
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
0
2
3
5
8
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
0
.
4
.
2
0
2
4

J
H
E
P
0
7
(
2
0
1
7
)
0
4
0

Published for SISSA by Springer

Received: March 29, 2017

Revised: June 9, 2017

Accepted: June 27, 2017

Published: July 10, 2017

Betti multiplets, flows across dimensions and

c-extremization

Antonio Amaritia,b and Chiara Toldoc

aPhysics Department, The City College of the CUNY,

160 Convent Avenue, New York, NY 10031, U.S.A.
bAlbert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,

University of Bern, Sidlerstrasse 5, Bern, ch-3012, Switzerland
cColumbia University in the City of New York,

538 West 120th Street, 704 Pupin Hall, MC 5225, New York, NY 10027, U.S.A.

E-mail: amariti@itp.unibe.ch, ct2673@columbia.edu

Abstract: We consider 4d N = 1 SCFTs, topologically twisted on compact constant

curvature Riemann surfaces, giving rise to 2d N = (0, 2) SCFTs. The exact R-current of

these 2d SCFT extremizes the central charge c2d, similarly to the 4d picture, where the

exact R-current maximizes the central charge a4d. There are global currents that do not

mix with the R-current in 4d but their mixing becomes non trivial in 2d. In this paper

we study the holographic dual of this process by analyzing a 5d N = 2 truncation of

T 1,1 with one Betti vector multiplet, dual to the baryonic current on the CFT side. The

holographic realization of the flow across dimensions connects AdS5 to AdS3 vacua in the

supergravity picture. We verify the existence of the flow to AdS3 solutions and we retrieve

the field theory results for the mixing of the Betti vector with the graviphoton. Moreover,

we extract the central charge from the Brown-Henneaux formula, matching with the results

obtained in field theory. We develop a general formalism to obtain the central charge of a

2d SCFT from 5d N = 2 gauged supergravity with a generic number of vector multiplets,

showing that its extremization corresponds to an attractor mechanism for the scalars in

the supergravity picture.

Keywords: AdS-CFT Correspondence, Conformal Field Theory, Field Theories in Lower

Dimensions, Supergravity Models

ArXiv ePrint: 1610.08858

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP07(2017)040

mailto:amariti@itp.unibe.ch
mailto:ct2673@columbia.edu
https://arxiv.org/abs/1610.08858
https://doi.org/10.1007/JHEP07(2017)040


J
H
E
P
0
7
(
2
0
1
7
)
0
4
0

Contents

1 Introduction 1

2 Flowing from 4d N = 1 to 2d N = (0, 2) SCFTs 3

3 Flowing from AdS5 to AdS3 in N = 2 gauged supergravity 6

3.1 Inclusion of the hypermultiplets 9

4 N = 4 SYM and U(1)3 gauged supergravity 10

5 T 1,1 with a Betti multiplet 11

5.1 The 5d truncation 11

5.2 The ansatz and the BPS equations 13

5.3 The AdS3 vacuum 14

5.4 Holographic RG flow 15

5.5 c-extremization from gauged supergravity 17

6 M5 branes 18

7 Conclusions 19

A N = 2 5d gauged supergravity 21

B BPS equations 23

B.1 Gravitino 23

B.2 Gaugino 24

B.3 Hyperino 24

1 Introduction

A useful mechanism to construct SCFTs in d-dimensions consists in compactifying a (d+n)-

dimensional superconformal theory on a compact n-dimensional manifoldMn. By turning

on background magnetic fluxes for the global symmetries some amount of supersymmetry

of the d+n dimensional theory can be preserved in d dimensions. This procedure has been

developed in [1] and it is usually referred as (partial) topological twist.

The topological twists does not guarantee the existence of a superconformal symmetry

in the lower dimensional theory. A powerful hint for the existence of such symmetry

is provided by the AdS/CFT correspondence. Let us consider a four dimensional N =

1 SCFT, with an AdS5 gravity dual description, and compactify such model on a two

dimensional compact Riemann surface of genus g, Σg. The existence of a N = (0, 2) SCFT
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in two dimensions can be inferred from the existence of the gravitational flow from AdS5

to AdS3 × Σg. Finding an explicit gravitational flow usually requires the knowledge of

the full 10 dimensional geometry. A rich variety of examples has been worked out in the

literature, see for example [2–15]. For classifications of AdS3 solutions with uplift in 10d

and 11d see [16] and [17].

In particular in [12] the authors studied the gravity dual of an infinite set of quiver

gauge theories, namely Y pq theories [18]. They arise by the worldvolume gauge theory

living on a stack of N D3 branes probing the tip of a three dimensional Calabi-Yau cone

with a five dimensional Sasaki Einstein (SE5) base, in this case a Y pq manifold [19]. Such

theories are N = 1 quiver gauge theories in 4d and, by turning on background magnetic

fluxes for the global symmetries, it has been shown that in two dimensions they can flow

to theories with N = (0, 2) supersymmetry. The possible existence of a superconformal

phase has been shown for suitable choices of the quantized fluxes. This has been checked

by studying the central charge on the field theory side and matching with the solutions on

the dual gravity side.

This analysis revealed an interesting feature regarding the exact R-current of the 2d

N = (0, 2) theories. As in the 4d case indeed the exact R-current is a linear combinations

of the UV R-current and of the abelian global symmetries. In 4d the mixing coefficients

can be obtained by maximizing the conformal anomaly a4d [20]. In the Y pq case there the

are in general two possible sources of mixing: the mesonic symmetries and the baryonic

ones. A feature of these models is that the baryonic symmetry does not contribute to the

mixing,1 namely the exact R-current in 4d is a linear combination of the UV R-current

and of the (mesonic) flavor symmetries only. However, after the compactification of the

theories on Σg the baryonic symmetry in general contributes to the exact R-current of the

2d theory [12]. The mixing coefficient is computed by extremizing the two dimensional

central charge.

This mechanism can be captured on the supergravity side, by considering a 5d model

arising from a consistent truncation of 10d supergravity. The baryonic symmetry is as-

sociated to the presence of a so called Betti vector multiplet in the spectrum of the five

dimensional N = 2 gauged supergravity.2 Hence by considering a truncation with a gravi-

ton and a Betti vector multiplet one should see the absence of mixing on the 5d theory

and the presence of such mixing after the flow to 3d.

In this paper we check this idea by studying an explicit truncation of the Y 10 = T 1,1

theory, dual to the Klebanov Witten theory [24]. The supergravity truncation was provided

in [25] (see also [26]) and it requires in particular the presence of hypermultiplets and

massive vectors. We develop the necessary formalism in 5d N = 2 gauged supergravity to

study the flow across dimensions in presence of background fluxes and obtain the 2d central

charge in terms of the sections, the isometries and the fluxes. Notice that the relation

between c-extremization and the N = 2 gauged supergravity BPS flow equations has

already been proposed in [27], where the STU truncation (one graviton and two massless

1See [21] for a discussion of the mixing of baryonic symmetries in the Y 21 model, and for example [22]

for a general discussion on the mixing in SE5 manifolds.
2See also [23] for a recent analysis of the Betti multiplets in these models.
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vector multiplets) was taken into consideration. Here we consider a more general setup,

without fixing the number of vector multiplets and discussing the analysis in presence of

hypermultiplets.

The paper is organized as follows. In section 2 we review the compactification of 4d

N = 1 SCFTs on compact Riemann surfaces by a partial topological twist. We focus

on the Klebanov Witten theory, reproducing the formula for c2d in presence of a twist

along the baryonic symmetry. In section 3 we study the flows across dimensions from the

perspective of gauged supergravity in presence of a graviton and nV vector multiplets. We

concentrate on the analysis of the central charges of the dual SCFTs from the gravitational

perspective. We derive a general formula for c2d in terms of the gravitational quantities

and show that its extremization corresponds to an attractor mechanism in supergravity.

We conclude the analysis by discussing how the formalism is modified by the presence of

matter hypermultiplets in subsection 3.1. Sections 4, 5, 6 are devoted to the discussion of

specific examples this formulation can be applied to. In section 4 we apply the formalism

to the compactification of N = 4 SYM with a generic twist, breaking supersymmetry to

N = (0, 2) in 2d, and match our formula with the results of [8]. In section 5 we discuss

the main result of our paper. We study a truncation of T 1,1 in presence of a Betti vector

multiplet. For consistency the truncation requires also the presence of a massive vector

multiplet and hypermultiplets. We study the compactification on the Riemann surface

on the supergravity side, finding the holographic RG flow to the AdS3 vacuum. Then we

compute c2d from supergravity, with the techniques developed in section 3, reproducing the

field theory results and showing the mixing of the Betti multiplet with the graviphoton.

In section 6 we apply our formalism to another example, corresponding to the truncation

of 7d N = 4 SO(5) gauged supergravity reduced on a Riemann surface. This truncation

is dual to the infinite family of 4d N = 1 SCFTs associated to M5 branes worked out

in [28]. In this case we recover the large N results already obtained in [8, 10]. In section 7

we conclude and discuss possible lines of research. Two appendices clarify notations and

details of the calculations. In appendix A we provide a review of gauged supergravity, fixing

the conventions used in the paper. In appendix B we provide the details of derivation of

the BPS equations for the truncation of T 1,1 with the Betti vector multiplet on a constant

curvature Riemann surface.

Note added: when finishing this paper we noticed [29] on the ArXiv, where attractor

equations for extremal black strings in presence of hypermultiplets have been derived via

rewriting the action in a sum of squares, and a prescription to compute c2d from 5d N = 2

gauged supergravity is provided.

2 Flowing from 4d N = 1 to 2d N = (0, 2) SCFTs

In this section we discuss some aspects of the flow across dimensions discussed in [12].

More concretely we sketchily review the derivation of the central charge c2d from 4d SCFTs

on two dimensional compact Riemann surfaces with a partial topological twist along the

abelian symmetries.
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Consider a four dimensional N = 1 SCFT. At the fixed point the exact R-current is

determined by a linear combination of the abelian flavor symmetries JFi and of the UV

R-current, R0

R = R0 + αiJFi . (2.1)

The exact coefficients αi of such mixing are determined by maximizing the central charge

a4d [20]

a4d =
3

32
(3TrR3 − TrR) . (2.2)

Such a superconformal theory can be compactified on a genus g compact Riemann surface

Σg: some supersymmetries can be preserved if some background magnetic fluxes are turned

on, canceling the spin connection on the curved manifold. In general one can turn on such

background fluxes for all the non anomalous global abelian symmetries of the 4d theory.3

Define Ti as the generator of the i-th abelian symmetry. One turns on the external

fluxes as Fi = TivolΣg , where volΣg is the volume form, normalized such that
∫
dvolΣg =

2πηΣ and ηΣ = 2|g−1| for g 6= 1 and ηΣ = 1 for g = 1. Such fluxes are subject to opportune

Dirac quantization conditions (see [8, 12] for details).

So far the discussion has been general, and it can be applied to any 4d SCFT. In [12] an

infinite family of 4d SCFTs has been considered. This class corresponds to the so called Y pq

quiver gauge theories. This notation refers to a family of SE5 manifolds. These manifold

have an important application in the AdS/CFT correspondence, because they describe the

internal geometry probed by a stack of D3 branes probing the tip of the Calabi-Yau cones

over the Y pq manifolds [18].

On the field theory side they correspond to quiver gauge theories, labeled by the

positive integer values of p and q. For generic values of p and q such theories have four

abelian global symmetries. One of such symmetries is the UV R-symmetry R0, the others

are two mesonic and one baryonic symmetries. In general the mesonic symmetry is SU(2)×
U(1) and the baryonic symmetry is U(1). Further enhancement are possible for some values

of p and q.

One of the main results of [12] regards the role of the baryonic symmetries in the

compactification to two dimensions. In the 4d case the exact R-current of the Y pq theories

corresponds to a mixing of the abelian mesonic symmetry with R0, while the coefficient

of the mixing of the baryonic symmetry vanishes. Interestingly, by compactifying to 2d,

the baryonic symmetry can contribute to the exact R-current, i.e. the mixing parameter of

such baryonic symmetry is not necessarily vanishing anymore.

One can see this mechanism at work explicitly. Let us turn the flavor symmetries off

(i.e. we perform a topological twist just along the R-symmetry and the baryonic symmetry

of the 4d theory). The field strengths of the 4d theory can be written as

F
(4D)
R → F

(2D)
R − κ

2
tg , F

(4D)
B → F

(2D)
B + εBF

(2D)
R −B tg , (2.3)

3One can also twist along non-abelian symmetries along their Cartan subgroup. This procedure breaks

such symmetries to U(1), allowing them to mix with the R-current in two dimensions.
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Figure 1. Quiver gauge theory for the Klebanov-Witten theory, describing a stack of D3 branes

probing the Y 10 = T 11 space.

where κ is the normalized curvature of Σg, tg is the Chern class of the tangent bundle to

Σg normalized such that
∫

Σg
tg = ηΣ [12], B is the magnetic flux for the weakly gauged

U(1)B and εB parameterizes the mixing of U(1)B with U(1)R.

The 2d central charge can be computed in terms of the 4d trace anomalies kRRR and

kRBB (observe that kBBB = kRRB = 0 as well as kR = kB = 0 for Y pq theories). This can

be done by starting from the anomalous anomaly polynomial of the 4d theory

I6 =
kRRR

6
c1(FR)3 +

kRBB
6

c1(FR)c1(FB)2 , (2.4)

where c1(F ) is the first Chern class of the bundle with curvature F .

Then one has to turn on the background fluxes (2.3) into (2.4) and integrate over Σg,

obtaining the anomaly polynomial I4 of the 2d theory. The central charge c2d corresponds

to kRR, the coefficient of the term c1(FR)2 in I4. Such central charge will be a function of

the mixing coefficient εB. The exact central charge is obtained by extremizing kRR with

respect to εB.

Here we consider the case of p = 1 and q = 0, corresponding to the Klebanov Witten

theory [24]. The associated quiver, represented in figure 1, has two SU(N) gauge groups

connected by two pairs of chiral bifundamentals, ai and two anti-bifundamentals bi, with

i = 1, 2. This model has a superpotential W = εijεlkaiblajbk, an R symmetry U(1)R, two

SU(2) flavor symmetries, rotating the matter fields and one baryonic symmetry, assigning

opposite charges to the fields ai and bi. At the fixed point the exact R-symmetry assigns

charge 1/2 to the chiral fields, signaling the absence of mixing between the UV R-current

and the other global symmetries.

This theory can be compactified on a Riemann surface along the lines of the discussion

above, by turning on a flux κ for the R-current and B the baryonic symmetry. The central

charge c2d can be obtained from the knowledge of the anomalies kRRR and kRBB. By

following the calculation explained above one finds that in this case the mixing parameter

is εB = 2B/κ and at large N the central charge is

c2d = −ηΣN
2

(
9

4
κ+

12B2

κ

)
(2.5)

and a 2d SCFT can exist only for κ = −1.
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As a last remark let us consider a twist of a 4d SCFT along the 4d exact R-symmetry

only. In this case there is a general relation between a4d and c2d, first discussed in [5] (see

also [12] for further discussions on this ”universal twist”). Such relation is

c2d = −3ηΣκ

2
kRRRN

2 = −16ηΣκ

3
a4d , (2.6)

where, again, the last relation shows that c2d is positive only for κ = −1.

3 Flowing from AdS5 to AdS3 in N = 2 gauged supergravity

In this section we discuss some general aspects of the flow across dimensions in gauged

supergravity. We start from five dimensional N = 2 AdS5 gauged supergravity with nV
vector multiplets (see appendix A for the details on five dimensional supergravity). In this

general discussion we do not consider the presence of hypermultiplets, because in some

cases they yield to massive vectors, i.e. to broken global symmetries in the SCFT. We

return on this problem at the end of the section.

The holographic dictionary identifies the nV +1 vectors in the bulk with the R-current

(the graviphoton) and nV non-R global currents in the boundary. These vectors can be

thought as coming from a consistent truncation of 10D type IIB string theory on AdS5×Y5.

In such a case nV represents the sum of some of the internal (mesonic) symmetries of

Y5 and of some non anomalous baryonic symmetries, corresponding to the Betti vectors

in the truncation. The global anomalies on the AdS5 boundary theory are obtained by

contracting the sections XI of the Special geometry with the coefficients of the CS terms

in the action. The holographic dictionary relates the central charge to the superpotential of

the 5d theory and a-maximization corresponds to the attractor mechanism for the scalars

in the Special geometry [30]. The mixing parameters correspond to the coefficients entering

in the definition of the graviphoton [30]. The other global anomalies are defined by a similar

contraction [31], involving the derivatives4 of the sections XI .

As mentioned already, the holographic RG flow connects AdS5 vacua with AdS3 ×Σg

geometries, where Σg is a two dimensional Riemann surface with constant curvature and

genus g. This is realized by for solutions of the form

ds2
5 = e2f(r)(−dt2 + dr2 + dz2) + e2g(r)dσ2 , (3.1)

with two radially dependent lapse functions, f(r) and g(r), and area element dσ2

dσ2 = dx2 + F (x)2dy2 , (3.2)

where F (x) is determined by the curvature κ (or, alternatively, the genus g) of Σg as follows
g = 0 κ = 1 F (x) = sin(x) x ∈ [0, π], y ∈ [0, 2π[

g = 1 κ = 0 F (x) = 1 x, y ∈ [0, 1[

g > 1 κ = −1 F (x) = sinh(x) x ∈ [0,∞[

(3.3)

4This is because the terms ∂iX
I appear in δελ, and the gauginos correspond to the fermionic components

of the vector multiplets dual to the non-R global currents.
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This metric ansatz encompasses both asymptotically locally AdS5 spacetimes and solutions

of the form AdS3 × Σg, hence the possibility of realizing the flow across dimensions.

The topological twist requires nonvanishing magnetic components of the nV + 1 field

strengths F I of the five dimensional theory. Here we consider a generic ansatz, corre-

sponding to a topological twist along all of the nV + 1 abelian symmetries of the dual field

theory

F I(5) = −aIvolΣg + F I(3) (3.4)

where the volume form volΣg is related to ηΣ (introduced above) by volΣg = 2πηΣ and aI

are constant.

By working in units of RAdS5 = 1 the BPS equation relevant for obtaining the 2d

central charge are5

f ′ + efXIPI +
ef−2g

2
aIXI = 0, g′ + efXIPI − ef−2gaIXI = 0 , (3.5)

together with the constraint on the fluxes 3PIa
I = −κ. The AdS3 fixed point is found by

taking f(r) = f0 − log r and constant g = g∗. In this way the two equations above reduce

to a set of algebraic equations. From such algebraic equation we can extract the relations

ef0 =
2

3(P IXI)
, e2g∗ =

aIXI

P IXI
, (3.6)

and the central charge is obtained from the Brown-Henneaux formula [32]

c2d =
3RAdS3

2G
(3)
N

. (3.7)

The AdS3 radius and the three dimensional Newton constant can be expressed in terms of

higher dimensional quantities as

RAdS3 = ef0 , G
(3)
N =

G
(5)
N

e2g∗volΣg
, where G

(5)
N =

vol(Y5)

2π2N2
, volΣg = 2πηΣ . (3.8)

By using these relations we arrive at the following expression for the central charge com-

puted from the supergravity data

c2d =
6π3N2ηΣ

vol(Y5)
ef0+2g∗ =

4π3N2ηΣ

vol(Y5)

aIXI

(P IXI)2
. (3.9)

One can further refine such expression by using the constraint on the Special geometry

which relates XI to XI . In the normalization that we are considering here the relation is

XI =
1

6
CIJKX

JXK . (3.10)

The R-charges, i.e. the coefficients of the mixing of the global currents in the expression

of the R-current, can be read from the graviphoton AIµXI [33]: the superconformal R-

symmetry is read off from the anti-commutator of the supercharges acting on the scalar

5Observe that in this paragraph we use the conventions of [4]. We will modify the conventions in section 5

for making our notation uniform with the literature.
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fields, as explained in [27].6 The sections XI are proportional to the mixing coefficients,

the R-charges, in the expression of the graviphoton, rI = qXI . The correct normalization

q on these coefficients can be found by fixing the charge of the gravitino to be one. The

gravitino charge is given by the expression rIPI [30], and this fixes the proportionality

constant to t = 1/(XJPJ). By considering the relation (3.10) and the definition of the

R-charges, the central charge becomes

c2d =
2π3N2ηΣ

3 vol(Y5)
CIJKa

IrJrK . (3.11)

Some comments are in order.

Observe that the structure of the graviphoton exploits the relation between the R-

charges on the field theory side and the R-charges on the gravitational dual description.

Consider a SCFT with nV global symmetries in addition to the R-symmetry. In this case

we can combine the R-current and the global currents to obtain nV + 1 trial R-currents,

each one charging the superpotential, with non-vanishing R-charge. Let us define these

generators as TI . The exact R-current in this case is a linear combination of these trial

R-currents, TR = εITI , with the constraint on the mixing parameters
∑

I εI = 2. The

partial topological twist is performed along the generator T = nITI , with
∑
nI = κ/2.

With this choice we can map the generators TI with the vector multiplet gauge fields on

the gravity side. The R-charges εI and the fluxes nI are proportional to the charges rI
and the fluxes aI discussed on the gravitational side. We will see this mapping explicitly

at work in the examples below.

The formulation of c2d in (3.11) is interesting because it is a quadratic expression in the

R-charges, as expected from the field theory side. Moreover the extremization corresponds

to an attractor mechanism for the scalars7 of the Special geometry, in analogy with the case

of a-maximization from AdS5 gauged supergravity discussed in [30] and to the case of 3d

τ -minimization from AdS4 gauged supergravity discussed in [35]. This represents also the

5d dimensional version of the result of [36], where the flow from AdS4 to AdS2 in presence

of fluxes was studied. In that case the mixing of the graviphoton with the other vector

multiplets is related to an attractor mechanism and it is dual to the mixing of the global

currents in the exact R-current. This last can be obtained by extremizing the topologically

twisted index of [37].

The attractor mechanism can be understood as follows. We have obtained the central

charge from gauged supergravity parameterized in terms of a combination of the sections,

corresponding to the R-charges. The value of the central charge at the fixed point and the

exact mixing are obtained from the analysis of the gaugino variations. Indeed the vector

multiplets are associated to the global symmetries mixing with the R-current at the fixed

point. At the supersymmetric vacuum the variations lead to the equations (we will provide

a detailed derivation in the appendix B for the case of two vector multiplet, but the result

6This observation was already made in [30] and allowed the identification of the U(1) R-symmetry in

the 5d case.
7See [27, 34] for a complementary discussion.
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is more general)

∂x(aIXI)− 2e2g∂x(PIX
I) = 0 , (3.12)

where the index x refers to the scalar φx in the Special geometry (see appendix A for

review). Now we consider the equation (3.9), compute the derivative with respect to the

field φx: by making use of (3.12) we obtain

∂xc2d ∝
1

(XIPI)2
(∂x(aIXI)− 2e2g∂x(PIX

I)) = 0 . (3.13)

In other words c-extremization corresponds, in gauged supergravity, to the extremization of

a superpotential function W3 built out of the two quantities XIPI , corresponding formally

to the superpotential of the 5d theory and aIXI , corresponding to the central charge of

the gauging:

W3 ≡ 2e−2g
(
e−2g(XIa

I)− 2(XIPI)
)
. (3.14)

Lastly, in the case of the ”universal twist” there is a relation between c2d and a4d.

In this case one considers a truncation with a graviton (see for example [38] for generic

truncations on Y pq manifolds) with X0 = 1/(3X0), P0 = 1/3 and a0 = −κ. By substituting

in (3.9) we have

c2d =
4π3N2ηΣ

3 vol(Y5)
= −16ηΣκ

3
a4d, with a4d =

π3N2

4 vol(Y5)
, (3.15)

that requires κ = −1 and corresponds to the field theory result of formula (2.6).

In the following we apply this formalism to some examples. First we reproduce the

results of [8], where Y5 = S5. Then we discuss the T 1,1 truncation. In this case we check

the result by considering the twist along a combination of the 4d exact R-symmetry and the

baryonic symmetry. As already mentioned, the T 1,1 reduction yields a model of (abelian)

N = 2 5d gauged supergravity. This theory is characterized by the presence of a Betti

vector multiplet and hypermultiplets as well. The analysis in presence of hypermultiplets

is more complicated and in the next paragraph we will discuss its modification.

3.1 Inclusion of the hypermultiplets

When considering the hypermultiplets qX there can be massive vector multiplets in the

spectrum.8 On the supergravity side the condition for massive vectors is KX
I X

I = 0 (see

for example [39]). As reviewed in [30], by expanding the prepotentials around the origin

one has, at linearized level, PI = PI(0) + ma
IPa, where Pa plays the role of a Lagrange

multiplier. The holographic dictionary associates these massive vector bosons to anomalous

global currents. Their contribution can be added to a4d by introducing the multiplier: this

sets a constraint preventing the massive vectors to mix with the graviphoton.

Turning on the fluxes and flowing to the AdS3 vacuum in general triggers the flow

of the hyperscalars as well. Nevertheless at the AdS3 fixed point the constraint on the

massive vector needs to be satisfied as well. By enforcing the constraint in the relation

8Observe that it is not always the case, for example consistent truncations with Betti hypermultiplets

turned do not higgs any further symmetries and do not lead to massive vectors.
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between the sections in the AdS3 vacuum we forbid the mixing of the massive vector with

the graviphoton. As we will see in detail later, at the AdS3 point a further constraint

on the fluxes aI needs to hold. Such constraint, coming from the BPS equations, has

to be imposed to recover the structure of the topological twist. Physically speaking this

corresponds to the gravity dual mechanism of a consistency requirement for the topological

twist, i.e. on the field theory side one can perform the topological twist only along conserved

non anomalous global abelian currents.

4 N = 4 SYM and U(1)3 gauged supergravity

As a first example we reproduce the results of [8], namely we compute the two dimensional

central charge obtained by the R-symmetry twist of 4d N = 4 SYM to 2d N = (0, 2).

In this case there is an SO(6)R symmetry and the twist is done along the SO(2)3
R abelian

subgroup, i.e.

T = aITI ,

where TI are the generators of the abelian symmetries and aI correspond to the magnetic

fluxes of the weakly gauged abelian factors.9 If
∑
aI = −κ and for generic aI , supersym-

metry is broken to N = (0, 2) [8]. The 2d R-current TR is a linear combination of the three

abelian symmetries T
(2d)
R = εITI , where the constraint

∑
εI = 2 has to be enforced. The

central charge c2d has been computed in [12] as a function of such mixing. This has been

extremized in terms of εI . At the fixed point such mixing parameters are

εI =
2aI(2aI + κ)

θ
with θ ≡ 2

3∑
I=1

(aI)2 −
( 3∑
I=1

aI
)2

(4.1)

and the central charge becomes

c2d = −12ηΣN
2a

0a1a2

θ
. (4.2)

In what follows we want to reproduce this result in the gauged supergravity setup. In this

case Y5 = S5 and we use the conventions of [8], i.e.

RAdS5 = 1, PI =
1

3
, 3XI = (XI)−1 . (4.3)

The constraint on the fluxes is 3aIPI =
∑
aI = −κ and we define the R-charges as

rI = XI/(XJPJ). By plugging in these values in (3.11) the central charge is

c2d =
4

3
N2ηΣ(a0r1r2 + a1r2r0 + a2r0r1) . (4.4)

We extremize this function with the constraint on the R-charges
∑
rI = 3. At the fixed

point the charges are

r0 =
3a0

θ

(
a0 − a1 − a2

)
, r1 =

3a1

θ

(
a1 − a0 − a2

)
(4.5)

and the central charge matches the field theory result (4.2) for κ = −1.

9Observe that here we are keeping the same notations for the indices that we adopted on the supergravity

side, even if there is no meaning in rising and lowering the index I in field theory. Here the index I runs

over the Cartan subgroup of the global symmetry group.
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5 T 1,1 with a Betti multiplet

In this section we discuss the main result of our paper. We study a consistent N = 2

truncation of T 1,1 with a Betti multiplet [25] and we reproduce the mixing of this vector

with the graviphoton of the 5d theory when flowing to AdS3. Let us first recall some general

aspects of the baryonic symmetries and their relation with the Betti vector multiplets. We

keep the discussion general so far. When considering the KK spectrum of IIB supergravity

on AdS5×SE5 one can see the emergence of new massless matter arising from the non

trivial second cohomology group of the SE5 manifold. In general a truncation to 5d N = 4

SUGRA yields b3(SE5) of such vector multiplets, where b3 is the third Betti number of

SE5. Such N = 4 vector multiplets, called Betti vectors, can be further truncated to

N = 2 vector multiplets or N = 2 Betti hypermultiplets. The former are dual to non

anomalous conserved baryonic currents [40] (which are those we consider) while the latter

are associated to exactly marginal operators.

We will be interested to truncation leaving the Betti vector multiplets in the spec-

trum.10 Such a truncation has been explicitly obtained for the case of T 1,1 in [25] (see

also [41]). In this case b3(T 1,1) = 1, i.e. there is a single Betti vector and it is dual to

the baryonic symmetry of the Klebanov Witten theory. On the field theory side this bary-

onic symmetry can be identified as follows. The model has two U(N) gauge groups. In

the IR the dynamical gauge groups is SU(N)2, i.e. the two U(1) symmetry become flavor

symmetries, one of which is redundant. The leftover U(1) corresponds to the baryonic

symmetry of interest. Such symmetry does not mix with the R-charge in 4d. This is a

general statement, see for example [22] for a general discussion.

The N = 2 truncation of [25] has a third vector, which is Higgsed due to the presence

of extra hypermultiplets, containing a Stuckelberg field.11 This requires some modification

to our general discussion, along the lines of section (3.1).

The section is organized as follows. First we introduce the details of the truncation

in 5d, then we study the AdS3 vacuum. We perform the numeric analysis to study the

holographic RG flow from the AdS5 UV fixed point to the AdS3 IR one. We conclude by

computing c2d and the structure of the mixing of the global currents of the 2d theory with

the formalism developed above, matching the result with the one obtained in field theory.

Let us finally mention that BPS solutions interpolating between an AdS4 UV fixed point

and AdS2, in theories with hypermultiplets and Betti multiplets have recently been found

in [42].

5.1 The 5d truncation

Here we review the truncation of 10d type IIB on T 1,1 leading to 5d gauged supergravity

with a Betti vector, the so-called “Betti-vector” truncation of [25], subsequently studied

in [41]. We refer the reader to these articles for further details. This model consists of

the N = 2 graviton multiplet, two N = 2 vector multiplets and two hypermultiplets

(one of which is the universal hypermultiplet), and it admits a N = 2 supersymmetric

AdS5 vacuum.

10See [9] for a reduction to AdS3 with the Betti hypermultiplet turned on.
11See for example [39] for a general discussion on such higgsing in gauged supergravity.
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Schematically, the bosonic matter content is [41]

• gravity +2 vectors: (gµν , A0, A1, A2, u2, u3);

• 2 hypers: (u1, k, τ, τ̄ , b
i
0, b̄

i
0), i = 1, 2.

In this truncation one of the vectors becomes massive via Higgs mechanism, and this

vector multiplet plus one hypermultiplet become a massive vector multiplet. The matter

content can also be rewritten in the following way (table 2 of [25]):

• the gravity multiplet, containing a graviton gµν and a massless vector Ag;

• A massless Betti vector multiplet, containing a massless vector AB and one real scalar

u2 with m2 = −4 (∆ = 2);

• A universal hypermultiplet, with 4 real fields τ, τ̄ , b10, b̄
1
0, with m2

τ = 0 (∆ = 4) and

m2
b0

= −3 (∆ = 3);

• A massive vector multiplet, containing a massive vector Am (who has eaten its axion

k) with m2 = 24, ∆ = 7, and 4 real scalars u3, u1, b
2
0, b̄

2
0 with m2 = 12, 21, 21, 32

(∆ = 6, 7, 7, 8).

The quaternionic Killing vectors, specifying the gauging, are:

K0 = (3ibi0∂bi0
+ c.c.)− 2∂k, K1 = 2∂k, K2 = 2∂k (5.1)

and the Killing prepotentials are

P0 = −i
[(

3− 1

2
e−4u1eZ

)
σ3 − 2ie−2u1vif

i
0σ+ + 2ie−2u1 v̄if̄

i
0σ−

]
,

P1 = −ie−4u1σ3 ,

P2 = −ie−4u1σ3 , (5.2)

where vi is the SL(2, R) vielbein and

f i0 = 3ibi0 , eZ = 4− 2i

3
εij(f

i
0f̄

j
0 − f̄

i
0 .f

j
0 ) . (5.3)

We can moreover express the vectors A0, A1, A2 appearing in the model in terms of

the Betti vector AB, the massless vector appearing in SE5 truncation Ag and the massive

vector Am, in this way

A0 =
1

3
(−
√

6Am +
√

3Ag) ,

A1 =
1

6

(√
6Am − 3

√
2AB + 2

√
3Ag

)
,

A2 =
1

6

(√
6Am + 3

√
2AB + 2

√
3Ag

)
, (5.4)
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the inverse relations being

AB =
A2 −A1√

2
, Am =

A1 +A2 − 2A0√
6

, Ag =
A0 +A1 +A2√

3
. (5.5)

One can see that when A2 = A1 the Betti vector vanishes, and, upon a suitable truncation

of the scalars, we are back to the SE5 truncation. The expressions we just wrote will be

useful when dealing with the explicit form of the mixing for the baryonic symmetries in

the R-symmetry.

Let us finally mention that the AdS5 vacuum is obtained for the following values of

the scalar fields:

u1,AdS5 = u2,AdS5 = u3,AdS5 = b10,AdS5
= b20,AdS5

= τ = 0 , (5.6)

5.2 The ansatz and the BPS equations

We study now the flow from AdS5 to AdS3×Σg by solving the BPS equations. We consider

the metric ansatz discussed in section 3, which we rewrite here for convenience:

ds2
5 = e2f(r)(−dt2 + dr2 + dz2) + e2g(r)dσ2 . (5.7)

The gauge fields read
g = 0 κ = 1 AIx = 0, AIy = aI cos(x),

g = 1 κ = 0 AIx = −1
2a

Iy, AIy = 1
2a

Ix,

g > 1 κ = −1 AIx = 0, AIy = −aI cosh(x),

(5.8)

hence the field strengths, defined as F Iµν = ∂µA
I
ν − ∂νAIµ read

F I = −aIF (x) dx ∧ dy I = 0, 1, 2 . (5.9)

We will be interested here in the purely magnetic case.12 The scalar fields of the Special

geometry are positive, satisfy X0X1X2 = 1 and they are parameterized as

X0 = e4u3 , X1 = e2u2−2u3 , X2 = e−2u2−2u3 , XI = (XI)−1 . (5.10)

The two real scalars u2 and u3 are independent and belong to the vector multiplets.

We will make one simplifying assumption while looking for solutions of the BPS equa-

tions. First of all, as shown in [25], one can consistently truncate away the universal

hypermultiplet fields. Hence τ, b10 will be set to constant values. Moreover, the remaining

fields b20 appears quadratically in the action, hence can be consistently se to zero. This

setup was shown to be a consistent truncation in [43] as well, the field u1 being called the

resolution mode of T 1,1.13

12t and z components of the gauge fields of the form AIt = q(r) and AIz = wI = const are compatible

with the Maxwell and Bianchi equations as well, and contribute to the black string electric charge
∫

Σg
GI ,

where GI,µν = εµν
σρ ∂L

∂F
σρ
I

. We will not consider them here.
13Our Lagrangian is the same as (7.7) of [43] upon the following field identification

η =
2(2u1 + 3u3)

5
, χ =

2

5
(3u1 − 3u3) , λ = 2u2 . (5.11)
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We will then look for explicit solutions where all the scalar fields except u1, u2, u3 are

consistently set to zero. One can see from eq. (5.2) that this has the net effect of setting

the components r = 1, 2 of the Quaternionic Killing prepotentials P rΛ to zero:

P 1
Λ = P 2

Λ = 0 , (5.12)

namely in our solutions, similarly to [42], the prepotentials are aligned in the σ3 direction,

namely P 3
I ≡ −i PI 6= 0. Moreover, this has the net effect of setting ωjµi = 0.

The full analysis of the supersymmetry variations is in appendix B, where the BPS

equations are obtained. In the case under consideration Qr = (0, 0−1), hence the projection

on the Killing spinor simplifies to

γ2εi = σ3
ijε

j , γ34εi = iσ3
ijε

j , (5.13)

and the BPS equations then reduce to:

f ′ +
1

3
efXIPI +

1

6
aIXIe

−2g+f = 0

g′ +
1

3
efXIPI −

1

3
aIXIe

−2g+f = 0

8u2′ +
e−2g+f

2
aI∂2XI − ef∂2X

IPI = 0

24u3′ +
e−2g+f

2
aI∂3XI − ef∂3X

IPI = 0

16u′1 − 2 ∂X(XIPI) = 0

aIKX
I = 0

aIPI + κ = 0 , (5.14)

where we used the fact that g22 = 8, g33 = 24, g23 = 0 and the metric of the hypermultiplet

u1 is g11 = 16. Lastly, one can see that the BPS equations (5.14)–(5.14) select a particular

value for the Dirac quantization conditions of the theory, correspondingly, on the field

theory side, to the quantization of the fluxes through the Riemann surface.

5.3 The AdS3 vacuum

In order for the metric to approach the AdS3×Σg fixed point, the metric functions should

attain the constant value f(r) = f0− log r and g = g∗. The scalars as well assume constant

values, which we denote by φ∗X and q∗i . At the AdS3 vacuum the equations (5.14) reduce

to a set of algebraic equations for g∗, f0 and the scalars

2e2g∗(XIPI) = CIJKa
IXJXK

ef0(XIPI) = 2

2e2g∗(X1P1 −X2P2) = X0(a2X1 − a1X2)

2e2g∗(2X0P0 −X1P1 −X2P2) = a1X0X2 + a2X0X1 − 2a0X1X2 (5.15)
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with the constraints

a0 = −κ/3, a1 + a2 = 2a0, X1 +X2 = 2X0 . (5.16)

Notice that in order to obtain (5.15) and (5.16) the first one of the projections (5.13)

becomes unnecessary. In other words, while the entire flow preserves one quarter of su-

persymmetries, the supersymmetry is actually enhanced to 1/2 BPS at the near-horizon

AdS3 × Σg geometry.

Let’s now analyze the equations (5.15) and (5.16) obtained. The first two relations

reproduce, in gauged supergravity, the structure of fluxes turned on when performing the

topological twist on the field theory side. Here we parameterize the fluxes a1 and a2 as

a1 = −1

3
(κ− 4b), a2 = −1

3
(κ+ 4b) . (5.17)

The last constraint in (5.16), corresponding to KI
XXI = 0, signals the presence of a massive

vector multiplet in the spectrum, i.e. a non conserved abelian current on the field theory

side. This is consistent with the fact that there are only two independent conserved charges

aI . In the case of κ = −1 the AdS3 vacuum is found at

e4u1 =
3κ2 + 16b2

3κ2
, e4u2 =

κ+ 4b

κ− 4b
, e12u3 =

κ2

κ2 − 16b2
,

e6g∗ =

(
16b2 + 3κ2

)3
729κ (16b2 − κ2)

, e3f0 =
8

27

κ2 − 16b2

κ2
. (5.18)

At this point one is ready to compute the central charge, by plugging in the values of g∗

and f0 in (5.18) in the Brown-Henneaux formula (3.7):

c2d = −ηΣN
2

(
9κ

4
+

12b2

κ

)
. (5.19)

This shows that only solutions with κ = −1 are admitted, as expected from the field theory

side. Indeed the case κ = 0 is singular, while the case κ = 1 gives a negative central charge.

This match with the central charge obtained on the field theory side (2.5).

5.4 Holographic RG flow

Here we numerically solve the BPS flow equations, studying the holographic RG flow

connecting the AdS5 UV vacuum and the AdS3 IR one. In order to simplify the numerical

problem we rewrite the BPS equations in an easier and more compact form by a change

of variables.

This change of variables is analogous to the one discussed in [8, 44]. First one start by

redefining the radial coordinate as

ρ ≡ f + 2g . (5.20)

The second step consists in considering a superpotential function14 for the theory on AdS3.

This corresponds to a combination of the AdS5 superpotential XIPI discussed in [41] and of

14This is the same superpotential that we already encountered in section 3 when we observed that c-

extremization corresponds to an attractor mechanism in gauged supergravity. This is possible because,

even if we are in presence of hypermultiplets, we can still rotate the killing potentials PI along the same

direction.
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Figure 2. Holographic RG flow for the of the scalar fields φi interpolating between the AdS5

vacuum in the UV, ρ → ∞ and the AdS3 vacuum in the IR, ρ → −∞. The colors refers to the

values b = 0.08 (blue), b = 0.1 (red), b = 0.15 (yellow) and b = 0.2 (green).

the central charge of the gauging XIa
I . Their combination give rise to the 3d superpotential

function (3.14), that can be used to reformulate the BPS equation in a compact form. The

BPS equations for f ′ and g′ can be recombined in

∂ρ(r)

∂r
=
eρ

2
W3 . (5.21)

The other BPS equations can be written as

∂ui
∂r

= −1

2
eρgii∂iW3 ,

∂g(r)

∂r
= − e

ρ

12

∂W3

∂g
. (5.22)

These equations are more suitable for the numerical analysis, and they are independent of

f . Once we have the solution for these equations the function f is determined automatically

from (5.21). Moreover, by using (5.21), the equations (5.22) become

∂ui
∂ρ

= −gii 1

W3

∂W3

∂ui
,

∂g

∂ρ
= − 1

6W3

∂W3

∂g
. (5.23)

It follows that if we canonically normalize the fields ui by
√
gii and g by

√
6, and define a

new set of variables φ1, φ2, φ3 and φg the BPS equations can be written together as

∂φi
∂ρ

= − 1

W3

∂W3

∂φi
. (5.24)
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This formulation shows that a slight simplification appears when working in 3d versus

5d, because the 3d theory appears to be agnostic of the distinction between scalars from

hypermultiplets and vector multiplets. This fact was noticed in [45] for the model treated

in section 6 (see related discussion in that section). Indeed, one sees that the BPS flow

equations are generated by varying a single superpotential function, which in the present

case is denoted by W3.

Coming back to our analysis, in this basis the AdS3 vacuum corresponds to

φ1 =

√
1

2
log

(
16b2 + 3κ2

3κ2

)
, φ2 =

√
3

2
log

(
κ+ 4b

κ− 4b

)
,

φ3 =
1

3
log

(
κ2

κ2 − 16b2

)
, φg =

1√
6

log

( (
16b2 + 3κ2

)3
729κ (16b2 − κ2)

)
. (5.25)

We can now numerical solve these equations by fixing κ = −1 and by imposing the

boundary conditions in the IR, i.e. the fact the solution flows to the AdS3 vacuum in

formula (5.25). From the figure 2 we can observe that at large ρ this theory flows to a

different fixed point, in which the fields φi sit at the AdS5 vacuum (5.6).

5.5 c-extremization from gauged supergravity

In this section we are interested in the structure of the mixing of the abelian currents

leading to c2d as a result of the extremization procedure. We study the c-extremization

in gauged supergravity along the lines of section 3. Interestingly we see that the effect of

the hypermultiplets can be easily included here by enforcing the constraint on the massive

vector. This can be done by parametrizing the mixing in terms of the R-charges rI and

imposing the constraint 2X0 = X1 +X2. In this way the R-charges become

r0 =
1

3
, r1 =

X1

3X0
=

1

3
(1− ε) , r2 =

X2

3X0
=

2X0 −X1

3X0
=

1

3
(1 + ε) . (5.26)

where we defined ε = −(X1 −X0)/X0. We reproduce the topological twist by identifying

the R-symmetry and the baryonic symmetry with the graviphoton and with the Betti

vector respectively. Explicitly

aITI =
k

3
(T0 + T1 + T2) +

4

3
b(T2 − T1) , (5.27)

hence the identifications between the field theory generators T f.t.R and T f.t.B and the super-

gravity ones

T f.t.R =
3

2
(T0 + T1 + T2), T f.t.B =

3

4
(T2 − T1) . (5.28)

This decomposition reflects eq. (5.5). By using the relation vol(T 1,1) = 16π3

27 the central

charge can be written as15

c2d =
6π3N2ηΣ

vol(T 1,1)
CIJKa

IrJrK =
3N2ηΣ

4
(8bε− κ(3− ε2)) . (5.29)

15Observe that in our conventions 2XI = CIJKX
JXK and ef = 2/(XIPI).
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At the extremum, corresponding to ε∗ = −4b/κ, the central charge becomes

c2d = −ηΣN
2

(
9κ

4
+

12b2

κ

)
, (5.30)

matching the field theory result (2.5) for κ = −1. Observe that as a consistency check we

can plug in c2d the values of the scalars at the vacuum (5.18) and obtain the value of ε∗.

6 M5 branes

In this section we discuss the flow to AdS3 for a 5d theory constructed in [46] from a con-

sistent truncation of 7d N = 4 SO(5) gauged supergravity reduced on a Riemann surface.

The holographic 4d theories associated to such truncation were constructed in [28]. They

are quiver gauge theories, obtained from the class S theories of [47] by gluing the pants

such that only N = 1 supersymmetry is preserved. We will not review the construction

here, and refer the reader to the original paper for details.16 We do not discuss the cal-

culation of the central charge from the field theory data (see [10]) and the analysis of the

flow in gauged supergravity (see [8, 10]). Here we are just interested in constructing c2d

by applying our formalism. We can also check our result against the one obtained in [8],

where the reduction of the 7d theory on the product of two Riemann surfaces Σ1 × Σ2

was discussed.

By using our formalism, c2d can be obtained from 5d N = 2 gauged supergravity in

terms of the prepotentials PI . The supergravity analysis leads to the following Killing

prepotentials17

P0 = eu3 , P1 = 2 + eu3
z1 + κ1

8
, P2 = 2− eu3

z1 − κ1

8
. (6.1)

The sections are parameterized as

X0 = eu1+u2 , X1 = e−u1 , X2 = e−u2 . (6.2)

By following the procedure discussed above we can reduce this theory on Σ2, with curvature

κ2. The constraints on the fluxes are

2a1 + 2a2 = −κ2 8a0 + a1(κ1 − z1) + a2(κ1 + z1) = 0 . (6.3)

We can parameterize a1 and a2 as

a1 = −κ2 − z2

4
, a2 = −κ2 + z2

4
, (6.4)

where z2 plays the role of the baryonic symmetry discussed in the case of T 1,1, i.e. it is

associated to a massless vector multiplet that does not mix with the 5d graviphoton, but

16This model was discussed in [45]. In the same paper the uplift in 10d is constructed and the au-

thors showed that the R-symmetry agrees with the canonical R-symmetry in 11D based on the existing

classification, [17].
17We are modifying the notations of [46], with the change of variables λ1 = −4u1+u2−u3

10
, λ2 =

u1−4u2+u3
10

, B = 3(u1+u2−u3)
10

.
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that can mix in 3d. One can observe that a1 + a2 = −κ2/2 and a1 − a2 = z2/2 are

the fluxes for the 5d graviphoton, that can be obtained from a-maximization, and for the

second vector multiplet, that couples in the two dimensional CFT as expected. In this case

there is a massive vector multiplet as well. Its effect can be understood from the hyperino

variation, constraining the scalars as

8e2(u1+u2) + eu1(κ1 − z1) + eu2(κ1 + z1) = 0 . (6.5)

Observe that the parametrization in terms of the scalars is unnecessary, and we could

simply provide the relation in terms of the constraint on the sections, 8X0 +X1(κ1− z1) +

X2(κ1 + z1) = 0. This constraint allows us to define the R charges rI = XI/(XIPI) as

r0 =
4z1ε− κ1

16
, r1 =

1

4
− ε , r2 =

1

4
+ ε . (6.6)

The central charge is proportional to CIJKa
IrJrK , that in this case becomes

CIJKa
IrJrK =

κ1κ2(3− 16ε2)− 8ε(κ1z2 + κ2z1)− z1z2(1− 48ε2)

128
, (6.7)

which is extremized at

ε =
κ1z2 + κ2z1

4 (3z1z2 − κ1κ2)
. (6.8)

The overall factor in the calculation of the central charge can be obtained by expressing

G
(3)
N in terms of G

(11)
N . We start by providing the relations [48]

G
(11)
N =

π4

32N3
, G

(7)
N =

G
(11)
N

V olS4

=
3π2

16N3
. (6.9)

The central charge can then be expressed as

c2d =
3RAdS3

2G
(3)
N

=
3

2
ef+2g 4π2ηΣ1ηΣ2

G
(7)
N

= 8N3ηΣ1ηΣ2CIJKa
Ir∗Jr∗K .

We further need to normalize the fluxes as done in [8]. It corresponds to the relation

κi → 2κi and zi → 2zi. The final result is

c2d =
η1η2N

3
(
3κ2

1κ
2
2 + κ2

1z
2
2 − 8κ1κ2z1z2 + κ2

2z
2
1 + 3z2

1z
2
2

)
4 (κ1κ2 − 3z1z2)

, (6.10)

that matches the one found in [8] at large N . The finite N contribution has been obtained

in [10] and involves higher derivatives in AdS5 supergravity.

7 Conclusions

In this paper we discussed some aspects of supersymmetric flows from AdS5 to AdS3×Σg in

gauged supergravity, dual to the compactification of 4d N = 1 SCFTs on compact Riemann

surfaces with a partial topological twist. On the field theory side it has been shown that the

central charge of the 2d theory can be obtained in terms of the anomalies of the 4d theory

through the formalism of the anomaly polynomial. On the holographic dual side we have
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shown that this mechanism can be reproduced in terms of the central charge of the gauging

and of a superpotential. The flow is triggered in supergravity by turning on some fluxes

for the vectors. The central charge can be expressed in terms of the fluxes, the isometries

and the sections. By using the constraints of the Special geometry we obtained a quadratic

formula for the central charge of the 2d theory in terms of the R-charges, representing the

mixing coefficients of the vectors with the graviphoton. The extremization of the central

charge on the field theory side is associated to an attractor mechanism for the scalars

on the supergravity side. We applied this formalism to a consistent truncation of T 1,1,

containing a Betti vector multiplet, dual to the baryonic symmetry. This allowed us to

reproduce the fact that the baryonic symmetry does not mix with the R-charge of the 4d

case but it can mix once the theory is compactified to 2d. We have shown the existence of

solutions interpolating between the AdS5 and the AdS3 vacua and we have we computed

the central charge from the gravitational side, reproducing the field theory results. We

provided further examples of this extremization by matching with the results obtained for

other truncations, corresponding to the partially topologically twisted compactification of

N = 4 SYM and of infinite families of N = 1 SCFTs describing M5 branes on compact

Riemann surfaces.

Our analysis can be applied to other truncations in presence of vector multiplets and

hypermultiplets. For example it may be interesting to study the N = 2 truncation of 5d

maximal gauged supergravity worked out in [44], corresponding to the holographic dual

description of the N = 1∗ Leigh-Strassler fixed point [49]. By reformulating this theory in

terms 5d of N = 2 gauged supergravity and applying our formalism it should be possible

to recover the 2d central charge obtained by the twisted compactification of this model on

a hyperbolic Riemann surface. Another interesting line of research consists in including

the effect of higher derivatives, along the lines of [10]. This corresponds to including the

Pontryagin classes in the calculation of the central charge [12], and it is related to sub-

leading effects in the rank of the gauge groups.

Moreover, the existence of a volume formula for the M7 manifold was conjectured

in [12]. Such volume formula should reproduce the central charge and its extremization

similarly to the case of SE5 discussed in [50]. In this paper we obtained an expression for

c2d that is quadratic in the sections and is formulated in terms of the CS terms of the 5d

theory. The CS terms are associated to triangle anomalies and the volumes of the SE5

geometry [51]. This formulation looks a promising starting point to construct the volume

formula for the M7 manifold in terms of the geometric data of the SE5 geometry.

We wish to conclude our discussion by stressing that the connection between the ex-

tremization principles and the attractor mechanism extends beyond the five-dimensional

case. For example, it has been shown recently in [36] that the microstate counting for

AdS4 black holes can been achieved through the extremization of a topologically twisted

index on S2 × S1. This extremization principle corresponds to the AdS2 attractor. It

would be interesting to extend the analysis performed here to the case of the N = 2 AdS4

supergravity truncations in presence of Betti multiplets, performed in [52]. Investigation

of the extremization principle in such theories might shed light on the microscopic origin

of the AdS4 BPS black holes found in [42] by exploiting the results found in [53, 54].
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A N = 2 5d gauged supergravity

In this appendix we review some basic aspects of 5d Gauged supergravity and we fix the

conventions we use in the main body of the paper for the analysis of the truncation of

T 1,1 with the Betti vector multiplet turned on. The general matter content of N = 2

supergravity consists in the gravity multiplet, and vector, tensor and hypermultiplets. In

the T 1,1 truncation taken into consideration tensor multiplets do not appear, hence we do

not consider them here. We refer the reader to [55] (and [56] as well) for a more general

discussion of gauged N = 2 5d supergravity. In what follows we will stick to the conventions

used in [41].

The bosonic field content of the supergravity theory is as follows. The gravity multiplet

consists in the metric gµν and one vector A0
µ. We have then nv vector multiplets, which

consist in nv vectors AIµ, I = 1 . . . , nv, and vector multiplet scalars φx, living on a Very

Special manifold. There are finally nh hypermultiplets, for a total of 4nh hyperscalars qX

which parameterize a Quaternionic manifold. The bosonic N = 2 Lagrangian has this form:

L = R− 1

2
gxyDµφ

xDµφy − 1

2
gXYDµq

XDµqY

−1

4
GIJF

I
µνF

J µν +
1

24
cIJKε

µνρλσF IµνF
J
ρλA

K
σ − V . (A.1)

The scalar potential is

V = 2gxy∂xX
I∂yX

JP rI P
r
J −

4

3
(P rIX

I)2 +
1

2
gXYK

X
I K

Y
J X

IXJ , (A.2)

and the covariant derivatives for the vector multiplet and for the hypermultiplet scalars

(fixing the gauge coupling g = 1) are defined as

Dµφ
x = ∂µφ

x +AIµK
x
I (φx), Dµq

X = ∂µq
X +AIµK

X
I (qX) , (A.3)

where Kx
I (φx) and KX

I (qX) are Killing vectors corresponding to the gauging of the isome-

tries of the Special manifold and Quaternionic manifold.

The supersymmetry variations for the gravitino, gauginos and hyperinos of [55] adapted

to our conventions [41, 57] read

δψµ i =

[
Dµ +

i

24
XI(γµ

νρ − 4δνµγ
ρ)F Iνρ

]
εi +

i

6
γµX

I(PI)i
jεj ,

δλxi =

(
− i

2
γ ·Dφx − 1

4
gxy∂yXIγ

µνF Iµν

)
εi − gxy∂yXI(PI)i

jεj ,

δζA = f i AX

(
− i

2
γ ·DqX +

1

2
XIKX

I

)
εi , (A.4)
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The supercovariant derivative acting on the supersymmetry parameter is

Dµεi = ∂µεi +
1

4
wabµ γabεi + ω̂xµ(σx)ji εj +

1

2
AIµ(PI)i

jεj , (A.5)

where ω̂µ = i
2∂µq

uωxu is the connection on the Quaternionic manifold.

So in total the susy variation of the gravitino reads:

δψµ i = ∂µεi +
1

4
wabµ γabεi + ω̂xµ(σx)ji εj +

1

2
AIµ(PI)i

jεj (A.6)

+
i

24
XI(γµ

νρ − 4δνµγ
ρ)F Iνρεi +

i

6
XIγµ(PI)i

jεj . (A.7)

The vector multiplet scalars φx are often expressed in terms of the scalars XI(φx), con-

strained by 1
6CIJKX

IXJXK = 1. Moreover, the metric on the scalar manifold is given by

GIJ = XIXJ − CIJKXK , gxy = ∂xX
I∂yX

JGIJ , (A.8)

with the XI fields (lower index) given by

XI =
1

2
cIJKX

JXK . (A.9)

The fields fAXi are the vielbeins on the Quaternionic manifold [55], with the SU(2)

index i = 1, 2 and the Sp(2nh) index A = 1, . . . , 2nh raised and lowered as usual by the

matrices εij and CAB. The metric on the Quaternionic manifold is

gXY = f iAX f jBY εijCAB = f iAX fY iA . (A.10)

The SU(2) curvature is

ΩXY ij = fXC(if
C
j)Y , (A.11)

and the connection ωjµ,i = (∂µq
X)ωjX,i is such that

Ωj
XY i = iΩr

XY (σr)
j
i = 2∂[Xω

j
Y ]i − 2ωk[X|i|ω

j
Y ]k , (A.12)

Ωr = dωr − εrstωsωt . (A.13)

The SU(2) curvatures are proportional to the KyperKahler forms, hence

Ωr
XY ΩsY Z = −1

4
δrsδZX −

1

2
εrstΩt

X
Z
. (A.14)

Finally, the Killing prepotentials (PI)
j
i = P rI (iσr)ji are related to the Killing vectors KX

I

by the equation

KX
I Ωr

XY = DY P
r
I , DXP

r
I ≡ ∂XP rI + 2εrstωsXP

t
I . (A.15)

It is useful to define the following quantities:

P r ≡ XIP rI , KX ≡ XIKX
I . (A.16)

We moreover decompose the vector P r in its norm and phase

P r = WQr , QrQr = 1 , W =
√
P rP r . (A.17)

Lastly, one can straightforwardly verify the relation

∂XW =
1

W
P rDXPr =

1

W
P rΩr

XYK
Y (A.18)

which will be useful later.
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B BPS equations

We give here a detailed derivation of the BPS equations, which are obtained by setting to

zero the supersymmetry variations of the gravitino, gaugino and hyperino. In doing so,

we plug the ansatz of the metric (3.1)(3.3) and purely magnetic gauge field Ax and Ay
(while At = 0) in the supersymmetry variations (A.4). We make the following ansatz for

the Killing spinor projection relations, where the numbers indicate flat indices:

γ2εi = −Qrσrijεj , γ34εi = −iQrσrijεj , ∂tε = ∂zε = ∂xε = ∂yε = 0 . (B.1)

Imposing these projectors amount to preserving 1/4 of the supersymmetries throughout

the flow. For the solutions taken into consideration, there is a supersymmetry enhancement

at the IR: the AdS3 × Σg geometry is in fact 1/2 BPS - see discussion in section 5.3.

We will make the following choice of vielbeins

e0
t = e1

z = e2
r = ef(r) , e3

x = eg(r) e4
y = eg(r)F (x) , (B.2)

where the function F is defined in (3.3). The non vanishing components of the spin con-

nection are:

w02
t = w12

z = f ′ , w23
x = −g′eg−f , w24

y = −g′eg−fF (x) , w34
y = −F ′(x) . (B.3)

The analysis which follows apply to the case k = ±1, but the procedure can be straight-

forwardly applied to the κ = 0 case as well.

B.1 Gravitino

The BPS equation derived from the t component of the gravitino variation δψti reads

∂tεi +
1

4
w02
t γ02εi +

i

24
XIγ

xy
t F

I
xyεi +

i

6
γtX

IPI
j
i εj = 0 . (B.4)

We impose now the relations (B.1). Therefore, the first term drops out, and the other give

the equation

− 1

2
f ′γ0Q

rσrijε
j − XIa

I

12
e−2g+fγ0Q

rσrijε
j − 1

6
γ0e

fP rσrijε
j = 0 , (B.5)

which, given (A.17), can be simplified in

f ′ +
1

6
aIXIe

−2g+f +
1

3
efW = 0 . (B.6)

From the r-component, using (B.1) we have

∂rεi + ω̂xµ(σx)ji εj −
i

24
aIXIe

−2g+fγ34
2 εi +

i

6
γ2e

fXIPI
j
i εj = 0 . (B.7)

which determines the functional form of in terms of r of the Killing spinor εi(r).

The x component of the gravitino variation gives:

∂xεi +
1

4
w23

x γ23εi −
i

6
γya

IXIεi +
i

6
γxX

IPI
j
i εj = 0 ,
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which after using (B.1) yields

g′ − 1

3
XIa

Ie−2g+f +
1

3
efW = 0 . (B.8)

The y component of the gravitino variation gives:

∂yεi +
1

4
w23

y γ23εi +
1

4
w34

y γ34εi +
1

2
AIy(PI)

j
i εj −

i

6
γxa

IXIεi +
i

6
γyX

IPI
j
i εj = 0 .

Imposing the projection relations (B.1), we obtain two parts, one multiplying Qrσrij and

the other γyQ
rσrij , that need to vanish separately. From the terms in γyQ

rσrij we get

exactly equation (B.8) obtained before. The part multiplying PI
j
i εj yields

1

2
AIyP

r
I =

κ

2
QrF ′(x) → aIP rI = −κQr , (B.9)

where we made use of the relations (5.8).

Finally, the z component of the gravitino variation gives exactly the same equa-

tion (B.6).

B.2 Gaugino

After plugging in the ansatz (3.1)(3.3)(3.4), and retaining only the radial dependence of

the fields, the gaugino equation reads

− i

2
γr ∂rφ

x εi −
i

2
γφ aIKx

I εi −
i

2
γθ aIKx

I εi +
1

2
gxy∂yXIγ

xyaIεi −
1

2
gxy∂yX

I(PI)
j
i εj = 0 .

(B.10)

Since the models taken into consideration don’t gauge the isometries of the Special mani-

fold, we have Kx
I = 0. Hence, after using the projections (B.1) we are left with the equations

1

2
∂rφ

xQr +
1

2
e−2g+fgxy∂yXIa

IQr − ef gxy∂yXIP rI = 0 . (B.11)

B.3 Hyperino

The hyperino equation instead requires a bit more effort. Plugging in all components, and

taking into account the radial dependence of the scalar fields, it reads

f iAX

(
− i

2
γr∂rq

X + γyAIyK
X
I +

1

2
XIKX

I

)
εi = 0 . (B.12)

The second and third term should vanish separately, hence the constraint

aIKX
I = 0 . (B.13)

We are now ready to massage the remaining equation

f iAX
(
−iγr∂rqX +XIKX

I

)
εi = 0 , (B.14)

following the procedure spelled out in [58]. We multiply the left hand side of this equations

by fYAj . Using the relations (A.10) and (A.11) we get

fXjAf
iA
Y =

1

2
gXY δ

j
i + ΩXY j

i (B.15)
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so that eq. (B.14), using the projection relations (B.1), becomes of the form[
gXY δ

i
j + 2iΩXY

rσrj
i
]

[iqX
′
Qsσsi

k +KXδki ] = 0 , (B.16)

also written as a matrix equation

[AY δ
k
j + iBr

Y (σr)kj ]εk = 0 , (B.17)

where

AY = KY − 2Ωr
Y XQ

rqX
′
, (B.18)

Br
Y = gY Xq

X′Qr + εrst Ωs
Y XQ

tqX
′
+ 2 Ωr

Y XK
X . (B.19)

Both AY and Br
Y need to vanish, and they do if the following condition is enforced (more

details in [58])

qY
′
gY X = 2QrΩr

XYK
Y (B.20)

where W is defined in (A.17) and we have used (A.18). This is the last BPS equation.

To sum up, we have massaged the BPS equations in the neat system of boson equations

f ′ +
1

3
efW +

1

6
aIXIe

−2g+f = 0 (B.21)

g′ +
1

3
efW − 1

3
aIXIe

−2g+f = 0 (B.22)

1

2
∂rφ

xQr +
1

2
e−2g+fgxy∂yXIa

IQr − ef gxy∂yXIP rI = 0 (B.23)

qY
′
gY X − 2QrΩr

XYK
Y = 0 (B.24)

aIP rI + κQr = 0 (B.25)

aIKX
I = 0 . (B.26)

Given these equations, the Maxwell’s and Bianchi equations are automatically satisfied for

the choice of warp factors and gauge fields done in section 5.

Open Access. This article is distributed under the terms of the Creative Commons
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