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Abstract: We construct a quantisation of the Teichmüller spaces of super Rie-
mann surfaces using coordinates associated to ideal triangulations of super Rie-
mann surfaces. A new feature is the non-trivial dependence on the choice of a
spin structure which can be encoded combinatorially in a certain refinement of
the ideal triangulation. By constructing a projective unitary representation of
the groupoid of changes of refined ideal triangulations we demonstrate that the
dependence of the resulting quantum theory on the choice of a triangulation is
inessential.

1. Introduction

The quantum theories obtained by quantisation of moduli spaces of flat connec-
tions on Riemann surfaces are known to have deep connections with conformal
field theory, quantum group theory, and the topology of three manifolds. A link
between these three subjects is provided by the Chern-Simons theories associated
to compact groups G.

The picture becomes even richer if the holonomy of the flat connections takes
values in non-compact groups like G = SL(2,R) or G = SL(2,C). The relevant
conformal field theories will then be non-rational, having continuous families of
primary fields, see [1] for a recent review of some of these relations, and [2,3] for
recent progress on Chern-Simons theory with a complex gauge group.

More recently it was discovered that the quantum theories of flat connection
capture profound non-perturbative information onN = 2-supersymmetric gauge
theories, see [4] for a review. The expectation values of certain loop observables
in four-dimensional N = 2-supersymmetric gauge theories coincide with the
expectation values of natural observables in the quantum theory of moduli spaces
of flat connections.
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In the case which is currently best understood one is dealing with the con-
nected component of the moduli space of flat PSL(2,R)-connections which is
isomorphic to the Teichmüller space of Riemann surfaces [5,6]. The relevant
observables then acquire an additional geometric interpretation as (quantized)
geodesic length function. The corresponding conformal field theory is called Li-
ouville theory. The study of Chern-Simons theories associated to non-compact
groups appears to be an extremely promising young field of research expected
to have various profound links with three-dimensional hyperbolic geometry.

The Teichmüller theory has an interesting and rich generalisation provided
by the deformation theory of super Riemann surfaces. Initially motivated by su-
perstring perturbation theory, there has been a lot of research (reviewed in [7])
on the complex analytic theory of super-Teichmüller spaces. There is a uniformi-
sation theorem for super-Riemann surfaces, describing super Riemann surfaces
as quotients of the super upper half plane by discrete subgroups of OSp(1|2) [8]
providing us with an alternative picture on super Teichmüller theory similar to
the perspective on ordinary Teichmüller theory offered by hyperbolic geometry.
The theory of super Riemann surfaces should lead to interesting generalisations
of two- and three-dimensional hyperbolic geometry, currently much less devel-
oped than the corresponding theories for ordinary Riemann surfaces.

It should, in particular, be interesting to develop the quantum theory of super
Riemann surfaces. This may be expected to lead to a new class of invariants of
three-manifolds. It is furthermore known that there are generalisations of the
relation between four-dimensional N = 2-supersymmetric gauge theories and
conformal field theory discovered by Alday, Gaiotto and Tachikawa [9], where
Super-Liouville theory appears instead of ordinary Liouville theory [10]. It seems
likely that such generalisations are related to the quantum theory of super Rie-
mann surfaces in a way that is analogous to the relations between gauge theories,
Liouville theory and the quantum Teichmüller theory reviewed in [4].

In this paper we will develop the basic groundwork of the quantum theory of
super Riemann surfaces. The approach is similar to the the one used by Kashaev
in [11] for the case of ordinary Teichmüller theory based on a suitable collec-
tion of coordinates associated to the triangles forming an ideal triangulation of
the surface. An important new feature is the dependence of the resulting the-
ory on the choices of spin structures. Following the approach of Cimansoni and
Reshetikhin [12,13], we will encode the choices of spin structures into combina-
torial data called Kasteleyn orientations, suitably adapted to the triangulations
of our interest.

A basic issue to address in any approach based on triangulations is to demon-
strate the independence of the resulting quantum theory on the choice of triangu-
lation. This can be done by constructing unitary operators relating the quantum
theories associated to any two given triangulations. Being unitarily equivalent,
one may identify the quantum theories associated to two different triangulations
as different representations of one and the same quantum theory. The unitary
operators representing changes of triangulations generate a projective represen-
tation of the super Ptolemy groupoid describing the transitions between suitably
refined triangulations equipped with Kasteleyn orientations.

The paper is organised as follows. In the section 2 we review ordinary Te-
ichmüller theory and its quantisation. We discuss how to parametrise the Te-
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ichmüller space using two sets of coordinates associated to triangulations which
will have natural analogues in the case of super Teichmüller theory. We then
proceed to discuss the quantisation of this theory and the projective represen-
tation of the Ptolemy groupoid relating the Hilbert spaces assigned to different
triangulations.

In the section 3 we discuss the super Teichmüller theory. In order to en-
code the choices of spin structure we will refine the triangulations into graphs
called hexagonalisations. Such graphs with chosen Kasteleyn orientations can be
used to define super analogues of the shear coordinates [14]. Changes of hexag-
onalisations define an analogue of the super Ptolemy groupoid which can be
characterised in terms of generators and relations.

The following section 4 describes the quantisation of the classical super Te-
ichmüller theory. We define operators representing analogues of the coordinates
used in the work of Fock [15] and Kashaev [11], respectively, as well as the
generators of the super Ptolemy groupoid describing changes of triangulations.
The relations of the super Ptolemy groupoid follow from identities satisfied by
suitable variants of Faddeev’s quantum dilogarithm.

Section 5 finally offers an outlook.

2. Ordinary Teichmüller theory and its quantisation

In order to prepare for the case of super Teichmüller theory we will find it useful
to briefly review relevant background on the Teichmüller spaces of deformations
of complex structures on Riemann surfaces. In the following we will consider two-
dimensional surfaces Σg,n with genus g ≥ 0 and n ≥ 1 punctures having 2g−2+
n > 0. Useful starting points for the quantisation of the Teichmüller spaces are
the coordinates introduced by Penner [16], and their relatives used in the works of
Fock [15], Chekhov and Fock [17] and Kashaev [11]. Using these coordinates one
may define an an essentially canonical quantisation of the Teichmüller spaces.

2.1. Classical Teichmüller theory. The uniformisation theorem states that Rie-
mann surfaces Σg,n can be represented as quotients of the upper half-plane

H = {z ∈ C : Im(z) > 0} equipped with the Poincaré metric ds2 = dydȳ
(Im(y))2 by

discrete subgroups Γ of PSL(2,R) called Fuchsian groups1,

Σg,n ≡ H/Γ. (1)

We may represent the points on Σg,n as points in a fundamental domain D
in the upper-half plane on which Γ acts properly discontinuously. The n punc-
tures of Σg,n will be represented by a collection of points on the boundary of H
which can be identified with the projective real line RP1. Figure 1 illustrates the
uniformisation of a once-punctured torus Σ1,1.

The Teichmüller space Tg,n of Riemann surfaces Σg,n can the be identified
with the connected component in

Tg,n = {ψ : π1(Σg,n) → PSL(2,R)}/PSL(2,R), (2)

1 Discrete subgroups of PSL(2,R) having no elliptic elements.
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Fig. 1. Realisation of a quadrilateral laying on a Riemann surface on upper half plane H

that contains all Fuchsian representations ψ. The group PSL(2,R) acts on rep-
resentations ψ by conjugation.

Useful sets of coordinates for the Teichmüller spaces can be associated to
ideal triangulations of Σg,n. Such a triangulation can be defined by a maximal
set of geodesic arcs intersecting only at the punctures of Σg,n representing their
start- and endpoints. Such a collection of arcs decomposes the surface Σg,n into
a collection of triangles, as is also illustrated in figure 1. An ideal triangulation
τ of Riemann surface Σg,n is defined by 3(2g − 2 + n) arcs, henceforth called
edges, and has 2(2g − 2 + n) triangles.

The coordinate assigned to an edge e separating two triangles of an ideal
triangulation (see figure 1) is defined as the cross-ratio

e−ze =
(x1 − x2)(x3 − x4)

(x1 − x4)(x2 − x3)
, (3)

formed out of the points x1, x2, x3, x4 on RP1 representing the corners of the two
triangles separated by e. The resulting set of 6g − 6 + 3n coordinate functions
may be used to get a system of coordinates for Teichmüller space by taking into
account the relations

∑

e∈E(Pi)
ze = 0, where E(P ) is the set of edges ending in

puncture P .
The Poisson structure on Tg,n defined by the Weil-Petersson symplectic form

takes a particularly simple form in the coordinates ze. It may be represented as

{ze, zf}WP = nef , (4)

where nef is the number of times e and f meet in a common end-point P ,
counted positively if f is the first edge reached from e upon going around P in
clockwise direction, counted negatively otherwise.

The definition of the shear coordinates ze was based on the choice of an
ideal triangulation. Changing the ideal triangulation defines new coordinates
z′e that can be expressed in terms of the coordinates ze. General changes of
triangulation can be represented as compositions of the elementary operation
called flip changing the diagonal in one quadrilateral only, as illustrated in figure
2. This change of triangulation induces the following change of coordinates

ez
′
1 = ez1(1 + eze),

ez
′
4 = ez4(1 + e−ze)−1,

ez
′
e = e−ze ,

ez
′
2 = ez2(1 + e−ze)−1,

ez
′
3 = ez3(1 + eze),

(5)

leaving all other coordinates unchanged.
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Fig. 2. Flip of an ideal triangulation, which relates the coordinates zi and z′
i

2.2. Kashaev coordinates. As a particularly useful starting point for quantisation
it has turned out to be useful to describe the Teichmüller spaces by means of a
set of coordinates associated to the triangles rather than the edges of an ideal
triangulation [11]. We shall label the triangles ∆v by v = 1, . . . , 4g− 4+ 2n and
choose a distinguished corner in every one of them. One may then assign to each
triangle a pair of variables (pv, qv) allowing us to recover the variables ze as

ze = z̃e,v + z̃e,w, z̃e,v =







pv if e = ev1,

−qv if e = ev2,

qv − pv if e = ev3,

(6)

where evi are the edges surrounding triangle ∆v counted by i = 1, 2, 3 in counter-
clockwise order such that ev3 is opposite to the distinguished corner.

The space R4(2g−2+n) will be equipped with a Poisson structure defined by

{pv, pw} = 0,

{qv, qw} = 0,
{pv, qw} = δv,w. (7)

It can be shown that the Poisson structure on Kashaev coordinates given by (7)
induces the Poisson structure on shear coordinates (4) via (6).

One may then describe the Teichmüller space using the Hamiltonian reduc-
tion of R4(2g−2+n) with Poisson bracket (7) with respect to a suitable set of
constraints hγ labelled by γ ∈ H1(Σg,n,Z), and represented as linear functions
in the (pv, qv) [11]. The functions ze defined via (6) satisfy {hγ , ze} = 0 for all
edges e and all γ ∈ H1(Σg,n,Z) and may therefore be used to get coordinates
for the subspace defined by the constraints.

One may define changes of Kashaev coordinates associated to any changes of
ideal triangulations preserving the Poisson structure, and inducing the changes
of shear coordinates (5) via (6). Having equipped the ideal triangulations with
an additional decoration represented by the numbering of the triangles ∆v and
the choice of a distinguished corner in each triangle forces us to consider an
enlarged set of elementary transformations relating arbitrary decorated ideal
triangulations. Elementary transformations are the flips ωvw, the rotations ρv
and the permutations (vw). Flips ωvw and rotations ρv are illustrated in figures
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3 and 4, respectively, while the permutation (uv) simply exchanges the labels of
the triangles u and v.

Fig. 3. The flip transformation ωvw

Fig. 4. The rotation transformation ρv acting on a triangle v

The change of coordinates associated to the transformation ρv is given as

ρ−1
v : (qv, pv) → (pv − qv,−qv), (8)

while under a flip ωvw the transformation of Kashaev coordinates is realised by

ω−1
vw :

{

(Uv, Vv) → (UvUw, UvVw + Vv),

(Uw, Vw) → (UwVv(UvVw + Vv)
−1, Vw(UvVw + Vv)

−1),
(9)

where we denote Uv ≡ eqv and Vv = epv .
The transformations between decorated ideal triangulations generate a groupoid

that can be described in terms of generators and relations. As we mentioned
above, any two decorated triangulations of the same Riemann surface can be re-
lated by a finite sequence of permutations (vw), flips ωvw and rotations ρv. Any
sequence of elementary transformations returning to its initial point defines a
relation. A basic set of relations implying all others is known to be the following

ρv ◦ ρv ◦ ρv = idv, (10a)

(ρ−1
v ρw) ◦ ωvw = ωwv ◦ (ρ−1

v ρw), (10b)

ωwv ◦ ρv ◦ ωvw = (vw) ◦ (ρvρw), (10c)

ωv1v2 ◦ ωv3v4 = ωv3v4 ◦ ωv1v2 , vi 6= vj , i 6= j, (10d)

ωvw ◦ ωuw ◦ ωuv = ωuv ◦ ωvw. (10e)

The pentagon relation (10e) illustrated in figure 5 is of particular importance,
while the relations (10a)-(10c) describe changes of the decorations.
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Fig. 5. The pentagon equation

2.3. Quantum Teichmüller theory. Quantisation of the Teichmüller theory of
punctured Riemann surfaces was developed by Kashaev in [11] and indepen-
dently by Fock and Chekhov in [15,17]. Following the approach described in [11]
we will associate a Hilbert space Hv = L2(R) with each triangle of a decorated
triangulation. The Hilbert space associated to the entire triangulation is the
tensor product

H =

4g−4+2n
⊗

v=1

Hv. (11)

In the quantum theory one replaces the coordinate functions (pv, qv) by self-
adjoint operators (pv, qv), v = 1, . . . , 4g − 4 + 2n, having the following commu-
tation relations

[pv, qw] =
1

2πi
δvw,

[qv, qw] = 0,

[pv, pw] = 0.
(12)

Formula (6) has an obvious counterpart in the quantum theory, defining self-
adjoint operators ze having the relations

[ze, ze′ ] =
1

2πi
{ze, ze′}WP . (13)

A quantum version of the Hamiltonian reduction procedure can be defined de-
scribing Hilbert space and algebra of observables of the quantum theory of Te-
ichmüller spaces in terms of the quantum theory defined above, see [11,18,19]
for more details.

We finally need to describe the quantum realisation of maps changing the tri-
angulation τ of a Riemann surface Σg,n. The move ρv rotating the distinguished
vertex of a triangle v is realised by an operator Av : Hv → Hv

Av = eiπ/3e−i3πq2ve−iπ(pv+qv)
2

. (14)

The flips get represented by unitary operators Tvw : Hv ⊗ Hw → Hv ⊗ Hw

defined as
Tvw = eb(qv + pw − qw)e

−2πipvqw , (15)
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where b is a parameter such that Planck’s constant ~ = 2πb2, and eb is Fad-
deev’s quantum dilogarithm function. Definition and relevant properties of eb
are collected in Appendix A. The quantised version of the transformation of the
shear coordinates takes the form

T−1
vwe

2πbz′
1Tvw = eπbz1(1 + e2πze)eπbz1 ,

T−1
vwe

2πbz′
2Tvw = eπbz2(1 + e−2πze)−1eπbz2 ,

T−1
vwe

2πbz′
3Tvw = eπbz3(1 + e2πze)eπbz3 ,

T−1
vwe

2πbz′
4Tvw = eπbz4(1 + e−2πze)−1eπbz4 ,

T−1
vwe

2πbz′eTvw = e−2πbze ,

(16)

assuming that Tvw represents the flip depicted in figure 2 with decoration intro-
duced in Figure 3. The equations (16) provide the quantisation of (9), and we

can recover the classical transformation by taking the limit q = eiπb
2 → 1.

The operators Tuv and Av generate a projective representation of the Ptolemy
groupoid characterised by the set of relations

A3
1 = id1, (17)

T23T13T12 = T12T23, (18)

A2T12A1 = A1T21A2, (19)

T21A1T12 = ζA1A2P(12), (20)

where ζ = eπicb
2/3 and cb =

i

2
(b + b−1). The permutation P(12) : H1 ⊗ H2 →

H1 ⊗ H2 is defined as the operator acting as P(12)(v1 ⊗ v2) = v2 ⊗ v1 for all
vi ∈ Hi.

The quantised flip transformation has an interesting relation with quantum
group theory. It was observed in [20] that one can identify the flip operator T
with the canonical element of the Heisenberg double of the quantum plane, the
Borel half of Uq(sl(2)), evaluated on particular infinite-dimensional representa-
tions. Moreover, the rotation operator Av is an algebra automorphism of this
Heisenberg double.

3. Classical super Teichmüller spaces

The aim of this chapter is to present the basics of super Teichmüller theory, the
Teichmüller theory of super Riemann surfaces. Of particular importance will
be the coordinates for the super Teichmüller spaces introduced in [14]. These
coordinates are closely related to the analogue of Penner’s coordinates recently
introduced in [21].

In the following section we will, following [14] closely, first review the ba-
sic notions of super Riemann surfaces and super Teichmüller spaces. We will
then consider the definition of two sets of coordinates on this space. In order
to define such coordinates we will need to refine the triangulations used to de-
fine coordinates for the ordinary Teichmüller spaces into certain graphs called
hexagonalisations. Assigning the so-called Kasteleyn orientations to the edges of



Quantisation of super Teichmüller theory 9

a hexagonalisation allows one to parametrise the choices of spin structures on su-
per Riemann surfaces. In addition to even coordinates associated to edges of the
underlying triangulation one may define additional odd coordinates associated to
the triangles. The additional orientation data assigned to a hexagonalisation are
used to provide an unambiguous definition of the signs of the odd coordinates.

We will furthermore discuss the transformations of coordinates induced by
changes of hexagonalisations. The result of the elementary operation of chang-
ing the diagonal in a quadrangle called flip will now depend on the choice of
Kasteleyn orientation. We will furthermore need to consider an additional oper-
ation relating different hexagonalisations called push-out. This operation relates
different Kasteleyn orientations describing the same spin structure. The rela-
tions that have to be satisfied by these transformations define a generalisation
of Ptolemy groupoid that will be called super Ptolemy groupoid.

3.1. The super upper half plane and its symmetries. We will begin by introducing
the basic group-theoretic and geometric background for the definition of the
super Teichmüller spaces and for constructing convenient coordinates on these
spaces.

The coordinates on the two-dimensional super-plane R2|1 can be assembled in
column or row-vectors (x1, x2|θ) with xi ∈ R, i = 1, 2, and θ being an element of
a Grassmann algebra satisfying θ2 = 0. The elements of the subgroup OSp(1|2)
of the group of linear transformations of R2|1 may be represented by (2|1)×(2|1)
matrices of the form

g =





a b γ
c d δ
α β e



 , (21)

when the matrix elements are elements of a Grassmann algebra satisfying the
relations

ad− bc− αβ = 1, (22)

e2 + 2γδ = 1, (23)

αe = aδ − cγ, (24)

βe = bδ − dγ. (25)

A natural map from OSp(1|2) to SL(2,R) may be defined by mapping the odd
generators to zero. The image of g ∈ OSp(1|2) under this map will be denoted
as g♯ ∈ SL(2,R).

The super upper half-plane is defined as H1|1 =
{
(z, θ) ∈ C1|1 : Im(z) > 0

}
.

OSp(1|2) acts on the super upper half plane H1|1 by generalised Möbius trans-
formations of the form

z −→ z′ =
az + b+ γθ

cz + d+ δθ
, (26)

θ −→ θ′ =
αz + β + eθ

cz + d+ δθ
. (27)

The one-point compactification of the boundary of H1|1 is the super projective
real line denoted by P1|1. Elements of P1|1 may be represented as column or
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row vectors (x1, x2|θ) with xi ∈ R, i = 1, 2 modulo overall multiplication by
non-vanishing real numbers. Considering vectors (x1, x2|θ) with xi ∈ R, i = 1, 2
modulo overall multiplication by non-vanishing positive real numbers defines a
double cover S1|1 of P1|1.

There are two types of invariants generalising the cross-ratio present in the
ordinary case. To a collection of four points with coordinates Pi = (xi|θi), i =
1, . . . , 4 one may assign a super-conformal cross-ratio

e−z =
X12X34

X14X23
, (28)

whereXij = xi−xj−θiθj . To a collection of three points Pi = (xi|θi), i = 1, . . . , 3
one may furthermore be tempted to assign an odd (pseudo-) invariant via

ξ = ±x23θ1 + x31θ2 + x12θ3 − 1
2θ1θ2θ3

(X12X23X31)
1

2

, (29)

where xij = xi − xj . Due to the appearance of a square-root one can use the
expression in (29) to define ξ only up to a sign.

In order to arrive at an unambiguous definition one needs to fix a prescription
for the definition of the sign of ξ. A convenient way to parametrise the choices
involved in the definition of the odd invariant uses the so-called Kasteleyn ori-
entations of the triangles in H1|1 with corners at Pi, i = 1, 2, 3. A Kasteleyn
orientation of a polygon embedded in an oriented surface is an orientation for
the sides of the polygon such that the number of sides oriented against the
induced orientation on the boundary of the polygon is odd.

A Kasteleyn orientation of triangles with three corners at Pi ∈ P1|1, i = 1, 2, 3
may then by used to define lifts of the points Pi ∈ P1|1 to points P̂i of its double
cover S1|1 for i = 1, 2, 3 as follows. We may choose an arbitrary lift of P1,
represented by a vector (x1, y1|θ1) ∈ R2|1. If the edge connecting Pi to P1 is
oriented from P1 to Pi, i = 2, 3, we will choose lifts of Pi represented by vectors
(xi, yi|θi) ∈ R2|1 such that sgn

(
det

( x1 xi
y1 yi

))
= −1, while in the other case Pi will

be represented by vectors (xi, yi|θi) ∈ R2|1 satisfying sgn
(
det

( x1 xi
y1 yi

))
= 1. By

means of OSp(1|2)-transformations one may then map P̂i, i = 1, 2, 3 to a triple
of points Qi of the form Q1 ≃ (1, 0|0), Q3 ≃ (0,−1|0), and Q2 ≃ ±(1,−1|ξ).
This finally allows us to define the odd invariant associated to a triangle with
corners Pi, i = 1, 2, 3, and chosen Kasteleyn orientation of its sides to be equal
to ξ if Q2 ≃ (1,−1|ξ), and equal to −ξ if Q2 ≃ −(1,−1|ξ).

3.2. Super Riemann surfaces and super Teichmüller space. For our goals it will
be most convenient to simply define super Riemann surfaces as quotients of the
super upper half plane by suitable discrete subgroups of Γ of OSp(1|2). This
approach is related to the complex-analytic point of view reviewed in [7] by an
analogue of the uniformisation theorem proven in [8].

A discrete subgroup of Γ ofOSp(1|2) such that Γ ♯ is a Fuchsian group is called
a super Fuchsian group. Super Riemann surfaces will be defined as quotients of
the super upper half-plane H1|1 by a super Fuchsian group Γ ,

Σg,n ≡ H
1|1/Γ. (30)
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The points of a super Riemann surface may be represented by the points of a
fundamental domain D on the super upper-half plane on which Γ acts properly
discontinuous. Super Riemann surfaces with n punctures have fundamental do-
mains D touching the boundary P1|1 of H1|1 in d distinct points Pi, i = 1, . . . , d.2

We can finally define the super Teichmüller space ST g,n of super Riemann
surfaces Σg,n of genus g with n punctures. It can be represented as the quotient

ST g,n =
{
ρ : π1(Σg,n) → OSp(1|2)

}
/OSp(1|2), (31)

where ρ : π1(Σg,n) → OSp(1|2) are the discrete representations of the funda-
mental group π1(Σg,n) into OSp(1|2) having super Fuchsian images.

There is always an ordinary Riemann surface Σ♯
g,n associated to each super

Riemann surface, defined as quotient of the upper half plane H by Γ ♯. Notions
like ideal triangulations will therefore have obvious counterparts in the theory
of super Riemann surfaces.

3.3. Hexagonalisation and Kasteleyn orientations. Similarly to the ordinary Te-
ichmüller spaces, the parametrisation of super Teichmüller spaces introduced in
[14] relies on ideal triangulations of super Riemann surfaces. It will be based on
the even and odd invariants of the groupOSp(1|2) that we defined in Section 3.1.
However, as noted there, one need to introduce additional data to define the odd
invariants unambiguously. The extra data must allow us to define the lifts of the
punctures Pi ∈ P1|1 to points P̂i on its double cover S1|1. Note that the even part
of P1|1 is the real projective line RP1 with group of automorphisms PSL(2,R),
while the even part of S1|1 is a double cover of RP1 with group of automorphisms
SL(2,R). Lifting the vertices of a triangulation of H1|1 to S1|1 should therefore
be accompanied with a lift of the Fuchsian group Γ ♯ ⊂ PSL(2,R) to a subgroup
of SL(2, R). It is known that the definition of such a lift depends on the choice of
a spin structure on Σ [22]. We therefore need to introduce a suitable refinement
of an ideal triangulation which will allow us to encode the extra data defining a
spin structure.

The parametrisation of spin structure on Riemann surfaces used in [14] is
based on results of Cimasoni, Reshetikhin [12,13] using Kasteleyn orientations.
To begin with, let us first introduce the notion of a hexagonalisation. The start-
ing point will be an ideal triangulation of a surface Σ. Around each puncture let
us cut out a small disc, giving a surface Σb with n holes. The parts of any two
edges bounding a triangle in Σ which are contained in Σb will then be connected
by an arc in the interior of Σb. The resulting hexagon has a boundary consist-
ing of ”long” edges coming from the edges of the original triangulation, and
”short” edges represented by the arcs connecting the long edges. The procedure
is illustrated in figure 6.

Let us finally introduce another set of edges called dimers connecting the
vertices of the hexagons with the boundary of Σb. The dimers are represented
by dashed lines in Figure 6. This configuration of dimers is canonical and does not
factor in directly into the refinement of shear coordinates on Σb. The resulting
graph will be called a hexagonalisation of the given ideal triangulation.

2 When pairs of points get identified by the action of the group Γ we will have d 6= n.



12 N.Aghaei, M.Pawelkiewicz, J.Teschner

Fig. 6. Hexagonalisation of a quadrilateral

The next step is to introduce a Kasteleyn orientation on the hexagonalisation
defined above. It is given by an orientation of the boundary edges of the hexagons
such that for every face of the resulting graph the number of edges oriented
against the orientation of the surface is odd. It then follows from Theorem 1
in [13] that the choice of the spin structure can be encoded in the choice of a
Kasteleyn orientation on a hexagonalisation.3

Different Kasteleyn orientations may describe the same spin structure. Two
Kasteleyn orientations are equivalent in this sense if they are related by the
reversal of orientations of all the edges meeting at the same vertex, as illustrated
in Figure 7. The equivalence classes of Kasteleyn orientations related by this

Fig. 7. Equivalence between the Kasteleyn orientations

operation are in one-to-one correspondence to the spin structures on Σ.
In order to represent a hexagonalisation with Kasteleyn orientation graphi-

cally we will find it convenient to contract all short edges to points, and marking
the corners of the resulting triangle coming from short edges with orientation
against the orientation of the underlying surface by dots. An illustration of this
procedure is given in Figures 8 and 9 below.

This amounts to representing the data encoded in a hexagonalisation with
Kasteleyn orientations in a triangulation carrying an additional decoration given

3 The hexagonalisations constructed above are special cases of what is called surface graph
with boundary in [12,13]. The formulation of Theorem 1 in [13] makes use of the notion of a
dimer configuration on a surface graph with boundary. In our case the dimer configuration is
given by the set of edges connecting the corners of the hexagons with the boundary shown as
dashed lines in Figure 6.
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Fig. 8. A hexagon with Kasteleyn orien-
tation

Fig. 9. Alternative graphical representa-
tion of the hexagon in Figure 8

by the choice of orientations for the edges, and by marking some corners with
dots. A triangulation carrying such a decoration will be called dotted triangula-
tion.

3.4. Coordinates for the super Teichmüller spaces. In order to define coordi-
nates for the super Teichmüller spaces let us consider super Riemann surfaces
Σg,n ≡ H1|1/Γ with n ≥ 1 punctures. Σg,n can be represented by a polygonal

fundamental domain D ⊂ H1|1 with a boundary represented by a collection of
arcs pairwise identified with each other by the elements of Γ . The corners of the
fundamental domains Pi = (xi|θi), i = 1, . . . , d of D are located on the bound-
ary P1|1 of H1|1. An ideal triangulation of the underlying Riemann surface Σ♯

g,n

induces a triangulation of the super Riemann surface with vertices represented
by the corners Pi = (xi|θi), i = 1, . . . , d. Following [14] we will in the following
assign even coordinates to the edges of a dotted triangulation, and odd variables
to the triangles themselves.

In order to define the coordinates associated to the edges let us assume that
the edge e represents the diagonal in a quadrangle with corners at Pi = (xi|θi) ∈
P1|1, i = 1, . . . , 4 connecting P2 and P4. One may then define the even variable
ze assigned to the edge e to be given by the even superconformal cross-ratio
defined in equation (28).

In order to define the odd Fock variables let us consider a hexagonalisation
decorated with a Kasteleyn orientation. We may triangulate each hexagon as
shown in Figure 10.

Fig. 10. A hexagon and its underlying triangle

Note that the orientation on the sides of the hexagon induces a canonical
Kasteleyn orientation on each of the triangles appearing in this triangulation of
the hexagon. We may therefore apply the definition of the odd invariant given in
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Section 3.1 to the corners of the inner triangle drawn with blue, dashed sides in
Figure 10. As the hexagons of the considered hexagonalisation are in one-to-one
correspondence with the triangles ∆ of a dotted triangulation we will denote the
resulting coordinates by ξ∆.

The super Teichmüller space is thereby parametrised by 3(2g − 2 + n) even
coordinates and 2(2g− 2+n) odd coordinates. It has a super Poisson structure4

[14] with non-trivial Poisson brackets among the coordinate functions being

{ze, zf}ST = nef , {ξv, ξw}ST =
1

2
δvw . (32)

where the numbers nef are defined in the same way as in ordinary Teichmüller the-
ory. This defines the Poisson-structure we aim to quantise.

3.5. Super Ptolemy groupoid. The coordinates that we use to parametrise the
super Teichmüller space depend on the choice of the dotted triangulation. It
is therefore necessary to determine how these coordinates transform under the
moves that change the dotted triangulations of the Riemann surfaces. In addition
to the supersymmetric analog of the flip operation changing the diagonal in a
quadrilateral we need to consider an additional move describing a change of
Kasteleyn orientation which leaves the spin structure unchanged. The groupoid
generated by the changes of dotted triangulations will be called super Ptolemy
groupoid. We will in the following offer a description in terms of generators and
relations.

3.5.1. Generators. As we discussed previously, the reversal of Kasteleyn orien-
tations of all the edges that meet in the same vertex does not change the spin
structure. Therefore, we can consider a pair of two hexagons that meet along one
long edge, and study a move that applies this operation at one of the vertices
common to both hexagons, reversing the orientation of the shared long edge. In
terms of dotted triangles, one can pictorially represent this move as in the figure
11, where we present its action on a pair of triangles that share an edge oriented
downwards — for a pair of triangles sharing an edge oriented upwards this action
is analogous. If there are two dots in the upper corner of the quadrilateral on the
left of Figure 11 the result of the push-out will produce a quadrilateral without
dots in the upper corner.

We will call this move a (left) push-out β. The push-out leaves the odd in-
variant assigned to the left triangle unchanged while it changes the sign of the
invariant assigned to the right triangle, leaving the even invariants unchanged.5

We furthermore need to consider the flip operation describing the change of di-
agonal in a quadrilateral. The effect of this operation will in general depend on
the assignment of Kasteleyn orientations. An example is depicted in Figure 12.

4 A super Poisson algebra is a super-algebra A with grading of x ∈ A denoted as
|x|, which has a super Poisson bracket {., .} : A × A → A that is graded skew-

symmetric, {x, y} = −(−1)|x||y|{y, x}, and satisfies {x, {y, z}} + (−1)|x|(|y|+|z|){y, {z, x}} +

(−1)|z|(|x|+|y|{z, {x, y}} along with {x, yz} = {x, y}z + (−1)|x||y|y{x, z}.
5 One should be careful about the convention in figure 11. It is defined for the case that

dot placed in the upper corner of the rectangle and it moves from the right triangle to the left
one. For the case that dot is placed in the lower corner one can rotate this figure and find the
operator with the proper index and associate the proper sign to the odd variables in a similar
way.
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Fig. 11. The pictorial representation of a (left) push-out β on triangles with one dot We
depict the case where the common edge is oriented downwards as an example.

Fig. 12. The flip ω
(1)
12

The change of even shear coordinates may be represented as [14]

ez
′
e = e−ze ,

ez
′
1 = e

z1
2 (1 + eze − ξ1ξ2e

ze
2 )e

z1
2 ,

ez
′
2 = e

z2
2 (1 + e−ze − ξ1ξ2e

− ze
2 )−1e

z2
2 ,

ez
′
3 = e

z3
2 (1 + eze − ξ1ξ2e

ze
2 )e

z3
2 ,

ez
′
4 = e

z4
2 (1 + e−ze − ξ1ξ2e

− ze
2 )−1e

z4
2 ,

(33)

To reduce the number of cases to be considered in the statement of the trans-
formation of the odd coordinates one may first note that the push-out operation
allows one to reduce the most cases to the case of undotted triangles. 6 It is
easy to convince oneself that there are 8 possible ways of assigning Kasteleyn
orientations in this case, represented by Figure 22 in the Appendix B. Let us
begin by considering the operation ω(1) depicted in Figure 12. One then finds
the following change of coordinates [14]

e
z′
1

2 ξ′1 = e
z1
2 (ξ1 + ξ2e

ze
2 ),

e
z′
1

2 ξ′2 = e
z1
2 (−ξ1e

ze
2 + ξ2).

(34)

6 One can do that by considering additional auxillary triangles that are glued to the dotted
triangles which compose quadrilateral. Then, one can remove all dots from the quadrilateral
using push-outs, use the flips for the quadrilateral without any dots and move the dots back
by the inverse of the initial push-outs to obtain the flips for a quadrilateral with dots present.
By inspection one sees that both the Kasteleyn orientations and the signs of odd invariants of
the auxillary triangles remain unchanged under this composition.
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As a useful book-keeping device for generating the expressions in the other cases
let us introduce an operation µv that reverses the orientations of the two long
edges entering a common vertex of a dotted triangulation.7 An example for this
operation is graphically represented in Figure 13, where it is applied to the
rightmost vertex.8 It is easy to see that this will induce a sign change in the
definition of the odd invariant.

Fig. 13. The operation µ on the rightmost vertex of a particularly oriented triangle

The coordinate transformations induced by flips with other assignments of
Kasteleyn orientations can then be obtained from the case of ω(1) with the help
of the operations µv in most other cases. An example is represented by Figure
14.

Fig. 14. Different flips are related by application of transformations µ

The only cases not yet covered by the definitions above are the cases where
opposite sides of a quadrilateral formed out of two triangles are identified, cor-

7 We’d like to stress that µv is a purely auxillary operation that acts locally on triangles
and, in principle, can change the spin structure of the underlying super Riemann surface.

8 In Figure 13 we have chosen a particular Kasteleyn orientation as an example, µv acts
by reversal of the orientations of long edges entering a common vertex on triangles with all
allowed Kasteleyn orientations.
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responding to the case of a one-punctured torus. Explicit formulae for the rep-
resentation of the flip in these cases can be found in [14], but will not be needed
below.

3.5.2. Relations. The changes of oriented hexagonalisations define a groupoid
generalising the Ptolemy groupoid. In the following we are going to discuss
the relations characterising this groupoid which will be called super Ptolemy
groupoid.

It is clear that all relations of the super Ptolemy groupoid reduce to relations
of the ordinary Ptolemy groupoid upon forgetting the decorations furnished by
the Kasteleyn orientations. This fact can be used to classify the different types
of relations.

To begin with, let us consider the relations reducing to the pentagon relation
of the Ptolemy groupoid. The super Ptolemy groupoid will have various relations
differing by the choices of Kasteleyn orientations. Considering first the case where
all short edges are oriented with the orientation of the surface we have 16 possible
pentagon relations:

ω
(1)
12 ω

(1)
23 = ω

(1)
23 ω

(1)
13 ω

(1)
12 , ω

(1)
12 ω

(6)
23 = ω

(6)
23 ω

(6)
13 ω

(4)
12 ,

ω
(5)
12 ω

(8)
23 = ω

(8)
23 ω

(5)
13 ω

(5)
12 , ω

(6)
12 ω

(7)
23 = ω

(7)
23 ω

(6)
13 ω

(5)
12 ,

ω
(2)
12 ω

(1)
23 = ω

(1)
23 ω

(2)
13 ω

(2)
12 , ω

(8)
12 ω

(8)
23 = ω

(1)
23 ω

(8)
13 ω

(8)
12 ,

ω
(4)
12 ω

(5)
23 = ω

(5)
23 ω

(5)
13 ω

(4)
12 , ω

(5)
12 ω

(3)
23 = ω

(3)
23 ω

(4)
13 ω

(6)
12 ,

ω
(3)
12 ω

(4)
23 = ω

(7)
23 ω

(3)
13 ω

(2)
12 , ω

(7)
12 ω

(7)
23 = ω

(4)
23 ω

(7)
13 ω

(8)
12 ,

ω
(6)
12 ω

(2)
23 = ω

(2)
23 ω

(1)
13 ω

(6)
12 , ω

(7)
12 ω

(2)
23 = ω

(5)
23 ω

(2)
13 ω

(7)
12 ,

ω
(5)
12 ω

(6)
23 = ω

(3)
23 ω

(7)
13 ω

(6)
12 , ω

(3)
12 ω

(5)
23 = ω

(2)
23 ω

(8)
13 ω

(3)
12 ,

ω
(1)
12 ω

(3)
23 = ω

(6)
23 ω

(3)
13 ω

(7)
12 , ω

(4)
12 ω

(4)
23 = ω

(4)
23 ω

(4)
13 ω

(1)
12 .

(35)

The remaining cases can always be reduced to the cases listed above using the
push-out operation. In Figure 15 we present one of the 16 possibilities listed
above graphically.

Other relations reduce to trivial relations upon forgetting the orientation
data. Some of these relations describe how the push-out operations relate flips
with different orientation data. Such relations are

(ω
(i)
23 )

−1β43β32β21 = β42β21(ω
(j)
23 )

−1, (36)

where i, j can be following pairs (5, 8), (8, 5), (6, 7), (7, 6), (1, 2), (2, 1), (3, 4), (4, 3)
and

ω
(i)
23 β43β32β21 = β43β31ω

(j)
23 , (37)

where i, j can be following pairs (5, 4), (4, 5), (1, 6), (6, 1), (2, 7), (7, 2), (8, 3), (3, 8).
An example for this type of relation is illustrated in Figure 16.
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Fig. 15. An example of one of the possible superpentagon relations

Fig. 16. First type of relation between a flip and a push-out

There are further relations reducing to the commutativity of the flip opera-
tions applied to two quadrilaterals which do not share a triangle, including

ω
(i)
34 β23(ω

(j)
12 )

−1β−1
23 = β24(ω

(j)
12 )

−1β−1
24 ω

(i)
34 , (38)

(ω
(i)
34 )

−1β13ω
(j)
12 β

−1
23 = β13ω

(j)
12 β

−1
23 (ω

(i)
34 )

−1, (39)

(ω
(i)
34 )

−1β23(ω
(j)
12 )

−1β−1
23 = β23(ω

(j)
12 )

−1β−1
23 (ω

(i)
34 )

−1, (40)

ω
(i)
34 β13ω

(j)
12 β

−1
23 = β14ω

(j)
12 β

−1
24 ω

(i)
34 , (41)
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where the i, j = 1, . . . , 8 depends on the Kasteleyn orientation of the graph from
which the relation has been derived. Examples of these relations are represented
in Figure 17.

Fig. 17. Second type of relation between a flip and a push-out

It seems plausible that the completeness of the relations discussed above
can be reduced to the corresponding result for the ordinary Ptolemy groupoid.
This result, as pointed out in [17], follows from the cell decomposition of the
Teichmüller space which can be defined with the help of Penner’s coordinates
[16]. The proof of the completeness of the relations for the ordinary Ptolemy
groupoid can be found in [30,31].

3.6. Kashaev type coordinates. It will furthermore be useful to introduce ana-
logues of the Kashaev coordinates in the case of super Teichmüller theory. Such
coordinates will be associated to oriented hexagonalisations carrying an addi-
tional piece of decoration obtained by marking a distinguished short edge in
each hexagon. Oriented hexagonalisations equipped with such a decoration will
be called decorated hexagonalisations in the following.

In addition to a pair of even variables (qv, pv) assigned to each ideal triangle
∆v, we now need to introduce an odd variable ξv. The collection of these vari-
ables parametrising points in R4(2g−2+n)|2(2g−2+n) will be called super Kashaev
coordinates. The non-trivial Poisson brackets defining the Poisson structure on
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this space are

{pv, qw}ST = δv,w, {ξv, ξw}ST =
1

2
δv,w, (42)

all other Poisson brackets among the variables (qv, pv, ξv) being trivial.
The super Teichmüller spaces can be characterised within R8g−8+4n|4g−4+2n

by using the Hamiltonian reduction with respect to a set of constraints that is
very similar to the one used in ordinary Teichmüller theory described in [11].
One may, in particular, recover the even shear coordinates in a way that is very
similar to equation (6), while the odd variables simply coincide.

The transformations relating different decorated hexagonalisations will in-
duce changes of super Kashaev coordinates. Such transformations will generate
a decorated version of the super Ptolemy groupoid. The set of generators be-
comes as in the case of ordinary Teichmüller theory enriched by the operation
(vw) exchanging the labels associated to two adjacent triangles, and the rota-
tions ρv of the distinguished short edge. The rotation ρv will be represented
as

ρ−1
v : (qv, pv, ξv) → (pv − qv,−qv, ξv). (43)

The operation (vw) maps (qv, pv, ξv) to (qw, pw, ξw) and vice-versa. The flip ω
(1)
vw ,

presented in the figure 18, is realised by

(ω(1)
vw)

−1 :







(Uv, Vv) → (UvUw, UvVw + Vv − U
1

2

v V
1

2

w V
1

2

v ξvξw),

(Uw, Vw) → (UwVv(UvVw + Vv − U
1

2

v V
1

2

w V
1

2

v ξvξw)
−1,

Vw(UvVw + Vv − U
1

2

v V
1

2

w V
1

2

v ξvξw)
−1),

(44)

for the even variables and

(ω(1)
vw)

−1 :







ξv → V
1

2
v ξv+U

1

2
v V

1

2
w ξw

√

Vv+UvVw−U
1

2
v V

1

2
w V

1

2
v ξvξw

,

ξw → V
1

2
v ξw−U

1

2
v V

1

2
w ξv

√

Vv+UvVw−U
1

2
v V

1

2
w V

1

2
v ξvξw

,
(45)

for the odd ones, where we denote Uv ≡ eqv and Vv ≡ epv . The action of the
rest of flips 9 can be obtained by the application of appropriate operations µv,
as explained previously .

4. Quantisation of super Teichmüller theory

In this section we will consider the quantisation of the Teichmüller spaces of super
Riemann surfaces. The coordinate functions defined in the previous section will
become linear operators acting on a Hilbert space. The transformations which
relate different hexagonalisations, like flips and push-outs, will be represented
by linear operators T and B, respectively. We are going to discuss the relations
satisfied by these operators, defining a projective representation of the super
Ptolemy groupoid.

9 The flips transforming Kashaev coordinates relate decorated versions of quadrilaterals.
Therefore, to represent flips of Kashaev coordinates one should add decoration to all the
figures in 22 in the same places as in the figure 18.
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Fig. 18. A flip ω(1) on decorated triangulation

4.1. Quantisation of super Kashaev space. The Hilbert space associated to a
decorated hexagonalisation of a super Riemann surface will be defined as follows.
To each hexagon ∆v (or equivalently each dotted triangle) we associate a Hilbert
space Hv ≃ L2(R)⊗C1|1. Then, the Hilbert space associated to the entire super
Riemann surface is the tensor product of the spaces for each hexagon:

H =
⊗

v∈I

Hv. (46)

We will frequently use the corresponding leg-numbering notation: If O is an
operator on L2(R) ⊗ C

1|1, we may define Ov to be the operator Ov = 1 ⊗ · · · ⊗
1⊗ O

v−th
⊗ 1⊗ · · · ⊗ 1 .

The super Kashaev coordinates get quantised to linear operators on the
Hilbert spaces Hv. The coordinates pv and qv are replaced by operators sat-
isfying canonical commutation relations

[pv, qw] =
1

πi
δvw, [qv, qw] = 0, [pv, pw] = 0, (47)

and are represented on L2(R) as multiplication and differentiation operators.
In the classical limit b → 0, the operators 2πbpv and 2πbqv give their classical
counterparts pv and qv appropriately. The odd coordinate ξ becomes an operator
acting on H of the form

ξv =

√

q
1

2 − q−
1

2κv, (48)

where κ is a (1|1)× (1|1) matrix acting on C1|1

κ =

(
0 1
1 0

)

, (49)

and where q = eiπb
2

and the quantisation constant ~ is related to b as ~ = 4πb2.

Note that ξ satisfies ξ2 = q
1

2 −q− 1

2 = iπb2+O(b4), thereby reproducing both the
relation ξ2 = 0 and the Poisson bracket {ξ, ξ} = 1

2 in the classical limit b→ 0.
Moreover, the formula (6), with the super coordinates replacing the ordinary

ones, has an obvious counterpart in the quantum theory, defining self-adjoint
even operators ze satisfying

[ze, ze′ ] =
1

πi
{ze, ze′}ST . (50)
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The operators 2πbze give in the classical limit the even shear coordinates ze.
The redundancy of the parametrisation in terms of Kashaev type coordinates

can be described using a quantum version of the Hamiltonian reduction charac-
terising the super Teichmüller spaces within R8g−8+4n|4g−4+2n. This procedure
is very similar to the case of the usual Teichmüller theory described in [11,18]
and will therefore not be discussed explicitly here.

4.2. Generators of the super Ptolemy groupoid. We will now construct a quan-
tum realisation of the coordinate transformations induced by changing the dec-
orated hexagonalisation η of a super Riemann surface Σ. The coordinate trans-
formations will be represented by operators Uη′η : Hη → Hη′ representing the
change of the hexagonalisation η to η′ in the following way. Let {wı; ı ∈ Iη} be a
complete set of coordinates defined in terms of a hexagonalisation η. If η′ is an-
other hexagonalisation one may in our case express the coordinates {w̃;  ∈ Iη′}
associated to η′ as functions w′ = W 

η′η({wı; ı ∈ Iη}) of the coordinates wı.

If wı and w′ are the operators associated to wı and w′
, respectively, we are

first going to define quantised versions of the changes of coordinate functions
W


η′η({wı; ı ∈ Iη}) which reduce to the functions W η′η

 in the classical limit.
Unitary operators Uη′η representing these changes of coordinates on the quan-
tum level are then required to satisfy

U−1
η′η · w′ · Uη′η = W


η′η({wı; ı ∈ Iη}) . (51)

This requirement is expected to characterise the operators Uη′η uniquely up to
normalisation. We are now going to construct the operators Uη′η for all pairs η

and η′ related by generators of the super Ptolemy groupoid.
Of particular interest are the cases where η and η′ are related by the flip

operation changing the diagonal in a triangulation. We will begin by constructing

operators T
(i)
vw : Hv ⊗Hw → Hv ⊗Hw, i = 1, . . . , 8 representing the super flips

of hexagonalisations listed in Appendix B. In order to cover the remaining cases
one may use the push-out operation, as will be discussed later. A useful starting

point will be the operator T
(1)
12 corresponding to the operation ω

(1)
12 depicted in

figure 18. Following the discussion around (51) above, we will require that

T
(1)
12

−1
e2πbz

′
1T

(1)
12 = eπbz1(1 + e2πbze − eπbzeξ1ξ2)e

πbz1 ,

T
(1)
12

−1
e2πbz

′
2T

(1)
12 = eπbz2(1 + e−2πbze − e−πbzeξ1ξ2)

−1eπbz2 ,

T
(1)
12

−1
e2πbz

′
3T

(1)
12 = eπbz3(1 + e2πbze − eπbzeξ1ξ2)e

πbz3 ,

T
(1)
12

−1
e2πbz

′
4T

(1)
12 = eπbz4(1 + e−2πbze − e−πbzeξ1ξ2)

−1eπbz4 ,

T
(1)
12

−1
e2πbz

′
eT

(1)
12 = e−2πbze ,

(52a)

for the even coordinates and

T
(1)
12

−1
eπbz

′
1ξ1

′T
(1)
12 = e

1

2
πbz1(ξ1 + eπbzeξ2)e

1

2
πbz1 ,

T
(1)
12

−1
eπbz

′
1ξ2

′T
(1)
12 = e

1

2
πbz1(−eπbzeξ1 + ξ2)e

1

2
πbz1 ,

(52b)
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for the odd ones. The labelling of variables is the one introduced in Figure 18,
and the definition of the variables ze in terms of the Kashaev type variables uses
the same conventions as introduced in Section 2.2 above.

An operator T
(1)
12 satisfying (52) can be constructed in the following form

T
(1)
12 =

1

2

[

f+(q1 + p2 − q2)− if−(q1 + p2 − q2)κ1 κ2

]

e−iπp1q2 . (53)

The operator T
(1)
12 is unitary and satisfies (52) if f±(x) := eR(x) ± eNS(x) with

eNS(x) and eR(x) being special functions satisfying |eNS(x)| = 1 and |eR(x)| = 1
for x ∈ R, together with the functional relations

eR

(

x− ib±1

2

)

= (1 + ieπb
±1x)eNS

(

x+
ib±1

2

)

,

eNS

(

x− ib±1

2

)

= (1 − ieπb
±1x)eR

(

x+
ib±1

2

)

.

Functions eNS(x) and eR(x) satisfying these properties can be constructed as

eR(x) = eb

(
x+ i(b− b−1)/2

2

)

eb

(
x− i(b− b−1)/2

2

)

, (54)

eNS(x) = eb

(
x+ cb

2

)

eb

(
x− cb

2

)

, (55)

where eb(x) is Faddeev’s quantum dilogarithm function defined by the following
integral representation

eb(x) = exp

[∫

R+i0

dw

w

e−2ixw

4 sinh(wb) sinh(w/b)

]

, (56)

Some details on the verification of the quantised coordinate transformations (52)
are given in appendix C.

As a useful tool for describing the definition of the remaining operators T
(i)
12 ,

i = 2, . . . , 8, we will introduce an operator Mv : Hv → Hv representing the
change of orientations µv in an undotted triangle shown in the figure 13. The
operators Mv are defined by our leg numbering notation from the operator M
on C1|1 represented by the matrix

M =

(
1 0
0 −1

)

. (57)

The operator Mv squares to identity M2
v = idv and acts on the odd invariant as

M−1
v · ξv ·Mv = −ξv. (58)

One should note that the operation µv relates Kasteleyn orientations describing
inequivalent spin structures, in general.

It is easy to see that the flips ω
(i)
12 , i = 2, . . . , 8 can be represented as com-

positions of the flip ω
(1)
12 with operations µv. We will define the corresponding

operators T
(i)
12 , i = 2, . . . , 8 by taking the corresponding product of the operators
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Mv with the operator T
(1)
12 . To give an example, let us note that the flip ω(2) can

be represented by the sequence of operations shown in figure 19. This leads us

to define the operator T
(2)
12 as

T
(2)
12 = M1M2T

(1)
12 M1. (59)

All other operators T
(i)
12 , i = 3, . . . , 8 associated to the flips ω(i), i = 3, . . . , 8 can

be defined in this way.

Fig. 19. By using operators M we can find the map between the second superflip and the
first one

The operations considered up to now were associated to triangles that do not
have corners marked with dots. As noted above, one may always locally reduce
to this case by using the push-out operation. The push-out β will be represented
by an operator Buv : Hu ⊗Hv → Hu ⊗Hv defined as follows

Buv = idu Mv. (60)

With the help of the operator Buv one may now define all operators associated
with the flips relating dotted triangles.10

We furthermore need to define operators Π
(i)
(12), i = 1, . . . , 8 representing the

exchange (uv) of labels assigned to two adjacent triangles when the Kastelyn

orientation is the one of the initial configurations of the flips ω
(i)
12 depicted in

10 To this aim one may, as described before, start with the case where the two triangles under
consideration can be embedded into a sufficiently large triangulation, allowing us to remove
all dots by push-outs. The result will be an operator that can be described as conjugation of

the operators T
(i)
12 , i = 1, . . . , 8 with the operators Buv. It is easy to see that the resulting

operators act trivially on all tensor factors that do not carry the labels 1 and 2 of T
(i)
12 . The

resulting definition can therefore be used even in the exceptional case of a one-punctured torus.
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Figure 22. By using the operators Mv one may reduce the definition to the case

i = 1 in a way closely analogous to the definition of the T
(i)
12 , i = 2, . . . , 8 in

terms of T
(1)
12 . In order to define the operator Π

(1)
(12) let us represent H1 ⊗H2 as

L2(R2)⊗ C1|1 ⊗ C1|1, and let

Π
(1)
(12) = (Pb ⊗ I2 ⊗ I2)(id⊗ Pf) , where Pf = (I2 ⊗M)(I2 ⊗ I2 + κ⊗ κ), (61)

with respect to this factorisation, where Pb acts on functions of two variables as
Pbf(x1, x2) = f(x2, x1). One may note that Pf is not the standard permutation
operator on C1|1 ⊗ C1|1 satisfying Pf(η1 ⊗ η2)Pf = η2 ⊗ η1 for arbitrary η1, η2 ∈
End(C1|1). However, the operator Pf squares to the identity and satisfies Pf(ξ⊗
I2)Pf = I2⊗ξ and Pf(I2⊗ξ)Pf = ξ⊗I2. This means that the operator Pf correctly
represents the permutation on the the sub-algebra of End(C1|1⊗C1|1) generated
by I2 ⊗ ξ and ξ ⊗ I2. This is the algebra of operators on C1|1 ⊗ C1|1 relevant
for the quantisation of the super-Teichmüller theory. The reason for adopting a
non-standard representation of the permutation on this sub-algebra will become
clear when we discuss the relations of the super Ptolemy groupoid.

We finally need to define an operator Av representing the move rotating the
distinguished vertex of a dotted triangle as shown in figure 4. The operator
Av : Hv → Hv will be defined as

Av = eiπ/3e−i3πq2v/2e−iπ(pv+qv)
2/2

I2. (62)

It may be interesting to note that the flip operators T
(i)
12 have an interpretation

within the representation theory of the Heisenberg double of the quantum super
plane, which we plan to describe in a forthcoming publication. The flip operator

T
(1)
12 is found to coincide with the canonical element of the Heisenberg double of

the quantum super plane (which is a Borel half of Uq(osp(1|2))), evaluated in

certain infinite-dimensional representations on L2(R)⊗ C1|1.

4.3. Quantum super Ptolemy groupoid. We are now going to describe essential
steps in the verification that the operators defined previously generate a repre-
sentation of the super Ptolemy groupoid.

Of particular interest are the generalisations of the pentagon relation. Using
the push-out operation one can always reduce to relations involving only un-
dotted triangles. As noted previously, one needs to check the following set of
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Fig. 20. One of the superpentagon equations

relations,

T
(1)
12 T

(1)
23 = T

(1)
23 T

(1)
13 T

(1)
12 , T

(6)
12 T

(2)
23 = T

(2)
23 T

(1)
13 T

(6)
12 ,

T
(5)
12 T

(8)
23 = T

(8)
23 T

(5)
13 T

(5)
12 , T

(6)
12 T

(7)
23 = T

(7)
23 T

(6)
13 T

(5)
12 ,

T
(2)
12 T

(1)
23 = T

(1)
23 T

(2)
13 T

(2)
12 , T

(8)
12 T

(8)
23 = T

(1)
23 T

(8)
13 T

(8)
12 ,

T
(4)
12 T

(5)
23 = T

(5)
23 T

(5)
13 T

(4)
12 , T

(5)
12 T

(3)
23 = T

(3)
23 T

(4)
13 T

(6)
12 ,

T
(3)
12 T

(4)
23 = T

(7)
23 T

(3)
13 T

(2)
12 , T

(7)
12 T

(7)
23 = T

(4)
23 T

(7)
13 T

(8)
12 ,

T
(1)
12 T

(6)
23 = T

(6)
23 T

(6)
13 T

(4)
12 , T

(7)
12 T

(2)
23 = T

(5)
23 T

(2)
13 T

(7)
12 ,

T
(5)
12 T

(6)
23 = T

(3)
23 T

(7)
13 T

(6)
12 , T

(3)
12 T

(5)
23 = T

(2)
23 T

(8)
13 T

(3)
12 ,

T
(1)
12 T

(3)
23 = T

(6)
23 T

(3)
13 T

(7)
12 , T

(4)
12 T

(4)
23 = T

(4)
23 T

(4)
13 T

(1)
12 .

(63)

One may first observe that all of these relations follow from the pentagon equa-
tion that involves only T(1). As an example let us consider the pentagon equation
represented by Figure 20, corresponding to the equation

T
(6)
12 T

(2)
23 = T

(2)
23 T

(1)
13 T

(6)
12 .

Using the relations between T(1) and other flips, we can rewrite it

(M2T
(1)
12 M1M2)(M2M3T

(1)
23 M2) = (M2M3T

(1)
23 M2)T

(1)
13 (M2T

(1)
12 M1M2),

which is just a pentagon for T(1), given the fact that M1M2T
(i)
12M1M2 = T

(i)
12 for

all i.
In order to verify the pentagon equation for T(1) one may reduce it by straight-

forward calculations to the validity of the following identities

f+(p)f+(x) = f+(x)f+(x+ p)f+(p)− if−(x)f−(x+ p)f−(p), (64a)

f+(p)f−(x) = −if+(x)f−(x+ p)f−(p) + f−(x)f+(x+ p)f+(p), (64b)

f−(p)f+(x) = f+(x)f+(x+ p)f−(p)− if−(x)f−(x+ p)f+(p), (64c)

f−(p)f−(x) = if+(x)f−(x+ p)f+(p)− f−(x)f+(x+ p)f−(p), (64d)
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with x and p being self-adjoint operators satisfying the relations

[p, x] =
1

iπ
.

The relations (64) follow from integral identities satisfied by the special functions
eNS(x) and eR(x) that were derived in [23], see Appendix A.3 for details.

Another relation of the quantum Ptolemy groupoid corresponds to the oper-
ator relation

Bn,1B1,2 . . .Bn−1,n = M1M2 · · ·Mn, (65)

for all n ≥ 2, which comes from the figure 21, where we consider a collection of
hexagons meeting in the same vertex (a collection of vertices in S1|1 that project
to the same point in P1|1). Then, we can move the dot around this vertex until
we arrive at the same hexagon, and then relate this hexagonalisation to the
initial one by reversing the orientation on the edges. This relation is an easy
consequence of the definitions.

Fig. 21. Relation for push-out

Further relations involve both flips and push-outs. It suffices to consider rela-
tions involving only triangles with one dot as other cases can be reduced to this
one using push-outs. We found that the following relations between operators

T
(i)
23 and T

(j)
23 for different values of i and j are satisfied:

(T
(i)
23 )

−1B43B32B21 = B42B21(T
(j)
23 )

−1, (66a)

where (i, j) = (5, 8), (8, 5), (6, 7), (7, 6), (1, 2), (2, 1), (3, 4), (4, 3), together with

T
(i)
23B43B32B21 = B43B31T

(j)
23 , (66b)

where (i, j) = (5, 4), (4, 5), (1, 6), (6, 1), (7, 2), (2, 7), (3, 8), (8, 3).
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Another set of relations involves the operators T
(i)
34 and T

(j)
12 associated to two

different pairs of triangles:

T
(i)
34B23(T

(j)
12 )

−1(B23)
−1 = B24(T

(j)
12 )

−1(B24)
−1T

(i)
34 , (67a)

(T
(i)
34 )

−1B13T
(j)
12 (B23)

−1 = B13T
(j)
12 (B23)

−1(T
(i)
34 )

−1, (67b)

(T
(i)
34 )

−1B23(T
(j)
12 )

−1(B23)
−1 = B23(T

(j)
12 )

−1(B23)
−1(T

(i)
34 )

−1, (67c)

T
(i)
34B13T

(j)
12 (B23)

−1 = B14T
(j)
12 (B24)

−1T
(i)
34 , (67d)

where the i, j, k, l,m = 1, . . . , 8 depends on the Kasteleyn orientation of the
graph from which the relation has been derived. Examples of these relations
are represented diagrammatically in figures 16 and 17, with decorated vertices
assigned appropriately. All the relations (67) can be reduced to the obvious

identity T
(i)
34T

(i)
12 = T

(i)
12T

(i)
34 .

We finally need to discuss the relations of the super Ptolemy groupoid involv-
ing the operator A. We find that the following relations are satisfied

A3
1 = id1, (68a)

A2T
(i)
12A1 = A1T

(i)
21A2, (68b)

T
(j)
21 A1T

(k)
12 = ζs A2A1Π

(k)
(12), (68c)

where i = 1, . . . , 8, (j, k) = (4, 1), (7, 2), (2, 3), (5, 4), (8, 5), (3, 6), (6, 7), (1, 8),

and ζs = e
πi
4 e−iπ(1+c2

b
)/6. The proof of relations (68a) and (68b) is almost iden-

tical to the case of ordinary Teichmüller theory. The details on the proof of (68c)

can be found in Appendix D. It is the operator Π
(1)
(12) defined in equation (61)

which appears in (68c) for i = 1, explaining why we adopted this definition for

Π
(1)
(12).

5. Conclusions and outlook

In this work we constructed a quantisation of the Teichmüller theory of super
Riemann surfaces. The independence of the resulting quantum theory with re-
spect to changes of triangulations was demonstrated by constructing a unitary
projective representation of the super Ptolemy groupoid.

There is a number of issues which would be interesting to investigate. It is
known that ordinary Teichmüller theory is closely related to non-supersymmetric
Liouville theory [1]. In particular, the spaces of Liouville conformal blocks and
the spaces of states of Teichmüller theory of Riemann surfaces can be identified
as predicted in [24] and they carry unitarily equivalent representations of the
mapping class group. In the case of N = 1 supersymmetric Liouville theory,
the mapping class group representation attached to surfaces of genus 0 has been
investigated [25,26]. It would be interesting to study more closely the mapping
class group representation defined by the representation of the super Ptolemy
groupoid constructed in our paper, and to relate it to N = 1 supersymmetric
Liouville theory.

Moreover, ordinary Teichmüller theory is the connected component of the
space of SL(2,R)-valued flat connections on a Riemann surface Σ, and therefore



Quantisation of super Teichmüller theory 29

closely related to SL(2,R)-Chern-Simons theory on Σ×R. It should be interest-
ing to investigate the connections between the quantum super Teichmüller theory
described here and the quantum OSp(1|2)-Chern-Simons theory.

A. Special functions

A.1. Non-compact quantum dilogarithm. The basic special function that appears
in the context of the quantisation of the Teichmüller space is Barnes’ double
Gamma function. For Rex > 0 it admits an integral representation

logΓb(x) =

∫ ∞

0

dt

t






e−xt − e−
Q
2
t

(1− e−tb)(1− e−
t
b )

−

(
Q
2 − x

)2

2et
−

Q
2 − x

t




 ,

where Q = b + 1
b . One can analytically continue Γb to a meromorphic function

defined on the entire complex plane C. The most important property of Γb is its
behavior with respect to shifts by b±,

Γb(x+ b) =

√
2πbbx−

1

2

Γb(bx)
Γb(x) , Γb(x + b−1) =

√
2πb−

b

x+ 1

2

Γb(
x
b )

Γb(x) . (69)

These shift equation allows us to calculate residues of the poles of Γb. When
x→ 0, for instance, one finds

Γb(x) =
Γb(Q)

2πx
+O(1). (70)

From Barnes’ double Gamma function we can build two other important special
functions,

Sb(x) =
Γb(x)

Γb(Q − x)
, (71)

Gb(x) = e−
iπ
2
x(Q−x)Sb(x). (72)

We shall often refer to the function Sb as double sine function. The Sb function
is meromorphic with poles and zeros in

Sb(x) = 0 ⇔ x = Q+ nb+mb−1, n,m ∈ Z≥0 ,

Sb(x)
−1 = 0 ⇔ x = −nb−mb−1, n,m ∈ Z≥0 .

From its definition and the shift property of Barnes’ double Gamma function it
is easy to derive the following shift and reflection properties of Gb,

Gb(x+ b) = (1− e2πibx)Gb(x) , (73)

Gb(x)Gb(Q− x) = eπix(x−Q) . (74)
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The Faddeev’s quantum dilogarithm function is defined by the following integral
representation

eb(x) = exp

[∫

R+i0

dw

w

e−2ixw

4 sinh(wb) sinh(w/b)

]

, (75)

and it is related to the double sine function as follows

eb(x) = AG−1
b

(

− ix+
Q

2

)

, (76)

where

A = e−iπ(1−4c2
b
)/12 , cb = iQ/2 . (77)

The shift and reflection relations that it satisfies are as follows

eb

(

x− ib±1

2

)

= (1 + e2πb
±1x)eb

(

x+
ib±1

2

)

,

eb(x)eb(−x) = e−iπ(1+2c2b)/6eiπx
2

.

The asymptotic behaviour of the function eb along the real axis

eb(z) =

{
1 , x→ −∞
e−iπ(1+2c2b)/6eiπx

2

, x→ +∞ (78)

Also, we know that for self-adjoint operators P,X such that [P,X] = 1
2πi we have

the following variant of the pentagon relation

eb(P)eb(X) = eb(X)eb(X+ P)eb(P). (79)

The pentagon equation is equivalent to the following analog of the Ramanujan
summation formula [27–29]

∫ i∞

−i∞

dτ

i
e2πiτβ

Gb(τ + α)

Gb(τ +Q)
=
Gb(α)Gb(β)

Gb(α + β)
. (80)

It may also be considered as a quantisation of the Rogers five-term identity
satisfied by dilogarithms.

A.2. Supersymmetric non-compact quantum dilogarithm. When discussing the
supersymmetric Teichmüller theory we need the following additional special
functions

Γ1(x) = ΓNS(x) = Γb

(x

2

)

Γb

(
x+Q

2

)

,

Γ0(x) = ΓR(x) = Γb

(
x+ b

2

)

Γb

(
x+ b−1

2

)

.
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Furthermore, let us define

S1(x)= SNS(x) =
ΓNS(x)

ΓNS(Q−x) , G1(x)= GNS(x) = ζ0e
− iπ

4
x(Q−x)SNS(x),

S0(x)= SR(x) =
ΓR(x)

ΓR(Q−x) , G0(x)= GR(x) = e−
iπ
4 ζ0e

− iπ
4
x(Q−x)SR(x),

(81)
where ζ0 = exp(−iπQ2/8). As for Sb, the functions S0(x) and S1(x) are mero-
morphic with poles and zeros in

S0(x) = 0 ⇔ x = Q+ nb+mb−1, n,m ∈ Z≥0,m+ n ∈ 2Z+ 1,

S1(x) = 0 ⇔ x = Q+ nb+mb−1, n,m ∈ Z≥0,m+ n ∈ 2Z,

S0(x)
−1 = 0 ⇔ x = −nb−mb−1, n,m ∈ Z≥0,m+ n ∈ 2Z+ 1,

S1(x)
−1 = 0 ⇔ x = −nb−mb−1, n,m ∈ Z≥0,m+ n ∈ 2Z.

As in the previous subsection, we want to state the shift and reflection properties
of the functions G1 and G0,

Gν(x+ b±1) = (1− (−1)νeπib
±1x)Gν+1(x), (82)

Gν(x)Gν (Q− x) = e
iπ
2
(ν−1)ζ20e

πi
2
x(x−Q) . (83)

We define the supersymmetric analogues of Faddeev’s quantum dilogarithm func-
tion as

eR(x) = eb

(
x+ i(b− b−1)/2

2

)

eb

(
x− i(b− b−1)/2

2

)

, (84)

eNS(x) = eb

(
x+ cb

2

)

eb

(
x− cb

2

)

. (85)

These functions are related to the double sine function as follows,

eν(x) = A2G−1
ν

(

− ix+
Q

2

)

, (86)

where the constant A has been defined in eq. (77). The shift and reflection
relations that it satisfies are as follows

eR

(

x− ib±1

2

)

= (1 + ieπb
±1x)eNS

(

x+
ib±1

2

)

,

eNS

(

x− ib±1

2

)

= (1− ieπb
±1x)eR

(

x+
ib±1

2

)

,

eNS(x)eNS(−x) = eiπc
2

b
/2e−iπ(1+2c2b)/3eiπx

2/2,

eR(x)eR(−x) = eiπ/2eiπc
2

b
/2e−iπ(1+2c2b)/3eiπx

2/2.

Asymptotically, the functions e1 and e0 behave as

eNS(z) =

{
1 , x→ −∞
eiπc

2

b
/2e−iπ(1+2c2b)/3eiπx

2/2 , x→ +∞ (87)

eR(z) =

{
1 , x→ −∞
eiπ/2eiπc

2

b
/2e−iπ(1+2c2b)/3eiπx

2/2 , x→ +∞ (88)
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Let us finally note that the functions Gσ(x) satisfy the following integral
identities derived in [23],

∑

σ=0,1

∫ i∞

−i∞

dτ

i
(−1)ρβσeπiτβ

Gσ+ρα(τ + α)

Gσ+1(τ +Q)
= 2ζ−1

0

Gρα(α)G1+ρβ
(β)

Gρα+ρβ
(α + β)

, (89)

which will be a key ingredient of the proof of the pentagon equations (63) given
below.

A.3. The superpentagon equation. In the main text it has been noted that the
pentagon equations (63) can be reduced to the identities

f+(P)f+(X) = f+(X)f+(X+ P)f+(P)− if−(X)f−(X+ P)f−(P), (90a)

f+(P)f−(X) = −if+(X)f−(X + P)f−(P) + f−(X)f+(X+ P)f+(P), (90b)

f−(P)f+(X) = f+(X)f+(X+ P)f−(P) − if−(X)f−(X + P)f+(P), (90c)

f−(P)f−(X) = if+(X)f−(X+ P)f+(P)− f−(X)f+(X+ P)f−(P), (90d)

satisfied by the functions f±(x) = eR(x) ± eNS(x) of self-adjoint operators P,X
with commutation relations [P,X] = 1

πi . In this appendix we will explain how
the identities (90) can be derived from the integral identities (89). To this aim
it will be convenient to write the identities (89) in the form

∫

dxe−πix(u+cb)

(
eNS(x+ cb)

eNS(x+ v)
+
eR(x+ cb)

eR(x+ v)

)

= 2χ0
eNS(v + u+ cb)

eNS(v)eNS(u)
,

∫

dxe−πix(u+cb)

(
eNS(x+ cb)

eNS(x+ v)
− eR(x+ cb)

eR(x+ v)

)

= 2χ0
eR(v + u+ cb)

eNS(v)eR(u)
,

∫

dxe−πix(u+cb)

(
eNS(x+ cb)

eR(x+ v)
+
eR(x+ cb)

eNS(x+ v)

)

= 2χ0
eR(v + u+ cb)

eR(v)eNS(u)
,

∫

dxe−πix(u+cb)

(
eNS(x+ cb)

eR(x+ v)
− eR(x+ cb)

eNS(x+ v)

)

= 2χ0
eNS(v + u+ cb)

eR(v)eR(u)
,

(91)

where χ0 = e−iπ(1−c2b)/6. Taking the limit v → −∞ we can obtain the Fourier
transforms

f̃+(u) =

∫

dxe−πixu(eR(x) + eNS(x)) = e−iπcbu
2χ0

eNS(u− cb)
=

= 2χ−1
0 e−iπu2/2eNS(cb − u),

f̃−(u) =

∫

dxe−πixu(eR(x) − eNS(x)) = −e−iπcbu
2χ0

eR(u− cb)
=

= 2iχ−1
0 e−iπu2/2eR(cb − u).

Then, we can consider the matrix elements of the operators fr(X)fs(P + X)
between (generalised) eigenstates 〈p| and |p′〉 of the operator P with eigenvalues
p and p′, respectively:

Ξrs = 〈p|fr(X)fs(P+ X)|p′〉,



Quantisation of super Teichmüller theory 33

for r, s = +,− and [P,X] = 1
iπ . We have

〈p|fr(X)fs(P+ X)|p′〉 =
∫

dp′′〈p|fr(X)|p′′〉〈p′′|fs(P+ X)|p′〉 =

=

∫

dp′′eiπ(p
′′2−p′2)/2f̃r(p− p′′)f̃s(p

′′ − p′),

where we used the identity between the matrix element of an arbitrary function
g and its Fourier transform g̃

〈p|g(X)|p′〉 = g̃(p− p′) ,

and the fact that
g(X+ P) = e

iπ
2
P2

g(X)e−
iπ
2
P2

.

Let us consider in detail the case r = +, s = +. Then we can write, using
equation (91),

Ξ++ =

∫

dp′′e
iπ
2
(p′′2−p′2) eNS(p

′ − p′′ + cb)

eNS(p− p′′ − cb)
e−

iπ
2
(p′′−p′)2e−iπcb(p−p′′) =

= e−iπcb(p−p′)

∫

dxe−iπx(p′+cb)
eNS(x + cb)

eNS(x+ p− p′ − cb)
=

= χ0e
−iπcb(p−p′) 1

eNS(p− p′ − cb)

(
eNS(p)

eNS(p′)
+
eR(p)

eR(p′)

)

.

Therefore

f+(X)f+(X+ P) = eNS(P)f+(X)e
−1
NS(P) + eR(P)f+(X)e

−1
R (P).

If one repeats the calculations for other possibilities, one finds

f−(X)f−(X+ P) = −i(eNS(P)f+(X)e
−1
NS(P)− eR(P)f+(X)e

−1
R (P)),

f+(X)f−(X+ P) = −i(eR(P)f−(X)e−1
NS(P) − eNS(P)f−(X)e

−1
R (P)),

f−(X)f+(X+ P) = eR(P)f−(X)e
−1
NS(P) + eNS(P)f−(X)e

−1
R (P).

Combining these relations one can easily obtain the system (64) which was ob-

served to imply the pentagon equation satisfied by T
(1)
12 .

B. Superflips

The superflip is a map which relates two different ways of triangulating a quadri-
lateral. In the case of super Teichmüller theory, the triangles here should be in-
terpreted as a dotted triangles, that is hexagons with Kasteleyn orientations. As
we discussed in the main text, it is enough to consider flips between quadrilater-
als with no dots, since one can remove dots by the action of push-outs. However,
that still means that there are different ways of assigning Kasteleyn orientations
to the long edges — in fact, one has 8 possible ways to do that. In figure 22 we
present the full list of all of the possible superflips.

When considering Kashaev type coordinates it is necessary to use the deco-
rated version of dotted triangulations. In the case of the quadrilaterals relevant
for the flip map, decorated vertices should be chosen always as in figure 18.
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Fig. 22. Superflips for quadrilaterals without dots; cases 1-8

C. Quantised flip T(1)

In this section, we present the transformations of the quantised shear coordinates
under the flip that is given by the map T(1). For the quadrilaterals on the
figure 18, the even shear coordinates assigned to the edges are expressed as the
operators on the (L2(R)⊗ C1|1)⊗2

Ze = e2πb(qv−pv+pw)
I2, Z′

e = e2πb(−qv+qw−pw)
I2, (92)

Z1 = e2πbpvI2, Z′
1 = e2πbpv I2, (93)

Z2 = e2πb(qw−pw)
I2, Z′

2 = e2πb(qv−pv)I2, (94)

Z3 = e−2πbqwI2, Z′
3 = e−2πbqwI2, (95)

Z4 = e−2πbqvI2, Z′
4 = e2πbpwI2, (96)

and the odd coordinates

ξ1 =

√

q
1

2 − q−
1

2 κ⊗ I2, ξ′1 =

√

q
1

2 − q−
1

2 κ⊗ I2, (97)

ξ2 =

√

q
1

2 − q−
1

2 I2 ⊗ κ, ξ′2 =

√

q
1

2 − q−
1

2 I2 ⊗ κ. (98)
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Those operators satisfy the algebraic relations as follows

[Ze,Z1] = (1− q−4)ZeZ1, (99)

[Ze,Z2] = (1− q+4)ZeZ2, (100)

[Ze,Z3] = (1− q−4)ZeZ3, (101)

[Ze,Z4] = (1− q+4)ZeZ4, (102)

[Z1,Z4] = (1− q−4)Z1Z4, (103)

[Z2,Z3] = (1− q+4)Z2Z3, (104)

[Z1,Z2] = [Z1,Z3] = [Z2,Z4] = [Z3,Z4] = 0, (105)

[Zα, ξi] = 0, (106)

{ξ1, ξ2} = 0, (107)

{ξi, ξi} = 2

√

q
1

2 − q−
1

2 1⊗ 1. (108)

Setting q = ei~/4 one can see that those commutation relations reproduce the
classical Poisson bracket given by equation (32).

As an example, let us consider the transformation of the even variable Z′
1 =

e2πbz
′
1 :

T(1)−1
vw Z′

1T
(1)
vw =

=
1

4
eπbpv [(e−1

NS(u + ib) + e−1
R (u + ib))I2 ⊗ I2 − i(e−1

R (u+ ib)− e−1
NS(u+ ib))κ⊗ κ]×

× [(eNS(u − ib) + eR(u− ib))I2 ⊗ I2 − i(eR(u− ib)− eNS(u − ib))κ⊗ κ]eπbpv =

=
1

2
eπbpv

{
[e−1

NS(u + ib)eNS(u− ib) + e−1
R (u+ ib)eR(u− ib)]I2 ⊗ I2+

−i[e−1
R (u+ ib)eR(u− ib)− e−1

NS(u + ib)eNS(u− ib)]κ⊗ κ
}
eπbpv =

= eπbpv
{

[1 + e2πb(qv+pw−qw)]I2 ⊗ I2 + (q−
1

2 − q
1

2 )eπb(qv+pw−qw)κ⊗ κ
}

eπbpv =

= Z
1

2

1

{

(1 + Ze)I2 ⊗ I2 + (q−
1

2 − q
1

2 )Z
1

2

e κ⊗ κ
}

Z
1

2

1 =

= Z
1

2

1

{

(1 + Ze)I2 ⊗ I2 − Z
1

2

e ξ1ξ2

}

Z
1

2

1 ,

where we denoted u = qv + pw − pv and used two times the shift relation of the
quantum dilogarithm

eR(x− ib) = (1− i(q
1

2 − q−
1

2 )eπbx + e2πbx)eR(x+ ib),

eNS(x− ib) = (1 + i(q
1

2 − q−
1

2 )eπbx + e2πbx)eNS(x+ ib).
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We can obtain the transformation property of the odd variable ξ′1

T(1)−1
vw Z′

1

2

1 ξ
′
1T

(1)
vw =

√

q
1

2 − q−
1

2T(1)−1
vw (eπbpvκ⊗ I2)T

(1)
vw =

1

4

√

q
1

2 − q−
1

2 eπbpv×

× [(e−1
NS(u+ ib) + e−1

R (u+ ib))I2 ⊗ I2 − i(e−1
R (u + ib)− e−1

NS(u+ ib))κ⊗ κ]×
× [(eNS(u) + eR(u))I2 ⊗ I2 − i(eR(u)− eNS(u))κ⊗ κ]κ⊗ I2 =

=
1

2

√

q
1

2 − q−
1

2 eπbpv
{
[e−1

NS(u+ ib)eR(u) + e−1
R (u+ ib)eNS(u)]I2 ⊗ I2+

−i[e−1
R (u+ ib)eNS(u)− e−1

NS(u + ib)eR(u)]κ⊗ κ
}
κ⊗ I2 =

=

√

q
1

2 − q−
1

2 eπbpv
{

I2 ⊗ I2 − q
1

2 eπb(qv+pw−pv)κ⊗ κ
}

κ⊗ I2 =

= Z
1

2

1 (ξ1 + q
1

2Z
1

2

e ξ2) = Z
1

4

1 (ξ1 + Z
1

2

e ξ2)Z
1

4

1 .

In this case we used the shift property of the quantum dilogarithm as well. In
the analogous way, one can obtain the transformation properties of the rest of
Fock variables in question.

D. Super permutation

In this section we provide a computation of one of the super Ptolemy relations
(68c) for (j, k) = (4, 1), which involves the operator Π(1) permuting our observ-
ables. Explicitly, we consider the relation

ζsΠ
(1)
(12) = A−1

2 A−1
1 T

(4)
21 A1T

(1)
12 . (109)

The relation between two superflips is as follows

T
(4)
12 = M1M2T

(1)
12 M2. (110)

Let us denote α = q1 + p2 − q2 and β = q2 + p1 − q1. Using that, the flips are
expressed as

T
(1)
12 =

1

2
[(eR(α) + eNS(α))I2 ⊗ I2 − i(eR(α)− eNS(α))κ⊗ κ]e−πip1q2 ,

T
(1)
21 =

1

2
[(eR(β) + eNS(β))I2 ⊗ I2 + i(eR(β)− eNS(β))κ⊗ κ]e−πip2q1 .

In addition, lets recall that A acts on p and q as

A−1qI2A = (p− q)I2,

A−1pI2A = −qI2.
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Using those formulae, we can evaluate the right hand side of equation (109)

RHS =
1

4
A−1
2 A−1

1 M2M1[(eR(α) + eNS(α))I2 ⊗ I2 + i(eR(α)− eNS(α))κ⊗ κ]×

×M1e
−πip1q2A1[(eR(β) + eNS(β))I2 ⊗ I2 − i(eR(β) − eNS(β))κ⊗ κ]e−πip1q2 =

=
1

4
A−1
2 M2[(eR(q2 − p1) + eNS(q2 − p1))I2 ⊗ I2 − i(eR(q2 − p1)− eNS(q2 − p1))κ⊗ κ]×

× [(eR(p1 − q2) + eNS(p1 − q2))I2 ⊗ I2 − i(eR(p1 − q2)− eNS(p1 − q2))κ⊗ κ]

× e−πip2(p1−q1)e−πip1q2 =

=
1

2
A−1
2 M2[(eNS(q2 − p1)eNS(−q2 + p1) + eR(q2 − p1)eR(−q2 + p1))I2 ⊗ I2+

− i(−eNS(q2 − p1)eNS(−q2 + p1) + eR(q2 − p1)eR(−q2 + p1))κ⊗ κ]×
× e−πip2(p1−q1)e−πip1q2 =

=
1

2
eiπc

2

b
/2e−π(1+2c2

b
)/3A−1

2 M2[(e
iπ(−q2+p1)

2/2 + ieiπ(−q2+p1)
2/2)I2 ⊗ I2+

− i(−eiπ(−q2+p1)
2/2 + ieiπ(−q2+p1)

2/2)κ⊗ κ]e−πip2(p1−q1)e−πip1q2 =

=
1 + i

2
eiπc

2

b
/2e−iπ(1+2c2

b
)/3M2[I2 ⊗ I2 + iκ⊗ κ]×

× A−1
2 eiπ(−q2+p1)

2/2e−πip2(p1−q1)e−πip1q2

︸ ︷︷ ︸

e−iπ/3eiπ/2Pb

=

= e
iπ
4 e−iπ(1+c2

b
)/6M2[I2 ⊗ I2 + κ⊗ κ]Pb = ζsPfPb = ζsΠ

(1)
12 = LHS,

which gives us the left hand side of the formula.
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