approximately at rest (i.e. soft), and the other two fly back-to-back with large energy (E ∼ mB/2).
The central part of the edges correspond to the case in which two particles move collinearly with
large energy and the other particle recoils back.

3.2 Three-body decays in QCDF

The two kinematic invariants on which the decay amplitudes depend, introduce two extra
scales in the problem. Different forms of factorization theorems may be conjectured depending on
the scaling of these momentum scales with mb [42].

In the central region, where all invariant masses are of order mB (s12 ∼ s13 ∼ 1/3), the follow-
ing formula is proposed [43]:

〈πππ|Qi|B̄〉si j∼1/3 = FB→π T I
i ⊗Φπ ⊗Φπ +T II

i ⊗ΦB⊗Φπ ⊗Φπ ⊗Φπ , (3.1)

where the convolutions of hard-scattering kernels and distribution amplitudes are written schemat-
ically. The hard kernels T I,II

i can be computed perturbatively in QCD. To the lowest order (at order
αs), only T I

i is considered, and arises from diagrams with an insertion of the operator Qi and all
possible insertions of a hard gluon splitting into a quark-antiquark pair with large invariant mass.
The convolutions of the resulting hard kernels T I

i with the pion light-cone distributions can be
computed without encountering end-point singularities, thus providing a check of the factorization
formula. This is a non-trivial check since the kernels T I

i (u,v) already depend on the momentum
fraction of the quarks at the leading order, so the convolutions are non-trivial.

At the edges of the Dalitz plot, one invariant mass becomes small, and low energy interactions
between the corresponding pair of final state particles leads eventually to the formation of reso-
nances. This is the case for e.g. B→ π+π−π+ in the region where mπ+π− ∼ mρ , and appears as a
band in the Dalitz plot. The decay thus looks very much like a two-body decay, and one expects a
similar factorization formula, except for the fact the one particle is, instead, two [43]:

〈πa
π

b
π

c|Qi|B〉sab�1 = FB→πc
T I

c ⊗Φπaπb +FB→πaπb
T I

ab⊗Φπc +T II⊗ΦB⊗Φπc⊗Φπaπb . (3.2)

Here Φππ denotes a two-pion distribution amplitude (2πLCDA), and FB→ππ denotes a B→ ππ

form factor. Conceptually, this factorization formula is at the same level of theoretical rigor as the
factorization formula for two-body decays to unstable particles (e.g. B→ ρπ), but requires more
complicated hadronic input (discussed below). This is the cost of generalizing quasi-two-body
decays beyond the narrow-width approximation.

The three-body amplitude at the central region is both power- and αs-suppressed with respect
to the amplitude at the edge. The interpolation between one region and the other can be understood
by noting that some parts of the central region amplitude arise from factorization of 2πLCDAs or
B→ ππ form factors at large dipion masses, and one can check analytically the correspondence of
such parts of the amplitudes. Numerically, it is found that the part of the amplitude at the central
region corresponding to the large dipion limit of the 2πLCDA part of the amplitude at the edge
agrees well with the latter only for mB & 20 GeV, but not for realistic values, suggesting that power
corrections to (3.1) are too large in reality, precluding a description of the central region in terms
of single pion states.

9
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3.3 Generalized distribution amplitudes

The relevant 2πLCDA in Eq. (3.2) is given by the matrix element [43, 44]

Φ
q
ππ(z,ζ ,k2

12) =
∫ dx−

2π
eiz(k+12x−)〈π+(k1)π

−(k2)|q̄(x−n−)/n+q(0)|0〉 , (3.3)

where kµ

12 = kµ

1 + kµ

2 ' (k+12/2)nµ

+, ζ = k+12/k+1 , and we have suppressed a Wilson line that makes
the non-local quark current gauge invariant. At the leading order the kernel T I

c in Eq. (3.2) does not
depend on z, and only the normalization for Φππ is needed:∫

dzΦ
q
ππ(z,ζ ,s) = (2ζ −1)Fπ(s) (3.4)

where Fπ(s) is the pion time-like form factor. The absolute value of the pion form factor is well
known experimentally in a wide range of energies (see Fig. 5 in [43]). Higher moments of the
2πLCDA are needed at higher orders, but these are much less known.

3.4 B→ ππ form factors

B→ ππ form factors are in principle accessible from measurements of B→ ππ`ν observ-
ables [45]. The Lorentz structure of the leading-order B−→ π−π+π− amplitude at low mπ+π− is
such that the relevant B→ ππ form factor is

Ft(ζ ,k2
12)≡−

1√
q2
〈π+(k1)π

−(k2)|ū/qγ5 b|B−(p)〉 (3.5)

where q = p−k12 (in our case q2 = m2
π ). At low dipion masses, this form factor may be studied by

means of light-cone sum rules. One may consider light-cone sum rules with two-pion distribution
amplitudes [46] or with B-meson distribution amplitudes [47]. In the first case one arrives to a
closed expression for Ft in terms of moments of the 2πLCDAs:

Ft(k2
12,ζ ) =

m2
b

√
m+π2

√
2 fBm2

B

∫ 1

u0

du
u2 (m

2
b−q2 +u2k2

12) Φ
q
ππ(u,ζ ,k2

12) e
m2

b
M2−

m2
b−ūq2+uūk2

12
uM2 . (3.6)

The disadvantage of this method is that moments of 2πLCDAs are not well-known.
In the second case, one obtains a sum-rule that depends on a weighted integral of the form

factor [47]:∫ s2π
0

4m2
π

ds e−s/M2 s
√

q2 [βπ(s)]2

4
√

6π2
√

λ
F?

π (s)F(1)
t (s,q2) (3.7)

=− fBm2
Bmb

{∫
σ2π

0

0
dσ e−s(σ ,q2)/M2

[
σ

σ̄
φ

B
−(σmB)−

1
σ̄mB

Φ̄
B
±(σmB)

]
+∆ABV

0 (q2,σ2π
0 ,M2)

}
and depends on the B-meson LCDAs and the pion form factor. ∆A0 denotes 3-particle contributions.
This sum rule allows to test models for the B→ ππ form factor, and in the limit where the pion
form factor is dominated by an infinitely narrow ρ meson, this sum rule reduces analytically to the
know sum-rule for the B→ ρ form factor ABρ

0 [48].
A factorization formula for B→ ππ form factors at large dipion masses has also been proven

recently at NLO [49].
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4. Conclusions and future prospects

QCD Factorization is by now very well established as a QCD-based approach to charmless
non-leptonic two-body decays. Perturbative calculations of hard-scattering kernels have reached
the NNLO precision, proving factorization to two loops and confirming a good behaviour of the
perturbative expansion.

The pattern of branching fractions is understood qualitatively, although some tensions are
observed, mostly in modes dominated by the color-suppressed tree amplitude. These tensions could
be related to the spectator scattering contribution, which is proportional to λB, the inverse moment
of the B-meson LCDA, and which is currently not very well known. Values of λB ∼ 200 MeV
are favored, much lower than sum-rule estimates. A direct experimental determination of λB must
await to a precise measurement of B→ γ`ν at Belle-II.

On the other hand, the recent calculation of penguin amplitudes at NNLO provides the first
perturbative corrections to CP asymmetries. However, in this case power corrections could be O(1)
effects, explaining why the global picture in the comparison of theory and experiment is far from
clear. In addition, the “∆ACP puzzle" remains. One should add that experimental measurements of
CP asymmetries to PV and VV final states are still not very precise.

Power corrections is now most probably the most pressing issue in order to make progress in
the theoretical understanding of charmless two-body decays, but the prospects are rather modest.

Three-body decays are still mostly unexplored from the theoretical point of view, although
detailed and exciting experimental analyses of branching fractions and CP violation are piling up.
We also expect many results from Belle-II. Recent studies pursuing factorization methods for three-
body decays look promising.
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