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1 Introduction

Relating the observed matter-antimatter asymmetry to experimentally verifiable laws of

nature is a central challenge for cosmology. An interesting window of opportunity is of-

fered by the so-called SHiP experiment, which aims to search for GeV scale sterile neu-

trinos [1]. Following an idea put forward by Akhmedov, Rubakov and Smirnov [2] and

refined by Asaka and Shaposhnikov [3], GeV scale sterile neutrinos might contribute to
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the matter-antimatter asymmetry. This framework is referred to as leptogenesis through

sterile neutrino oscillations.

According to Sakharov, any theoretical explanation of the observed matter-antimatter

asymmetry needs to come with several non-trivial ingredients: CP violation, deviation from

thermal equilibrium, and baryon number violation. Accounting systematically for such

processes in the environment of the early universe filled with a Standard Model plasma is

a daunting task. However gradual progress is being made (cf. e.g. refs. [4–15]), with the

goal of moving from model computations towards first principles analyses.

In order to formulate the computation in a transparent way, it is helpful to factorize

the system into “fast” and “slow” modes. The purpose of the current paper is to derive

evolution equations for the slow modes, by “integrating out” the fast ones which are in

thermal equilibrium. As slow variables we take lepton and baryon asymmetries, and a

sterile neutrino density matrix which depends on momentum, generation, and helicity. We

find that both helicity states play a role, and in the presence of lepton asymmetries they are

produced and equilibrate at different rates.1 The numerical solution of the slow dynamics

within an expanding background poses a challenge of its own, to be tackled in future work.

Our plan is the following. After a formal derivation of the basic equations in section 2,

we present a resummed perturbative determination of the coefficients appearing in these

equations in section 3. The right-hand sides of the equations contain lepton and baryon

chemical potentials: the relations of these to lepton and baryon number densities are

recalled in section 4, accounting properly for the (hyper)charge neutrality of the plasma.

The evolution equation for baryon asymmetry is given in section 5, and we conclude with

a short outlook in section 6.

2 Derivation of evolution equations

2.1 Formulation of a non-equilibrium problem

We consider temperatures above T ∼ 130 GeV, so that baryon plus lepton number can

change by sphaleron processes which are fast enough to be in or close to thermal equi-

librium [17]. The crossover at which the electroweak symmetry gets “restored” is at

T ∼ 160 GeV [18, 19], however for GeV-scale sterile neutrinos the rates that we are inter-

ested in do not change much in the temperature range between 130 GeV and 160 GeV [20].

Therefore, for the conceptual discussion, we can imagine to work in the “symmetric” phase

of the electroweak theory.2

In the temperature range 130 GeV <∼T <∼ 105 GeV, all Standard Model interactions can

be assumed to be in thermal equilibrium (this includes lepton chirality flipping processes

through the electron Yukawa coupling). Then the state of the system is characterized by

a temperature, T , by three lepton chemical potentials, µa, and by the baryon chemical

1The role of helicity has recently been discussed in a different mass and temperature range in ref. [16].

The model considered involves however a Dirac rather than Majorana sterile neutrino, so that helicity

effects are qualitatively different.
2For the numerical analysis, infrared (IR) sensitive effects from 1 + n↔ 2 + n scatterings, described in

section 3.2, need however to be separately implemented for the symmetric and the Higgs phases [20].
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potential, µB. Suppose now that we extend the Standard Model through right-handed

sterile (gauge singlet) neutrinos, and use these to generate active neutrino masses through

the see-saw mechanism. If the mass of the sterile neutrinos is ∼GeV, then the Yukawa

couplings are so small (∼ 10−7) that sterile neutrinos do not equilibrate in this temper-

ature range. Therefore they constitute a non-equilibrium ensemble, evolving “slowly” in

a Standard Model background. The Yukawa interactions also imply that lepton number

densities are not conserved, so these become slowly evolving variables as well.

The neutrino Yukawa interactions need not be aligned with Standard Model lepton

generations. This leads to sterile neutrino oscillations. Because the neutrino Yukawa

couplings are tiny, coherent oscillations may be maintained for a long period of time, and

sterile neutrinos need to be described by a density matrix.

The momenta of the sterile neutrinos are changed by the same slow interactions as their

number densities are. Therefore, kinetic equilibrium cannot be assumed and the density

matrix displays a non-trivial momentum dependence.

There is one further slow variable to be tracked, namely the helicity of the sterile neutri-

nos. As massive particles, sterile neutrinos can carry both helicities. The two helicity states

experience different interactions: basically, one state interacts with Standard Model leptons

and the other with antileptons. Both states need to be included in the density matrix.

To summarize, we need a density matrix for each sterile neutrino momentum mode,

labelled by k ≡ |k|. It turns out that to a good approximation the two helicity states have

no direct overlap with each other (cf. discussion at the beginning of section 2.5). Therefore,

for each k the set of non-equilibrium variables consists of two complex matrices, denoted

by ρ(τ)IJ , where τ = ± labels helicity and I, J label generations. In addition the three

active lepton asymmetries, denoted by na, and the baryon asymmetry, denoted by nB,

evolve slowly.

The goal of our study is to derive evolution equations for the non-equilibrium variables

to O(h2) in neutrino Yukawa couplings. In principal the general form of the equations

is valid to all orders in Standard Model couplings (in practice certain small corrections

are omitted along the way), however we subsequently evaluate the coefficients at leading

order (cf. section 3). The physically interesting effects, which are of O(h4) or O(h6) [9],

originate from the coupled dynamics of the “slow” oscillations, and will be addressed in a

separate study.

2.2 Basic variables and equations of motion

In the temperature range considered (T >∼ 130 GeV) the Higgs mechanism gives a contribu-

tion small compared with thermal masses, i.e. mW ∼ gv/2� gT , where g denotes the SU(2)

gauge coupling. Then the masses of sterile neutrinos are directly given by the Majorana

masses, assumed real and positive and denoted by MI , I ∈ {1, 2, 3}. The Lagrangian reads

L = LSM +
1

2

∑
I

N̄I

(
iγµ∂µ −MI

)
NI −

∑
I,a

(
¯̀
aaRφ̃ h

∗
IaNI + N̄I hIa φ̃

†aL`a

)
, (2.1)

where φ̃ = iσ2φ
∗ is a Higgs doublet; aL, aR are chiral projectors; `a = (ν e)Ta is a left-handed

lepton doublet of generation a; and hIa are the components of the neutrino Yukawa matrix.

– 3 –
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We consider the so-called ultrarelativistic regime, k ∼ πT �MI , so that a free disper-

sion relation reads

ωkI ≡
√
k2 +M2

I ≈ k +
M2

I

2k
. (2.2)

In this regime the vacuum mass is corrected by a thermal effect of O(h2T 2) [21]. Even

though h is small, the thermal correction is relevant because it should be compared

with the mass differences M2
I − M2

J and because the initial temperature may be high,

T ∼ 105 GeV. In our formalism, thermal masses originate as a part of the O(h2) corrections,

cf. appendix A. Therefore, we treat the kinematics as in vacuum for the moment. The kine-

matic approximation of eq. (2.2) is frequently invoked in order to simplify the discussion.

The sterile neutrino field operator in the interaction picture can be written as

NI(X ) =

∫
k

1√
2ωkI

∑
τ

(
ukτI akτI e

−iKI ·X + vkτI a
†
kτI e

iKI ·X
)
, (2.3)

where
∫
k ≡

∫
d3k

(2π)3
and KI · X ≡ ωkI t − k · x. In accordance with the Majorana nature of

NI , the on-shell spinors are related by v = CūT , where C is the charge conjugation matrix.

The creation and annihilation operators, which are time-independent in eq. (2.3), satisfy

the commutation relations {akτI , a
†
qσJ} = (2π)3δ(3)(k− q)δτσδIJ .

Sterile neutrinos interact through the Yukawa terms in eq. (2.1). We rephrase the

interactions through an interaction Hamiltonian,

Hint(t) =

∫
x

∑
I,a

[
j̄a(X )h∗IaNI(X ) + N̄I(X )hIa ja(X )

]
, X = (t,x) . (2.4)

By ja and j̄a we denote Standard Model currents from eq. (2.1),

ja ≡ aLja ≡ φ̃†aL`a , j̄a ≡ ¯̀
aaRφ̃ . (2.5)

In order to understand the dynamics induced by Hint, it is helpful to go over to the

Heisenberg picture for a moment (cf. ref. [22] for an analogous discussion, and appendix A.1

for a detailed step-by-step argument). Then the canonical equation of motion for the

annihilation operator, defined by expressing the field operator in the form of eq. (2.3) and

accounting for any additional time dependences through akτI and a†qσJ , becomes

iȧkτI(t) =
[
akτI , Hint

]
=

1√
2ωkI

∫
x

∑
a

[
ūkτIhIa ja(X )− j̄a(X )h∗IavkτI

]
eiKI ·X . (2.6)

An analogous equation is obtained for a†qσJ . The canonical anticommutator remains time-

independent. Similarly, the lepton asymmetries evolve as [23]

iL̇a(t) =

∫
x

∑
I

[
j̄a(X )h∗IaNI(X )− N̄I(X )hIaja(X )

]
. (2.7)

For the physical observables that we are interested in, the evolution rate is of O(h2).

We extract the rate from an expectation value of an operator like in eq. (2.7). In order to
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evaluate the expection value, we return to the interaction picture. Then, the time evolution

of the density matrix is determined by Hint. In particular, assuming that the full density

matrix is known at some time t = 0, its time evolution is to first order in h given by

ρfull(t) = ρfull(0)− i
∫ t

0
dt′
[
Hint(t

′), ρfull(0)
]

+O(h2) . (2.8)

The physical rate can then be defined as (cf. e.g. ref. [24], and eq. (A.6) for an explanation

of intermediate steps)

〈Ȯ(t)〉 ≡ Tr
[
Ȯ(t)ρfull(t)

]
= Tr

{[
Ȯ(t),−i

∫ t

0
dt′Hint(t

′)

]
ρfull(0)

}
+O(h3) . (2.9)

The expectation value with respect to the density matrix ρfull(0) is denoted by

〈. . .〉 ≡ Tr {. . . ρfull(0)}. At the end of the computation, this can be re-interpreted as hav-

ing been evaluated with the density matrix at time t, since the difference between ρfull(t)

and ρfull(0) is of O(h). This way, so-called secular terms can be avoided.

Because of the different times scales related to the “slow” and “fast” variables, we can

assume the full density matrix to have a block-diagonal form, ρfull = ρN ⊗ ρSM, where ρN
is the density matrix associated with the sterile neutrinos. The density matrix associated

with the Standard Model degrees of freedom, ρSM, is in equilibrium at a temperature T

and is parametrized by (slowly evolving) chemical potentials µa and µB:

ρSM =
1

ZSM

exp

(
−
HSM −

∑
a µaLa − µBB
T

)
. (2.10)

In the canonical formalism there are no other chemical potentials, however in the path

integral formalism the hypercharge gauge field gets an expectation value in the presence

of µa, µB 6= 0 which effectively generates an additional chemical potential for all fields

coupling to the hypercharge field (cf. section 4).

We note that the operator equation of motion in eq. (2.7) has the form

L̇a(t) = i

∫
x

∑
I

[
HIa(X )−H†Ia(X )

]
, (2.11)

whereas the interaction Hamiltonian in eq. (2.4) can be written as

Hint(t
′) =

∫
y

∑
J,b

[
HJb(Y) +H†

Jb(Y)
]
, (2.12)

where Y ≡ (t′,y). Inserting these structures into eq. (2.9) we get

〈L̇a(t)〉 =

∫ t

0
dt′
∫
x,y

∑
I,J,b

〈[
HIa(X )−H†Ia(X ) , HJb(Y) +H†

Jb(Y)
]〉

+O(h3) . (2.13)

Here the correlators 〈[HIa(X ),H
Jb(Y)]〉 and 〈[H†Ia(X ),H†

Jb(Y)]〉 vanish, because within the

Standard Model there are to O(h0) direct correlations only between ja and j̄a. For the

same reason, the sum over b is saturated by b = a. Furthermore, we can take the limit

t→∞, given that reaction rates proportional to ∼ h2 are much slower (with a much larger

time scale) than the fast Standard Model rates.

– 5 –
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2.3 Time evolution of a sterile neutrino density matrix

Let us apply the formalism above to the time evolution of a sterile neutrino “density

matrix”. We define it as

ρ̂τI;σJ ≡
a†kτIakσJ

V
, (2.14)

where V is the volume, taken to be infinite at the end of the computation. This operator

now plays the role of O(t) in eq. (2.9).

Making use of the equation of motion in eq. (2.6), eq. (2.9) leads to 2-point correlators

of the Standard Model currents ja and j̄a, defined in eq. (2.5). These can be expressed in

terms of Wightman functions,〈
jaα(X ) j̄bβ(Y)

〉
= δab

∫
P
e−iP·(X−Y) Π>

aαβ(P) , (2.15)〈
j̄bβ(Y) jaα(X )

〉
= −δab

∫
P
e−iP·(X−Y) Π<

aαβ(P) , (2.16)

where α, β ∈ {1, . . . , 4} represent spinor indices. The operators ja, j̄a have a non-trivial

commutator with the lepton number operator La appearing in the density matrix ρSM, cf.

eq. (2.10); as a consequence, following a text-book derivation, the Wightman functions can

be expressed in terms of the spectral function, with relations depending on the index a

through the chemical potential that is carried by active leptons:

Π>
aαβ(P) = 2

[
1− nF(ω − µa)

]
ρaαβ(P) , (2.17)

Π<
aαβ(P) = −2nF(ω − µa) ρaαβ(P) , (2.18)

Π>
aαβ(−P) = 2nF(ω + µa) ρaαβ(−P) , (2.19)

Π<
aαβ(−P) = −2

[
1− nF(ω + µa)

]
ρaαβ(−P) . (2.20)

Here P = (ω,p) and nF(ω) ≡ 1/(eω/T + 1) is the Fermi distribution.

In the expectation value following from eq. (2.9), the spectral function is bracketed by

the on-shell spinors u and v. The expression can be simplified by making use of the fact

that, with the exception of processes involving Yukawa couplings, chirality is preserved by

Standard Model interactions at high temperatures. Omitting higher-order contributions

involving the Yukawas,3 chiral invariance implies that the spectral function is proportional

to the Dirac matrices γµ [21]. Then we can use the properties of the charge conjugation

matrix C to show that

ūkτI aL ρa(P) aR vqσJ = ūqσJ aR ρa(P) aL vkτI , (2.21)

v̄kτI aL ρa(P) aR vkσJ = ūkσJ aR ρa(P) aL ukτI . (2.22)

Furthermore, chiral invariance implies that amplitudes between ū and u conserve helicity

(helicity states are defined in eq. (3.2), and examples of non-zero matrix elements are shown

in eq. (A.22)),

ūkσJ aL ρa aR ukτI ∝ δστ , ūkσJ aR ρa aL ukτI ∝ δστ . (2.23)

We make use of this important simplification in the following.

3The leading-order contributions of O(h2
t ), appearing as part of 2 ↔ 2 scatterings in section 3.3, are

however kept and do not negate the argument, because they originate through scalar exchange.

– 6 –
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The integration over the time t′ in eq. (2.9) can also be simplified. In an equation like

eq. (2.13) we are faced with integrations of the types

I1 = ei(ω
k
J−ω

k
I )t

∫ t

0
dt′
∫ ∞
−∞

dω

2π
ei(ω−ω

k
J )(t−t′) φ1(ω) , (2.24)

I2 = e−i(ω
k
J+ωkI )t

∫ t

0
dt′
∫ ∞
−∞

dω

2π
ei(ω+ωkJ )(t−t′) φ2(ω) . (2.25)

Here I1 multiplies terms bracketed between ū and u, and I2 those bracketed between ū

and v. Given that ωkI ≈ k + M2
I /(2k) ∼ 3T , I2 contains a rapid oscillation, similar to

the “fast” Standard Model variations; these rapid oscillations will be omitted. In I1 the

oscillation rate is suppressed by Majorana mass differences; this is a “slow” process and

needs to be kept.

The large-t value of I1 can be defined as a limit:

lim
t→∞

∫ t

0
dt′ ei(ω−ω

k
J )(t−t′) ≡ lim

ε→0+

∫ ∞
0

dt′ ei(ω−ω
k
J+iε)t′ =

i

ω − ωkJ + iε

= P
(

i

ω − ωkJ

)
+ πδ(ω − ωkJ ) . (2.26)

Assuming that φ1 is slowly varying around ω ≈ ωkJ , the principal value part is antisymmetric

around this point and corresponds to a higher time derivative correction; it amounts to a

modification of ωkJ through a thermal mass (this is shown in appendix A). We postpone

the inclusion of this “dispersive” or “virtual” correction for the moment, focussing first on

“absorptive” or “real” effects. For those, we need Re I1 ≈ 1
2e
i(ωkJ−ω

k
I )t φ1(ωkJ ).

Inserting the time integral as well as eqs. (2.17)–(2.20) into eq. (2.9), we find that

absorptive time evolution is parametrized by the slowly evolving coefficients

Γ̂+
(aτ)IJ(t) ≡ h∗IahJa√

ωkI ω
k
J

ūkτJ aL ρa(KJ) aR ukτI e
i(ωkJ−ω

k
I )t , (2.27)

Γ̂−(aτ)IJ(t) ≡ hIah
∗
Ja√

ωkI ω
k
J

ūkτJ aR ρa(−KJ) aL ukτI e
i(ωkJ−ω

k
I )t , (2.28)

where KJ ≡ (ωkJ ,k). Noting that ρa is real (cf. appendix B of ref. [25] for a general

discussion), the evolution equation reads

〈 ˙̂ρτI;σJ〉 =
1

2

∑
L,a

{
Γ̂+

(aτ)IL(t)
[
δτσδLJ nF(ωkJ − µa)− 〈ρ̂τL;σJ〉

]
+
[
δτσδIL nF(ωkI − µa)− 〈ρ̂τI;σL〉

]
Γ̂+∗

(aσ)JL(t)

+ Γ̂−(aτ)IL(t)
[
δτσδLJ nF(ωkJ + µa)− 〈ρ̂τL;σJ〉

]
+
[
δτσδIL nF(ωkI + µa)− 〈ρ̂τI;σL〉

]
Γ̂−∗(aσ)JL(t)

}
+O(h3) , (2.29)

where the “equilibrium” terms containing nF originate from {akσJ , a
†
kτL}/V = δτσδLJ . The

terms containing Γ̂+ and nF(ω−µa) represent scatterings involving leptons, whereas those

– 7 –
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with Γ̂− and nF(ω + µa) represent the contributions of antileptons. Physically, Γ̂+
(aτ)IJ

describes the rate at which the in-medium wave function of the state (kτJ) gets projected

in the direction of (kτI), and Γ̂−(aτ)IJ does the same for the charge-conjugated process.

It may be noted that the right-hand side of eq. (2.29) vanishes in equilibrium, i.e. if

the density matrix is diagonal and all lepton chemical potentials vanish. Its general form

is, however, valid both near and far from equilibrium.

It can also be observed that there is no equilibrium term with τ 6= σ: helicity non-

diagonal correlations decrease to zero with time. In particular, if we start from an initial

density matrix which is helicity-diagonal, it stays so. However, the values of the coefficients

Γ̂± do depend on the helicity index τ (cf. section 3).

For formal considerations, it is convenient to have coefficients which are independent

of time. This also offers for a simple way to include the dispersive thermal mass correc-

tions mentioned above. This can be achieved by redefining the coefficients in eqs. (2.27)

and (2.28) and the density matrix as

Γ̂±(aτ)IJ(t) ≡ ei(ωkJ−ωkI )t Γ±(aτ)IJ , ρ̂τI;σJ(t) ≡ ei(ωkJ−ωkI )t ρτI;σJ(t) . (2.30)

The evolution equation for ρ then obtains an additional term of O(h0),

〈ρ̇τI;σJ〉 = i(ωkI − ωkJ )〈ρτI;σJ〉+O(h2) , (2.31)

where the part of O(h2) has the same structure as in eq. (2.29) but with time-independent

coefficients (Γ±). We remark that in text books density matrices are usually defined in

terms of “states” rather than “operators”, and then the free evolution has the sign of the

Liouville - von Neumann equation, i∂tρ = [H0, ρ] + . . .. In the present paper we defined

the sterile neutrino “density matrix” through operators, cf. eq. (2.14). Correspondingly

the free time evolution in eq. (2.31) has the same sign as appears in operator equations

of motion, cf. eq. (2.6). If desired the sign difference could be eliminated by reversing the

ordering of indices [26], however in practice it is inconsequential so we do not bother.

2.4 Time evolution of lepton asymmetries

The derivation of section 2.3 can be repeated for lepton asymmetries. The starting point

is the equation of motion in eq. (2.7), and we take na(t) ≡ La(t)/V to play the role of

O(t) in eq. (2.9). Apart from neutrino Yukawa interactions, at high temperatures lepton

asymmetries are also violated by sphaleron processes. The observables not affected by the

latter are the linear combinations na−nB/3. For these the final result can be expressed in

close analogy with eq. (2.29),〈
ṅa −

ṅB

3

〉
=

1

2

∫
k

∑
I,J,τ

{[
Γ̂+

(aτ)JI(t) + Γ̂+∗
(aτ)IJ(t)

][
〈ρ̂τI;τJ〉 − δIJ nF(ωkJ − µa)

]
−
[
Γ̂−(aτ)JI(t) + Γ̂−∗(aτ)IJ(t)

][
〈ρ̂τI;τJ〉 − δIJnF(ωkJ + µa)

]}
+O(h3) . (2.32)

The coefficients Γ̂± are identical to those in eq. (2.29). There are again two terms, reflecting

the fact that lepton asymmetry can increase through the production of leptons or the

– 8 –
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disappearance of antileptons. Eq. (2.32) is odd in charge conjugation, and only the helicity-

diagonal components of the sterile neutrino density matrix contribute.

2.5 Simplified form of evolution equations

We noted in the context of eq. (2.29) that non-diagonal helicity components of the density

matrix decouple from the diagonal ones, and in eq. (2.32) that only the diagonal ones

contribute to lepton asymmetries. Therefore, we omit the non-diagonal components in the

following. Moreover, for easier inclusion of thermal mass corrections, we implement the

redefinition in eq. (2.30), and denote

ρ(τ)IJ ≡ 〈ρτI;τJ〉 . (2.33)

The evolution equations in eqs. (2.29) and (2.32) can be simplified if we expand the

right-hand sides to first order in the lepton chemical potentials, assuming µa, µB � πT .

Within perturbation theory the presence of µa, µB 6= 0 implies that the temporal com-

ponent of the hypercharge gauge potential develops an expectation value, guaranteeing

the hypercharge neutrality of the plasma; this expectation value is conventionally referred

to as the hypercharge chemical potential, denoted by µY (cf. section 4.1). In this limit

the coefficients in eqs. (2.27) and (2.28), redefined through eq. (2.30), have the forms (cf.

section 3; µ̄ ≡ µ/T )

Γ+
(aτ)IJ = h∗IahJa

[
Q(τ)IJ + µ̄aR(τ)IJ + µ̄Y S(τ)IJ

]
+O(µ̄2) , (2.34)

Γ−(aτ)IJ = hIah
∗
Ja

[
Q(−τ)IJ − µ̄aR(−τ)IJ − µ̄Y S(−τ)IJ

]
+O(µ̄2) . (2.35)

In principle there are also coefficients proportional to µ̄B, appearing like those proportional

to µ̄Y , however these vanish at leading order (cf. section 3) and are omitted here already.

The functions Q,R and S, estimated in section 3, are found to be real. To a reasonable

approximation they are also symmetric in I ↔ J , however this symmetry is broken by the

“soft” 1 +n↔ 2 +n scatterings evaluated in section 3.2. Roughly speaking, the coefficient

Γ+
(aτ)IJ describes the amplitude T 〈J |I〉0, where | . . .〉T implies that the state evolves within

a medium. Even though 0〈J |I〉0 = 0〈I|J〉∗0, it is possible that T 〈J |I〉0 6= T 〈I|J〉∗0.

The physical meaning of the equations can be made more transparent by taking the

helicity-symmetric and antisymmetric parts of ρ(τ) as the basic variables. Correspondingly

we define

ρ±IJ ≡
ρ(+)IJ ± ρ(−)IJ

2
. (2.36)

Furthermore, in order to streamline the equations, we make use of the kinematic sim-

plification in eq. (2.2). This implies that momenta k <∼MI � πT are not treated prop-

erly, however their contribution to lepton asymmetries is strongly phase-space suppressed

(MI ∼ 10−2πT ).
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Let us first inspect the equation for lepton asymmetries, eq. (2.32). Inserting eqs. (2.2),

(2.34) and (2.35) into eq. (2.32) we obtain〈
ṅa −

ṅB

3

〉
= 4

∫
k

Tr
{
−nF(k)[1− nF(k)]A+

(a) +
[
ρ+ − 1nF(k)

]
B+

(a) + ρ−B−(a)

}
+O(µ2

a) ,

(2.37)

where

A+
(a)IJ ≡ Re(hIah

∗
Ja) µ̄aQ

+
{IJ} , (2.38)

B+
(a)IJ ≡ −i Im(hIah

∗
Ja)Q

+
{IJ} + Re(hIah

∗
Ja)
[
µ̄aR

+
{IJ} + µ̄Y S

+
{IJ}

]
, (2.39)

B−(a)IJ ≡ Re(hIah
∗
Ja)Q

−
{IJ} − i Im(hIah

∗
Ja)
[
µ̄aR

−
{IJ} + µ̄Y S

−
{IJ}

]
. (2.40)

Here

Q±IJ ≡
Q(+)IJ ±Q(−)IJ

2
, Q±{IJ} ≡

Q±IJ +Q±JI
2

(2.41)

denote a symmetrization or antisymmetrization over the helicity-flipping and conserving

contributions (cf. section 3), and a symmetrization over the generation indices, respectively.

The first term on the right-hand side of eq. (2.37) is a “washout term”, decreasing any

lepton asymmetry towards zero. It agrees with the corresponding term derived from differ-

ent considerations in ref. [23]. The second and third terms are “source terms”, generating

a lepton asymmetry. They display a product of structures manifesting Sakharov-type con-

ditions, namely deviation from thermal equilibrium and CP violation. One of the sources

originates from a helicity-symmetric ρ and the other from a helicity-asymmetric one. The

parts proportional to chemical potentials in eqs. (2.39) and (2.40) are of second order in

the language of linear response theory, containing a product of two deviations from equi-

librium (chemical potentials and a non-thermal density matrix). We include them in the

equations, given that the density matrix may deviate significantly from equilibrium.

Analogous equations are obtained for the density matrices. Displaying them as a pair

of complex Hermitean matrices with generation indices, we obtain

ρ̇+ = i
[
H0, ρ

+
]

+ i
[
∆0, ρ

−]+ 2nF(k)[1− nF(k)]C+

−D+
[
ρ+ − 1nF(k)

]
−
[
ρ+ − 1nF(k)

]
D+† −D−ρ− − ρ−D−† +O(µ2

a) , (2.42)

ρ̇− = i
[
H0, ρ

−]+ i
[
∆0, ρ

+
]

+ 2nF(k)[1− nF(k)]C−

−D−
[
ρ+ − 1nF(k)

]
−
[
ρ+ − 1nF(k)

]
D−† −D+ρ− − ρ−D+† +O(µ2

a) . (2.43)

The coefficient matrices read

C+
IJ ≡ −i

∑
a Im(hIah

∗
Ja) µ̄aQ

+
{IJ} , (2.44)

C−IJ ≡
∑

a Re(hIah
∗
Ja) µ̄aQ

−
{IJ} , (2.45)

D+
IJ ≡

∑
a Re(hIah

∗
Ja)Q

+
IJ − i

∑
a Im(hIah

∗
Ja)
[
µ̄aR

+
IJ + µ̄Y S

+
IJ

]
, (2.46)

D−IJ ≡ −i
∑

a Im(hIah
∗
Ja)Q

−
IJ +

∑
a Re(hIah

∗
Ja)
[
µ̄aR

−
IJ + µ̄Y S

−
IJ

]
. (2.47)
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The coefficients C± generate non-thermal density matrices if lepton asymmetries are

present. The coefficients D± are “washout terms” in the sense that they drive the sys-

tem towards equilibrium, but they are often called “production rates”, because normally

ρ+ � 1nF(k). Then D+ produces ρ+ and D− produces ρ−. In the limit of a single gener-

ation D+ agrees with a term derived from different considerations in refs. [22, 27].

The Hermitean matrices H0 and ∆0 on the first lines of eqs. (2.42) and (2.43) contain

the vacuum energies but also the thermal mass corrections (cf. appendix A.2),

H0IJ = k δIJ +
1

2k

[
δIJM

2
I +

∑
a Re(hIah

∗
Ja)T

2

4

]
+O

( 1

k3

)
, (2.48)

∆0IJ = −
i
∑

a Im(hIah
∗
Ja)T

2

8k
+O

( 1

k3

)
. (2.49)

The first term in eq. (2.48), proportional to the unit matrix, drops out in the commuta-

tors in eqs. (2.42) and (2.43). Solving the time evolution with H0 and ∆0 implements

a resummation of thermal mass corrections,4 avoiding dispersive secular terms in the

evolution equations. It may be wondered whether the equilibrium terms appearing in

eqs. (2.37), (2.42) and (2.43), involving the Fermi distribution, should also contain the

eigenvalues of the system described by H0 and ∆0 as arguments. This is, however, a

higher-order effect in the ultrarelativistic regime k ∼ πT �MI .

We conclude by remarking that a set of equations similar to eqs. (2.37), (2.42) and (2.43)

was obtained in ref. [15], however without the inclusion of the hypercharge chemical poten-

tial µ̄Y (and hence of the IR sensitivities discussed in section 3) and under the assumption

that terms of order µ̄a ρ
− could be dropped, as they represent a double deviation from

equilibrium. Moreover helicity conserving contributions were neglected together with the

generation (IJ) dependence of the helicity flipping ones. As discussed in section 3 and con-

firmed numerically in section 3.6, the latter assumptions hold well for MI � T . Specifically,

upon setting µ̄Y → 0, Q(−)IJ → 0, R(−)IJ → 0, Q(+)IJ → γ(0), R(+)IJ → γ(2), dropping

terms proportional to µ̄a ρ
−, and recalling the discussion below eq. (2.31) concerning the

sign of the commutator terms, we can reproduce eqs. (2.16) and (2.19) of ref. [15].

2.6 Rate for fermion number non-conservation

It is well-known that if all Majorana masses are set to zero in eq. (2.1), then the theory

has an additional conserved charged, which we may call the “fermion number”. Indeed the

Majorana spinor can be replaced by a chiral Dirac spinor in this case, and the conserved

charge then counts the total asymmetry in right-handed and left-handed leptons. Keeping

instead the Majorana character intact, the fermion number is defined as the sum of the

helicity asymmetry of the sterile neutrinos and the lepton asymmetry of the Standard

Model sector. It is easy to demonstrate that eqs. (2.37) and (2.43) respect this symmetry

4The thermal mass squared appearing here is the so-called “asymptotic” mass, relevant for k >∼πT ; it is

twice as large as the “soft” thermal mass squared, relevant for k � πT [21].
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for MI/T → 0. A straightforward computation yields∑
a

〈
ṅa −

ṅB

3

〉
+ 2

∫
k

Tr
(
ρ̇−
)

= 4

∫
k

∑
a

Tr
{
−nF(k)[1− nF(k)]E(a) +

[
ρ+ − 1nF(k)

]
F(a) − ρ

−G(a)

}
, (2.50)

where the coefficients read

E(a)IJ ≡ Re(hIah
∗
Ja) µ̄aQ(−){IJ} , (2.51)

F(a)IJ ≡ −i Im(hIah
∗
Ja)Q(−){IJ} + Re(hIah

∗
Ja)
[
µ̄aR(−){IJ} + µ̄Y S(−){IJ}

]
, (2.52)

G(a)IJ ≡ Re(hIah
∗
Ja)Q(−){IJ} − i Im(hIah

∗
Ja)
[
µ̄aR(−){IJ} + µ̄Y S(−){IJ}

]
. (2.53)

All contributions are proportional to the helicity-conserving coefficients Q(−){IJ}, R(−){IJ},

or S(−){IJ}. As demonstrated in section 3 these are suppressed by ∼ MI/(gT ) in compar-

ison with the helicity-flipping coefficients, and are in general numerically insignificant (cf.

figures 4–6), save for the fact that due to their infrared sensitivity they peak around the

electroweak crossover.

3 Determination of coefficient functions Q,R and S

3.1 General setup

In order to determine the functions Q,R and S defined in eqs. (2.34) and (2.35) which

parametrize eqs. (2.38)–(2.40), (2.44)–(2.47), (2.51)–(2.53), we need to evaluate the

amplitudes

ūkτJ aL ρa(KJ) aR ukτI , ūkτJ aR ρa(−KJ) aL ukτI , (3.1)

cf. eqs. (2.27) and (2.28). Here the spectral function ρa corresponds to the operators in

eq. (2.5). To zeroth order in chemical potentials, a fermionic spectral function is even in its

argument: ρa(−KJ) = ρa(KJ) +O(µ). This explains a part of the properties in eqs. (2.34)

and (2.35), but the dependence on the helicity τ remains to be worked out.

For determining the dependence on τ , the form of the spinor ukτI is needed. We

can write

ukτI =
/KI +MI√
ωkI +MI

ητ , (3.2)

where the spinors satisfy
∑

τ=± ητ η̄τ = 1
2(1 + γ0). The precise form of ητ depends on

the representation chosen for the Dirac matrices. Examples for the standard and Weyl

representations are

γ0 =

(
1 0

0 −1

)
⇒ ητ =

(
|τ〉
0

)
, γ0 =

(
0 1

1 0

)
⇒ ητ =

1√
2

(
|τ〉
|τ〉

)
. (3.3)

Here |τ〉 is a helicity eigenstate,
∑

i k
iσi|τ〉 = τ |k||τ〉, where σi are the Pauli matrices.
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Figure 1. Examples of 1 + n ↔ 2 + n scatterings contributing to the sterile neutrino spectral

function (the spectral function is a cut, i.e. “amplitude squared” of such processes, convoluted with

the appropriate distribution functions). Sterile neutrinos are denoted by a double line, whereas

arrowed, dashed, and wiggly lines correspond to Standard Model fermions, scalars, and gauge

fields, respectively.

3.2 1 + n↔ 2 + n scatterings

Physically, a non-vanishing spectral weight originates as a result of scatterings. The op-

erator ja in eq. (2.5) couples directly to two fields, the Higgs doublet and active lepton

doublets, and if no further particles are involved we call the process a 1 ↔ 2 scattering

(cf. figure 1). Such scatterings give no contribution in the massless limit, because there is

no phase space for the on-shell process. In the presence of thermal masses and Majorana

masses, one of the kinematic channels may open up. If we count the masses as being of

order MI ∼ mφ ∼ m` ∼ gT , then this contribution, suppressed by the small masses, is

parametrically of the same order as that of 2↔ 2 scatterings (cf. figure 2).

Given that the masses are small and that thermal momenta are of order k ∼ πT ,

the computation of 1 ↔ 2 scatterings can be simplified by considering ultrarelativistic

kinematics, cf. eq. (2.2). However, there is also a complication, namely that soft scatterings

which do not modify the kinematics are not suppressed and need to be resummed to all

orders. This so-called Landau-Pomeranchuk-Migdal (LPM) resummation was worked out

in ref. [28]. We need to generalize these results, because in ref. [28] a sum was taken over

the two helicity states, and because only the diagonal elements of the density matrix were

considered, and because the lepton chemical potentials were set to zero.5

It is not too difficult to generalize the results of ref. [28] to apply to the spectral

function. Adopting the notation in section 3.1 of ref. [20] and noting that all thermal

masses are even in µa, because they represent elastic scatterings through gauge exchange

which can be both off fermions and off antifermions, the resummed “helicity-conserving”

and “helicity-flipping” wave functions are denoted by gJ and fJ . The latter is a p-wave

(vector) object, and it flips the helicity from that carried by Standard Model leptons. The

spectral function can be expressed in terms of these as

ρa(KJ)LPM ≡ 1

4π

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2δ(ω
k
J − ω1 − ω2)

[
1− nF(ω1 − µLa) + nB(ω2 − µH)

]
× 1

ω2
lim
y→0

{(
γ0−k · γ

k

)
Im
[
gJ(y)

]
+
γ0

2ω2
1

Im
[
∇⊥ · fJ(y)

]}
+O

(
g3T

π3

)
. (3.4)

Here the chemical potentials are µLa ≡ µa − µY /2 and µH ≡ µY /2, where µY is the hyper-

charge chemical potential (the expression of µY in terms of the µa is recalled in section 4).

5In ref. [15] µa was included but the hypercharge chemical potential was omitted.
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Taking subsequently projections such as in eq. (3.1) (cf. eq. (A.22)); expanding as

in eq. (2.2); and employing k as a variable instead of ωkJ , whereby terms suppressed by

O(M2
I /k

2) are omitted, we find

ūkτJ aL ρ
LPM
a (±KJ) aR ukτI

=
1

4π

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2δ(k − ω1 − ω2)
[
1− nF(ω1 ∓ µLa) + nB(ω2 ∓ µH)

]
× k

ω2
lim
y→0

{
MIMJ δτ,−

k2
Im
[
gJ(y)

]
+
δτ,+
ω2

1

Im
[
∇⊥ · fJ(y)

]}
+O

(
g3T 2

π2

)
. (3.5)

For the latter chiral projection in eq. (3.1), δτ,− and δτ,+ are exchanged. The coefficients

Q,R, S in eqs. (2.34) and (2.35) are obtained by making the following substitutions in

eq. (3.5) (expanding again 1/
√
ωkI ω

k
J ≈ 1/k in eqs. (2.27) and (2.28)):

[
1− nF(ω1 ∓ µLa) + nB(ω2 ∓ µH)

] QLPM

−→ 1− nF(ω1) + nB(ω2)

k
, (3.6)

RLPM

−→ Tn′F(ω1)

k
, (3.7)

SLPM

−→ −Tn
′
F(ω1) + Tn′B(ω2)

2k
. (3.8)

Here Tn′F(ω1)=−nF(ω1)[1−nF(ω1)] and Tn′B(ω2)=−nB(ω2)[1+nB(ω2)].6 The Hamiltonian

is also written in terms of k,

ĤJ ≡ −
M2

J

2k
+
m2
` −∇2

⊥
2ω1

+
m2
φ −∇2

⊥
2ω2

− iΓ(y) y ≡ |y⊥| , (3.9)

where Γ(y) is given in eq. (3.3) of ref. [20], m2
` ≡ limµa→0m

2
`,a is given in eq. (3.24), and

m2
φ = −m

2
H

2
+
(
g2

1 + 3g2
2 + 4h2

t + 8λ
)T 2

16
, (3.10)

where mH is the physical Higgs mass. The wave functions are obtained from

(ĤJ + i0+) gJ(y) = δ(2)(y) , (ĤJ + i0+) fJ(y) = −∇⊥δ(2)(y) . (3.11)

For the numerical solution we adopt the procedure described in ref. [29]; at T <∼ 160 GeV,

when we are in the Higgs phase, it needs to be modified as explained in ref. [20].

3.3 Hard 2↔ 2 scatterings

Unlike the 1 ↔ 2 processes, the 2 ↔ 2 scatterings, illustrated in figure 2, are not phase-

space suppressed. Therefore they can be computed at leading order in an expansion in

6The weight n′B(ω2) is quadratically divergent around ω2 = 0. In the context of eq. (3.5) this leads to a

linear divergence, however the integral is well-defined as a principal value.
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Figure 2. 2↔ 2 scattering contributions to the sterile neutrino spectral function, cf. eq. (3.13) (the

spectral function is a cut, i.e. “amplitude squared”, convoluted with the appropriate distribution

functions). The notation is as in figure 1.

M2
I /k

2, i.e. with massless right-handed neutrinos. Then only one helicity state con-

tributes,7 and we can write (cf. eq. (A.22))

ūkτJ aL ρ
2↔2
a (KJ) aR ukτI = δτ,+

∑
τ

ūkτJ aL ρ
2↔2
a (KJ) aR ukτJ

= δτ,+Tr { /KJ aL ρ
2↔2
a (KJ) aR } . (3.12)

For the latter chiral structure in eq. (3.1), δτ,+ gets replaced with δτ,−. Furthermore we can

replace KJ through K ≡ (k,k), whereby the result is independent of the indices I and J .

The 2↔ 2 scatterings contain two logarithmic IR divergences, related to soft lepton ex-

change and scattering off soft Higgs particles, respectively. Following ref. [30], we handle the

former by first carrying out a massless computation (this subsection), and subsequently cor-

rect the soft exchange contribution through an appropriate resummation (section 3.4). We

denote the unresummed contribution from hard momentum exchange by ρ2↔2,hard
a (K). The

latter divergence concerns terms proportional to µY and was not present in ref. [30], however

an analogous procedure of “subtraction” and “correction” can be adopted (section 3.5).

The phase space regions from which the divergences originate are illustrated in figure 3.

Accounting for the processes shown in figure 2, we obtain

Tr { /K aL ρ
2↔2,hard
a (K) aR } =

1

2

∫
dΩ2→2 I (3.13)

I =
{
nF(k1+µLa)

[
1 + nB(p1) + nB(p2−µH)

]
+ nB(p1)nB(p2−µH)

}
|Ma|2

+
{
nB(k1+µH)

[
1 + nB(p1)− nF(p2−µLa)

]
+ nB(p1)nF(p2−µLa)

}
|Mb|2

+
{
nB(k1)

[
1 + nB(p1−µH)− nF(p2−µLa)

]
+ nB(p1−µH)nF(p2−µLa)

}
|Mc|2

+
{
nF(k1+µLa)

[
1− nF(p1+µtL)− nF(p2−µtR)

]
+ nF(p1+µtL)nF(p2−µtR)

}
|Md|2

+
{
nF(k1+µtR)

[
1− nF(p1+µtL)− nF(p2−µLa)

]
+ nF(p1+µtL)nF(p2−µLa)

}
|Me|2

+
{
nF(k1−µtL)

[
1− nF(p1−µtR)− nF(p2−µLa)

]
+ nF(p1−µtR)nF(p2−µLa)

}
|Mf|2 .

Here the chemical potentials read µLa = µa − µY /2, µH = µY /2, µtL =
µY
6 +

µB
3 and

µtR =
2µY

3 +
µB
3 , and dΩn→m denotes the phase space integration measure. Furthermore

7This corresponds to a helicity-flipping process: in the case of gauge scatterings, the angular momentum

is supplied by a vector particle in the initial or final state. In the case of Yukawa scatterings, there is a left

and right-handed top quark involved, and their angular momenta balance against those in the lepton sector.
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Figure 3. The phase space regions contributing to eq. (3.16). Here (q, q0) parametrizes the

four-momentum of the exchanged particle. There are logarithmic infrared divergences associated

with the fermionic contributions Φsf and Φtf, from soft lepton exchange (exchanged particle has

(q, q0) ≈ (0, 0)) and soft Higgs scattering (exchanged particle has (q, q0) ≈ (k, k) whereas external

scatterer is soft). The divergences can be resummed as explained in sections 3.4 and 3.5, respectively.

pi ≡ |pi| denote incoming and ki ≡ |ki| outgoing momenta. The matrix elements read

|Ma|2 = (g2
1 + 3g2

2)
u

t
, |Mb|2 = −(g2

1 + 3g2
2)
u

s
, |Mc|2 = −(g2

1 + 3g2
2)
s

u
, (3.14)

|Md|2 = |Me|2 = |Mf|2 = 2h2
tNc , (3.15)

where s, t and u are the Mandelstam variables.

Generalizing the techniques of ref. [30] and parametrizing by q± ≡ (q0 ± q)/2 the 4-

momentum of an exchanged particle, all but two of the phase space integrals can be carried

out, yielding

Tr { /K aL ρ
2↔2,hard
a (K) aR }

=
1

(4π)3k

∫ ∞
k

dq+

∫ k

0
dq−

{[
nB(q0 − µH) + nF(q0 − k + µLa)

]
Φsb

+
[
nF(q0 − µLa) + nB(q0 − k + µH)

]
Φsf

}
+

1

(4π)3k

∫ k

0
dq+

∫ 0

−∞
dq−

{[
1 + nB(q0 − µH)− nF(k − q0 − µLa)

]
Φtb

+
[
1− nF(q0 − µLa) + nB(k − q0 − µH)

]
Φtf

}
. (3.16)

Introducing the functions

l1f(q) ≡ ln
(

1 + e−q/T
)
, l2f(q) ≡ Li2

(
−e−q/T

)
, (3.17)

l1b(q) ≡ ln
(

1− e−q/T
)
, l2b(q) ≡ Li2

(
e−q/T

)
, (3.18)
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processes with bosonic and fermionic s-channel exchange lead to

Φsb = 2h2
tNc

{
q + T

[
l1f(q+ + µtL) + l1f(q+ − µtR)

− l1f(q− + µtL)− l1f(q− − µtR)
]}

, (3.19)

Φsf = (g2
1 + 3g2

2)

{
q

2
+
T

q

[
(k − q−)

(
l1f(q+ − µLa)− l1b(q−)

)
+ (k − q+)

(
l1f(q− − µLa)− l1b(q+)

)]
+

(q0 − 2k)T 2

q2

[
l2f(q+ − µLa)− l2f(q− − µLa) + l2b(q−)− l2b(q+)

]}
. (3.20)

The corresponding t-channel contributions read

Φtb = 2h2
tNc T

[
l1f(−q− − µtL) + l1f(−q− + µtR)

− l1f(q+ + µtL)− l1f(q+ − µtR)
]
, (3.21)

Φtf = (g2
1 + 3g2

2)

{
T

q

[
(k − q−)

(
l1f(q+ − µLa)− l1b(−q−)

)
+ (k − q+)

(
l1f(−q− + µLa)− l1b(q+)

)]
+

(q0 − 2k)T 2

q2

[
l2f(q+ − µLa) + l2f(−q− + µLa)− l2b(−q−)− l2b(q+)

]}
. (3.22)

3.4 Resummation of soft t-channel lepton exchange

As already mentioned the massless matrix elements and phase space integrals lead to

logarithmic IR divergences. A well-known divergence originates from fermionic t-channel

exchange around (q+, q−) ≈ (0, 0) where the integrand can be approximated as

Φtf ≈ (g2
1 +3g2

2)
2kT 2

q2

[
2l2b(0)− l2f(−µLa)− l2f(µLa)

]
= (g2

1 +3g2
2)
k

q2

[
π2T 2 +µ2

La

]
. (3.23)

The divergence is regulated by a thermal mass, denoted by m`,a, that the lepton obtains

through its interactions with the Standard Model plasma:

m2
`,a =

g2
1 + 3g2

2

16

(
T 2 +

µ2
La

π2

)
. (3.24)

Computing the contribution of soft momenta q⊥ ∼ m` requires a Hard Thermal Loop

(HTL) resummed computation [28]. Fortunately, this computation remains practically

identical in the presence of a chemical potential, so we just briefly state the results.

Following the presentation in section 4.1 of ref. [20], the resummed computation yields

two separate ingredients. One is a “subtraction term” which removes the IR divergence in

eq. (3.23) from the naive computation:

Tr { /K aL ρ
2↔2,subtr
a (K) aR }

=
1

(4π)3

∫ k

0
dq+

∫ 0

−∞
dq−

[
nB(k − µH) + nF(µLa)

]
(g2

1 + 3g2
2)
π2T 2 + µ2

La

q2
. (3.25)

– 17 –



J
H
E
P
0
5
(
2
0
1
7
)
1
3
2

The second ingredient is the correctly computed IR contribution. For this we obtain

Tr { /K aL ρ
2↔2,soft
a (K) aR } =

m2
`,a

8π
ln

[
1 +

( 2k

m`,a

)2
] [
nB(k − µH) + nF(µLa)

]
+O

(
m4
`,a

k2

)
.

(3.26)

In total, the 2↔ 2 contribution can then be expressed as Tr { /K aL ρ
2↔2
a (K) aR } where

ρ2↔2
a (K) = ρ2↔2,hard

a (K)− ρ2↔2,subtr
a (K) + ρ2↔2,soft

a (K) . (3.27)

3.5 Resummation of soft s and t-channel Higgs scattering

There is another IR divergence which at leading order only affects chemical potential

dependence, specifically S(τ) defined in accordance with eq. (2.34). It originates from the

fact that when expanded in µH = µY /2, the bosonic distribution functions multiplying Φsf

and Φtf in eq. (3.16) diverge as ∼ ±µHT/(k−q0)2 at one corner of the integration range, cf.

figure 3. When the integration is defined as a principal value, most terms cancel between

s and t-channel contributions. However, a small remainder is left over.

To be specific, the distribution functions appearing in the 2 ↔ 2 contributions can be

expanded as in eqs. (3.6)–(3.8), whereas eqs. (3.19)–(3.22) read

Φsb({µi}) = Φsb(0) + µ̄Y h
2
tNcT

[
nF(q+)− nF(q−)

]
+O(µ̄2) , (3.28)

Φsf({µi}) = Φsf(0) +
(
µ̄a −

µ̄Y
2

)
(g2

1 + 3g2
2)

{
T

q

[
(k − q−)nF(q+) + (k − q+)nF(q−)

]
+

(q0 − 2k)T 2

q2

[
l1f(q−)− l1f(q+)

]}
+O(µ̄2) , (3.29)

Φtb({µi}) = Φtb(0)− µ̄Y h2
tNcT

[
nF(q+) + nF(−q−)

]
+O(µ̄2) , (3.30)

Φtf({µi}) = Φtf(0) +
(
µ̄a −

µ̄Y
2

)
(g2

1 + 3g2
2)

{
T

q

[
(k − q−)nF(q+)− (k − q+)nF(−q−)

]
+

(q0 − 2k)T 2

q2

[
l1f(−q−)− l1f(q+)

]}
+O(µ̄2) . (3.31)

The problem originates from the fact that Φsf(0) and Φtf(0) are not equal when approaching

(q, q0) = (k, k) from the s and t-channel sides, respectively.

In order to cure the problem, we may subtract the divergent terms from the integrand

of eq. (3.16) (denoting by ∆ terms within the curly brackets),

∆sf ≡ −
(g2

1 + 3g2
2)µHT

(k − q0)2

[
k

2
− T ln

(
q−
T

)
− π2T 2

2k
+ χ(k)

]
, k < q0 < 2k , (3.32)

∆tf ≡
(g2

1 + 3g2
2)µHT

(k − q0)2

[
−T ln

(
−q−
T

)
+ χ(k)

]
, 0 < q0 < k , (3.33)

where the function χ reads χ(k) = T l1f(k) + T 2

k [π
2

4 + l2b(k) − l2f(k)]. Subsequently, the

s-channel subtraction is reflected into the t-channel domain by q0 → 2k − q0, q → 2k − q,
whereby the logarithms and χ drop out. The remainder is integrated after noting that the

t-channel integration domain in figure 3 originates from the energy-conservation constraint
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Figure 4. Left: the coefficient Q(τ)IJ from eq. (2.34), for fixed k = 3T and MJ/GeV

∈ {0.5, 1, 2, 3, 4}; the dependence on MJ is moderate, and the dependence on MI is exactly can-

celled by the normalization chosen. There is a mild divergence at the location of the electroweak

crossover, indicating that the perturbative computation becomes unreliable there. Right: the same

for fixed MJ = 2 GeV and k/T ∈ {1, 2, 3, 6, 9}. One curve has been labelled, with the dependence

on k/T being monotonic.

δ(q0 − k + εφk−q), where a soft (i.e. |k− q|<∼ gT ) Higgs energy is εφk−q ≡
√

(k− q)2 +m2
φ.

Working out the t-channel integration range in the presence of mφ > 0 yields the correct

IR contribution from soft Higgs scattering to S2↔2
(+) ,

∆S2↔2
(+) =

g2
1 + 3g2

2

(4π)34k

∫ k−mφ

0
dq0

∫ k+
√

(k−q0)2−m2
φ

k−
√

(k−q0)2−m2
φ

dq
−T

(k − q0)2

[
k

2
− π2T 2

2k

]

=
(g2

1 + 3g2
2)T

4(4π)3

(
π2T 2

k2
− 1

)[
ln

(
2k

mφ

)
− 1

]
+O

(
mφT

k

)
. (3.34)

3.6 Numerical results

We have evaluated the coefficients Q(τ), R(τ), S(τ) defined in eqs. (2.34) and (2.35) numeri-

cally for T >∼ 130 GeV.8 We display separately the 1↔ 2 contributions from eqs. (3.5)–(3.8)

and the 2↔ 2 contributions from sections 3.3–3.5. Results for Q(τ) are shown in figure 4,

those for R(τ) in figure 5, and those for S(τ) in figure 6.

We find that the helicity-flipping coefficients Q(+) = QLPM
(+) +Q2↔2

(+) , |R(+)|, and S(+) are of

order ∼ (10−3 . . . 10−2)T , with in general negative values for R(+). The helicity-conserving

coefficients Q(−), R(−), and S(−) are suppressed by sterile neutrino masses, because in the

massless limit right-handed neutrinos carry opposite helicity to left-handed Standard Model

leptons. In the figures these coefficients were normalized to MI ; when normalized to T ,

8The coefficients are well-defined also at T < 130 GeV and could be evaluated following ref. [20].
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Figure 5. Left: R(τ)IJ from eq. (2.34), for fixed k = 3T and MJ/GeV ∈ {0.5, 1, 2, 3, 4}. Mild mass

dependence is seen in R(−)IJ , but R(−)IJ is very small once multiplied by MI/T ∼ 10−2 in order to

express it in the same units as the other contributions. Right: the same for fixed MJ = 2 GeV and

k/T ∈ {1, 2, 3, 6, 9}. One curve has been labelled, with the dependence on k/T being monotonic.
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Figure 6. Left: S(τ)IJ from eq. (2.34), for fixed k = 3T and MJ/GeV ∈ {0.5, 1, 2, 3, 4}; the mass

dependence is mild. Right: the same for fixed MJ = 2 GeV and k/T ∈ {1, 2, 3, 6, 9}. One curve has

been labelled, with the dependence on k/T being monotonic.

their contribution is suppressed by MI/T ∼ 10−2. Therefore the coefficients appearing

in eqs. (2.38)–(2.40), (2.44)–(2.47) are dominated by the helicity-flipping contributions.

However the helicity-conserving coefficients are more IR sensitive than the helicity-flipping

ones, showing a mild divergence around the crossover at which their perturbative deter-
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mination becomes unreliable, and they also dictate the fermion number violation rate in

accordance with section 2.6, cf. eqs. (2.51)–(2.53).

4 Relation of chemical potentials and lepton asymmetries

4.1 General setup

The left-hand side of eq. (2.37) contains charge densities, whereas on the right-hand sides

of eqs. (2.37), (2.42) and (2.43) chemical potentials appear. In order to close the set of

equations, the chemical potentials need to expressed in terms of the charge densities. To

leading order the results are given by eqs. (4.3) and (4.7), whose derivations we wish to

briefly review.

Charge neutrality of the plasma poses a non-trivial constraint on the relation between

chemical potentials and number densities. In the temperature range of interest we can

to a good approximation assume the electroweak symmetry to be restored. Then charge

neutrality concerns the hypercharge field. Defining a corresponding chemical potential as

µY ≡ ig1B0, where B0 is the hypercharge field in the imaginary-time formalism, a simple

way to proceed is to first express the pressure (minus the free energy density) in terms of

µY , µa and µB [31]. To leading order in Standard Model couplings, treating all particles as

massless (masses are included in eq. (A.6) of ref. [20]), we obtain

p(T, µ)− p(T, 0) =

[
2µ2

B + 2µY µB +
∑
a

(
3

2
µ2
a − 2µY µa

)
+ 5µ2

Y

]
χF(0)

+
µ2
Y

4
χB(0) +O(gµ2, µ4) , (4.1)

where χF(m) ≡
∫
k

[
−2n′F(ωk)

]
and χB(m) ≡

∫
k

[
−2n′B(ωk)

]
are so-called susceptibilities,

with the special values χF(0) = T 2/6, χB(0) = T 2/3. Hypercharge neutrality corresponds

now to ∂p/∂µY = 0, and the conserved charge densities are obtained as ∂p/∂µa, ∂p/∂µB.

4.2 T > 130 GeV

At T > 130 GeV the baryon chemical potential is eliminated through the sphaleron con-

straint µB = −1
3

∑
a µa, so that µa couples to the strictly conserved quantity La − 1

3B. In

a path integral formalism, the presence of µa 6= 0 implies that the perturbative minimum

lies at a non-zero value of µY , as determined by eq. (4.1). Minimizing with respect to µY
we obtain

µY =
8

33

∑
a

µa +O(g) , (4.2)

and  µ1

µ2

µ3

 =
1

237T 2

 514 40 40

40 514 40

40 40 514


 n1 −

nB
3

n2 −
nB
3

n3 −
nB
3

+O(g) . (4.3)

The numerical uncertainties of these expression are about 20%, owing mostly to large O(αs)

corrections from the QCD coupling [23] and to IR sensitive effects from the Higgs [32]. The
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baryon asymmetry is given by [33]

nB =
∂p

∂µB
=
[
4µB + 2µY

]
χF(0) = −14T 2

99

∑
a

µa = −28

79

∑
a

(
na −

nB

3

)
. (4.4)

4.3 T ∼ 130 GeV

When T ∼ 130 GeV, the sphaleron processes become slow. Consequently, baryon plus lep-

ton asymmetry needs to be added as a dynamical non-equilibrium variable. The quantities

for which equations of motion can be written are na − nB/3 and nB +
∑

a na. Coupling

chemical potentials to these slow variables we can read off the original chemical potentials

µa and µB:

∑
a

µ̃a

(
na −

nB

3

)
+ µ̃B+L

(
nB +

∑
a

na

)
=
∑
a

(
µ̃a + µ̃B+L

)︸ ︷︷ ︸
µa

na +

(
µ̃B+L −

∑
a µ̃a
3

)
︸ ︷︷ ︸

µB

nB .

(4.5)

These values of µa and µB are inserted into eq. (4.1). The pressure is minimized with

respect to µY like before, leading to

µY =
8

33

(∑
a

µ̃a +
3µ̃B+L

2

)
+O(g) . (4.6)

Furthermore, taking partial derivatives of eq. (4.1) with respect to µ̃a and µ̃B+L, we obtain

na−nB/3 and nB +
∑

a na as functions of the chemical potentials. Inverting these relations,

we get 
µ̃1

µ̃2

µ̃3

µ̃B+L

 =
1

144T 2


319 31 31 −23

31 319 31 −23

31 31 319 −23

−23 −23 −23 79




n1 −
nB
3

n2 −
nB
3

n3 −
nB
3

nB +
∑

a na

+O(g) . (4.7)

Equations (4.5)–(4.7) fix the right-hand sides of eqs. (2.37), (2.42) and (2.43) in terms of

the slowly evolving number densities. As a crosscheck, if we fix nB from eq. (4.4), eq. (4.7)

yields µ̃B+L = 0; according to eq. (5.4) this indeed corresponds to a stationary state.

5 Evolution of baryon plus lepton asymmetry

Suppose that we start the evolution of the system from a high temperature, T � 130 GeV,

and are given some initial values of the lepton symmetries na − nB/3, for instance

na − nB/3 = 0 ∀a. To solve the evolution equations (2.37), (2.42) and (2.43), we first

need to determine the chemical potentials µa. These can be obtained from eq. (4.3). The

baryon asymmetry is known as a “side product” of the evolution, from eq. (4.4).

The situation changes when the sphaleron processes become slow. We can switch to

this setting at some temperature T0 > 130 GeV at which we know the initial values of

na − nB/3 and nB +
∑

a na from the computation described above (note that nB +
∑

a na
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is in general non-zero, and can be determined from eq. (4.4)). The corresponding chemical

potentials can be determined from eq. (4.7). The other chemical potentials are obtained

from eqs. (4.5) and (4.6), and can then be inserted into eqs. (2.37), (2.42) and (2.43).

Obtaining the evolution equation for nB +
∑

a na is non-trivial, given that the fluctua-

tions of na−nB/3 and nB +
∑

a na are correlated, as exemplified by eq. (4.7). However the

starting point is again an operator equation of motion analogous to eqs. (2.6) and (2.7).

This time it takes the form of the anomaly equation,

Ḃ +
∑
a

L̇a = 2nG

∫
x
c(t,x) , (5.1)

where we have introduced nG = 3 as the number of Standard Model generations; the factor

2 accounts for baryons and leptons; and c is the topological charge density. In principle this

operator could be inserted into eq. (2.9), but it is not easy to express the first order time

evolution of the density matrix in a useful way [33]. However, we can assume that to leading

order in µ̃B+L and µ̃a, the topological charge density is only correlated with itself. Moreover,

a general argument concerning correlated fluctuations [23] shows that we can write

Ẋa = − 1

2V T

∫ ∞
−∞

dt
〈1

2
{Ẋa(t), Ẋc(0)}

〉
Ξ−1
cb Xb , (5.2)

where Xa are general slowly evolving charges. By Ξ we have denoted a susceptibility

matrix; its inverse multiplied by the charges yields the corresponding chemical potential.

Specifically, Ξcb = ∂2p/∂µ̃c∂µ̃b and Ξ−1
(B+L)b(Xb/V ) = µ̃B+L.

It remains to compute the symmetric correlator in eq. (5.2) for the operator on the

right-hand side of eq. (5.1). We denote
∫
x c(t,x) ≡ ṄCS(t) where in the classical limit NCS

is the Chern-Simons number. It is conventional to shift the time interval to run between

zero and positive times; making use of the time-reversal symmetry of the anticommutator,

and arguing furthermore that the dynamics is dominated by classical configurations which

show linearly growing diffusive behaviour at large times, we can write9

1

V

∫ ∞
−∞

dt
〈1

2
{ṄCS(t), ṄCS(0)}

〉
' lim

t→∞

1

V t

〈
[NCS(t)−NCS(0)]2

〉
≡ Γdiff . (5.3)

Here the infinite-volume limit is implicitly understood. The quantity in eq. (5.3) is precisely

the one estimated with classical lattice gauge theory simulations in ref. [17].

To summarize, recalling the factor 2nG from eq. (5.1) and the factor 1/(2T ) from

eq. (5.2), the evolution equation for baryon plus lepton asymmetry obtains the simple form〈
ṅB +

∑
a

ṅa

〉
= −2n2

G Γdiff(T )
µ̃B+L

T
+O(µ2) . (5.4)

Here µ̃B+L is a linear combination of all slowly evolving charges, as given by eq. (4.7).

9Somewhat more precisely, limt→∞
∫ t
0

dt′〈{ṄCS(t′), ṄCS(0)}〉=limt→∞
d
dt

∫ t
0

dt′
∫ t
0

dt′′〈ṄCS(t′)ṄCS(t′′)〉=
limt→∞

d
dt
〈[NCS(t)−NCS(0)]2〉.
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6 Summary and outlook

In this paper we have presented a “field-theoretic” derivation of evolution equations of a

coupled system consisting of lepton asymmetries, the baryon asymmetry, and a sterile neu-

trino density matrix. The basic equations are (2.37), (2.42), (2.43), and (5.4). Numerical

values of the coefficients parametrizing these equations can be found in section 3.6 and in

ref. [17]. On the right-hand sides of the equations, various chemical potentials appear; to

close the system, the chemical potentials need to be expressed in terms of the lepton and

baryon asymmetries, which can be achieved as re-iterated in sections 4.2 and 4.3.

Prior to our work, many studies have appeared in which similar evolution equations

have been derived (cf. e.g. refs. [4–15] and references therein). The main novelties of our in-

vestigation are the full inclusion of both helicity-flipping and conserving contributions (or,

in the language of section 2.6, fermion-number conserving and violating effects); the inclu-

sion of all chemical potentials and gauge field expectation values induced by them; a consis-

tent leading-order computation of all coefficients parametrizing the equations, both in the

“symmetric” and in the “Higgs” phase; as well as a formulation general enough to permit for

the treatment of the regime in which the sphaleron processes gradually switch off. We have

also gone beyond linear response theory in the treatment of the sterile neutrino density ma-

trix, permitting for both its small and large deviations from equilibrium. Even though we do

not expect any of these improvements to change the previous results by orders of magnitude,

many of them may play a role if a numerical precision at or below the 20% level is desired.

A numerical solution of the evolution equations within the background of an expanding

universe, with a sphaleron rate [17] and equation of state [18, 19] inserted from lattice stud-

ies, poses a non-trivial technical challenge, to which we hope to return in the near future.

For some qualitative insight, consider the coefficients producing or equilibrating sterile

neutrinos, eqs. (2.46) and (2.47). At leading order in chemical potentials, the coefficients are

determined by Q+ and Q−, respectively. Here Q+ contains a sum over helicity-flipping and

conserving contributions, and Q− their difference, cf. eq. (2.41). The part parametrized by

Q+ generates a helicity-symmetric density matrix, and Q− a helicity asymmetry. Both yield

a parametrically similar contribution to lepton asymmetry, cf. eqs. (2.37), (2.39) and (2.40).

These effects are present even in the massless limit when helicity-conserving (fermion-

number violating) contributions are absent. In the massless limit the total lepton asym-

metry equals minus the total helicity asymmetry integrated over momenta, cf. section 2.6.

As a final comment, we note that in a recent paper [25] a coupled set of evolution

equations was derived, within linear response theory, for the spin-averaged phase space

distribution of one sterile neutrino species and for the total lepton asymmetry. Concep-

tually, this situation can be obtained from our framework by making two of the sterile

neutrinos heavy so that they represent “fast variables”; integrating them out; averaging

over the helicity components of the light sterile neutrino; and restricting to leading order in

deviations from equilibrium. In practice we cannot proceed to that limit because different

approximations are needed for treating fast and slow variables. Nevertheless, it would be

interesting to understand whether analogues of the (small) “non-factorizable” contribu-

tions of O(h4) that were found in ref. [25] could originate in our system, if our derivation

were extended up to the O(h4) level.
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A Origin of thermal mass corrections

In this appendix we complement the derivation of section 2, which concentrated on “ab-

sorptive” effects (i.e. real scattering rates), by showing how the “dispersive” thermal mass

correction of eq. (2.48) emerges within the same formalism (appendix A.2). We also take

the opportunity to display some steps of the general formalism in more detail, by rederiving

the main correlators within a quantum mechanical (bosonic) toy model (appendix A.1).

A.1 Evolution equations in quantum mechanics

Consider the quantum mechanical Hamiltonian

H =
∑
k

(
ωka

†
kak︸ ︷︷ ︸

H0

+h∗k j
†ak + hka

†
k j
)

+ (terms without a, a†) , (A.1)

where ak and a†k are annihilation and creation operators, and j, j† are currents with which

they interact. In the interaction picture (denoted with the subscript I), ak and a†k evolve

with time:

iȧkI(t) = [akI(t), H0] = ωkakI(t)⇒ akI(t) = ake
−iωkt , a†kI(t) = a†ke

iωkt . (A.2)

The time dependences here correspond to those in eq. (2.3). Like in the discussion below

eq. (2.5), we now go over to the Heisenberg picture (denoted with the subscript H). Then

i∂t(a
†
iHajH) = [a†iHajH , H] = a†iH [ajH , H] + [a†iH , H]ajH

= (ωj − ωi)a
†
iHajH − h

∗
i j
†
HajH + hja

†
iHjH . (A.3)

A density matrix associated with the particles created by a† is defined as

ρ̂ij ≡ e
i(ωj−ωi)ta†iHajH . (A.4)

We note in passing that to O(h0), when the Heisenberg and interaction pictures display

the same time evolution, we can identify ρ̂ij = a†iaj , with the explicit time dependence in

eq. (A.4) cancelling against that in eq. (A.2). Inserting eq. (A.4) into (A.3) we get

i ˙̂ρij = ei(ωj−ωi)t
(
−h∗i j

†
HajH + hja

†
iHjH

)
. (A.5)
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The goal now is to evaluate the average of this operator in an ensemble characterized by a

density matrix ρfull. For this task it is helpful to switch back into the interaction picture:〈
i ˙̂ρij
〉
≡ Tr

[
i ˙̂ρij ρfullH

]
= Tr

[(
− h∗i j

†
Iaje

−iωit + hja
†
i jIe

iωjt
)

︸ ︷︷ ︸
i ˙̂ρijI

ρfullI

]
. (A.6)

Here we inserted interaction picture operators according to eq. (A.2). The time evolution

of the interaction picture density matrix follows from eq. (2.8). Dropping the leading term

because of odd discrete symmetries, and noting that two commutators do not contribute

as explained below eq. (2.13), we obtain〈
˙̂ρij
〉

=

∫ t

0
dt′
∑
k

〈
h∗ihke

i(ωkt
′−ωit)

[
j†I(t)aj , a

†
kjI(t

′)
]

− hjh∗ke
i(ωjt−ωkt

′)[a†i jI(t), j†I(t′)ak]〉+O(h3) . (A.7)

The commutators can be simplified by making use of [aj , a
†
k] = δjk:[

j†I(t)aj , a
†
kjI(t

′)
]

= δjk j
†
I(t)jI(t

′) + a†kaj
[
j†I(t), jI(t

′)
]
, (A.8)[

a†i jI(t), j
†
I(t
′)ak

]
= −δik j

†
I(t
′)jI(t) + a†iak

[
jI(t), j

†
I(t
′)
]
. (A.9)

As explained just below eq. (A.4), the operators in the latter terms can be identified as ρ̂kj
and ρ̂ik, respectively, up to corrections of O(h). The ensemble averages of j and j† can be

identified as advanced, retarded, and Wightman correlators:

−θ(t− t′)
〈[
j†I(t), jI(t

′)
]〉

= iΠA(t′ − t) , (A.10)

θ(t− t′)
〈[
j†I(t

′), jI(t)
]〉

= iΠR(t− t′) , (A.11)〈
j†I(t)jI(t

′)
〉

= Π<(t′ − t) , (A.12)

where we made use of time-translation invariance. Thereby〈
˙̂ρij
〉

= h∗ihje
i(ωj−ωi)t

∫ t

0
dt′
[
eiωj(t

′−t)Π<(t′ − t) + eiωi(t−t
′)Π<(t− t′)

]
+
∑
k

ρ̂ikh
∗
khje

i(ωj−ωk)t
∫ t

0
dt′ eiωk(t−t′)iΠR(t− t′)

−
∑
k

ρ̂kjh
∗
ihke

i(ωk−ωi)t
∫ t

0
dt′ eiωk(t′−t)iΠA(t′ − t) +O(h3) . (A.13)

At this point we approximate ωi ≈ ωj ≡ ω � |ωi − ωj | within the Fourier transforms,

whereby

lim
t→∞

∫ t

0
dt′
[
eiω(t′−t)Π<(t′ − t) + eiω(t−t′)Π<(t− t′)

]
= Π<(ω) , (A.14)

lim
t→∞

∫ t

0
dt′ eiω(t−t′)iΠR(t− t′) = iΠR(ω) , (A.15)

lim
t→∞

∫ t

0
dt′ eiω(t′−t)iΠA(t′ − t) = iΠA(ω) . (A.16)
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The function Π< = 2nBρω is real, whereas iΠR,A have both a real and an imaginary part:

iΠR = iRe ΠR − ρω, iΠA = iRe ΠR + ρω. The real parts (proportional to the spectral

function, denoted here by ρω in distinction to the density matrix ρ) yield the absorptive

effects discussed in the main text. Focussing now on the dispersive imaginary parts and

carrying out a substitution like in eq. (2.30), we obtain a time evolution of the form

ρ̇|dispersive = i[M,ρ], like in eqs. (2.42) and (2.43), where

Mij = −h∗ihj Re ΠR(ω) . (A.17)

This matrix represents the “standard” energy correction for the system of eq. (A.1). Its

generalization to the case of a Majorana fermion emerges through the first term in the

dispersion relation in eq. (A.19) and ultimately leads to eq. (A.25).

A.2 Modified dispersion relation for ultrarelativistic sterile neutrinos

Returning to the full system, consider the structure leading to the last term on the first

row of eq. (2.29) as an example.10 Before restricting to the absorptive part, this term reads

〈 ˙̂ρτI;σJ〉
∣∣∣
first

= −
∑
L,a

ei(ω
k
L−ω

k
I )t

∫ t

0
dt′
∫ ∞
−∞

dω

2π
ei(ω−ω

k
L)(t−t′)

× h∗IahLa√
ωkI ω

k
L

ūkτL aL ρa(K) aR ukτI 〈ρ̂τL;σJ〉 . (A.18)

The integral over t′ can be carried out by making use of eq. (2.26). Subsequently, we are

faced with a spectral representation which can be identified as the real and imaginary parts

of the retarded correlator:∫ ∞
−∞

dω

2π

iρa(ω, k)

ω − ωkL + iε
=
iRe ΠR(ωkL, k) + ρa(ω

k
L, k)

2
. (A.19)

The latter term leads to the absorptive behaviour in eq. (2.29), and we now focus on the

first term. The retarded correlator is an analytic continuation of the Euclidean correlator,

which for the operators in eq. (2.5) reads

ΠE(K) =

∫
X
eiK·X

〈
ja(X)j̄a(0)

〉
(no sum over a)

= −2
∑∫
{P}

aL

i /P

P 2[(P +K)2 +m2
φ]
aR . (A.20)

At finite temperature the sum-integral is proportional to two independent Lorentz-tensors,

/K and γ0. After the analytic continuation kn → −i(k0 + i0+), with K = (kn,k) and

K = (k0,k), so that ΠE(K)→ ΠR(K), we can write

ΠR(K) = α /K + β /u , (A.21)

10Thanks to its diagonal structure the first term on the first row, containing the Fermi distribution,

cancels against a contribution from the corresponding term on the second row, once we work up to leading

order in the ultrarelativistic approximation ωkI ≈ ωkJ . This is the same phenomenon which rendered the

first row of eq. (A.13) into the purely real Π< of eq. (A.14).
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where u = (1,0) is the four-velocity of the heat bath. After bracketing with on-shell spinors

according to eq. (A.18), we are led to results similar to those in eq. (3.5), specifically

ūkτL aL

(
α /K L + β /u

)
aR ukτI ≈


αMIML +

βMIML

2k
, τ = −

αM2
L + β

(
2k +

M2
I +M2

L

4k

)
, τ = +

. (A.22)

For the opposite chiral projections, the roles of the helicity states are exchanged. In any

case, for k �ML, only the contribution proportional to β is needed.

We can write β = 2V(mφ)/k, where V is given in eq. (5.10) of ref. [20]. In particular,

for πT � mφ we get β ≈ −T 2/(8k). Recalling the factors from eqs. (A.19) and (A.22),

this yields

〈 ˙̂ρτI;σJ〉
∣∣∣
first

=
∑
L,a

ih∗IahLaT
2 δτ,+

8k
〈ρ̂τL;σJ〉 . (A.23)

Adding the three other channels and going over to the notation of eq. (2.33) produces

ρ̇(τ)

∣∣∣
dispersive

≈ i[H0(τ), ρ(τ)] , (A.24)

where

H0(τ)IJ = δIJ ω
k
I +

∑
a

(hIah
∗
Ja δτ,− + h∗IahJa δτ,+)T 2

8k
. (A.25)

After symmetrizing or antisymmetrizing in helicity, this leads to eqs. (2.48) and (2.49).
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