
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
0
4
3
9
4

|

d
o
w
n
l
o
a
d
e
d
:

1
9
.
4
.
2
0
2
4

ERCIM NEWS 72 January 2008 34

Special Theme: The Future Web

able), and the related algorithms are
often tricky.

In the WAM research team we have
developed an XML/XPath static
analyser based on a new logic of finite
trees. This analyser consists in compilers
that allow XML types and XPath queries
to be translated into this logic, and an
optimized logical solver for testing satis-
fiability of a formula of this logic.

The benefit of these compilers is that
they allow one to reduce all the prob-
lems listed above, and many others, to
logical satisfiability. This approach has
a couple of important practical advan-
tages. First of all, one can use the satis-
fiability algorithm to solve all of these
problems. More importantly, one could
easily explore new variants of these
problems, generated for example by the
presence of different kinds of type or

schema information, with no need to
devise a new algorithm for each variant.

The system has been implemented in
Java and uses symbolic techniques
(binary decision diagrams) in order to
enhance its performance. It is capable
of comparing path expressions in the
presence of real-world DTDs (such as
the W3C SMIL and XHTML language
recommendations). The cost ranges
from several milliseconds for compari-
son of XPath queries without tree types,
to several seconds for queries under
very large, heavily recursive, type con-
straints, such as the XHTML DTD.
These preliminary measurements shed
light for the first time on the cost of
solving static analysis problems in prac-
tice. Furthermore, the analyser gener-
ates XML counter-examples that allow
program defects to be reproduced inde-
pendently from the analyser.

The development of these analysers was
initiated by the Web Adaptation and
Multimedia research team at INRIA,
Grenoble - Rhône-Alpes Research Cen-
tre, France. The project commenced in
October 2005 and the full system will
soon be released publicly.

Links:

Project home page:
http://wam.inrialpes.fr/xml
WAM team: http://wam.inrialpes.fr

Please contact:

Pierre Genevès
WAM Team, CNRS, France
Tel: +33 4 76 61 53 84
E-mail: Pierre.Geneves@inria.fr

Nabil Layaïda
WAM Team, INRIA, France
Tel: +33 4 76 61 52 81
E-mail: Nabil.Layaida@inria.fr

Seaside is a framework for building
dynamic Web applications, uniquely
combining object-oriented and continua-
tion-based approaches. Seaside applica-
tions are built by composing stateful
components, each encapsulating a small
portion of the page. Programmers are
freed from the concern of providing
unique names, since Seaside automates
this by associating callback functions
with links and form fields. Control flow
is expressed as a continuous piece of
code and in addition, Seaside offers a rich
application programming interface (API)
to integrate with the latest Web 2.0 tech-
nology, such as AJAX (Asynchronous
JavaScript) and Comet (Server Push).

Seaside is implemented in Smalltalk, a
dynamically typed programming lan-
guage. Seaside inherits powerful reflec-
tive capabilities from the underlying
language. Web applications may be
debugged while the application is run-
ning. Inspection and modification may

occur on objects on the fly. Source code
is changeable and recompilable without
interrupting the running application,
and there is no need to restart a session.

Whereas most other Web application
frameworks work in a page-centric
fashion, Seaside makes use of stateful
components that encapsulate a small
portion of a page. Developers can
compose the user interface as a tree of
individual components, and often
these components are reused over and
over again, within and between appli-
cations. A basic set of ready-made
widgets is also provided to handle user
interactions.

Seaside offers a mechanism by which
objects may be registered to be back-
tracked. With every response sent to the
client, Seaside takes a snapshot of and
caches registered objects. This allows
previous application states to be
restored in a controlled fashion, for

example when the user is using the
'back' button in the Web browser.

Seaside uses programmatic XHTML
generation. Instead of repeatedly past-
ing the same sequence of tags into tem-
plates, it provides a rich API to generate
XHTML. This approach not only
avoids common problems with invalid
markup, but also allows markup pat-
terns to be easily abstracted into con-
venient reusable methods. CSS (Cas-
cading Style Sheets) are used to give
the application a professional look.

Seaside also provides callback-based
request handling. This allows develop-
ers to associate a piece of code with
anchors and form fields, which are then
automatically performed when the link
is clicked or the form is submitted. This
feature makes it almost trivial to con-
nect the view with its model, as Seaside
abstracts all serialization and parsing of
query parameters away.

Seaside – Advanced Composition
and Control Flow for Dynamic Web Applications
by Alexandre Bergel, Stéphane Ducasse and Lukas Renggli

Page-centric Web application frameworks fail to offer adequate solutions to model composition and
control flow. Seaside allows Web applications to be developed in the same way as desktop
applications. Control flow is modelled as a continuous piece of code, and components may be
composed, configured and nested as one would expect from traditional user interface frameworks.

ERCIM NEWS 72 January 2008 35

Callbacks are used in a natural way to
define a control flow, for example to
temporarily delegate control to a
sequence of other components. The
flow is defined by writing plain source
code. Control statements, loops and
method calls are mixed with messages
to display components. Whenever a
new view is generated, the control flow
is suspended and the response is sent
back to the client. Upon a new user
interaction the flow is resumed.

In order that the definition of control
flows as part of a Web application be as
seamless as possible, Seaside internally
stores a 'continuation' whenever a new
component is displayed. This suspends
the current control flow and allows one
to resume it later on. Since continuations
may be resumed multiple times, Seaside
supports the use of Web browsers' 'back'
and 'forward' buttons at any time. The
execution state is automatically restored
to the requested point and everything
behaves as the developer expects.

To complement the expressiveness of
the Smalltalk programming language, a
set of tools including a memory
analyser, a speed profiler, a code editor
and an object inspector are included.
The debugger supports incremental
code recompilation, and enables highly
interactive Web applications to be built
quickly and in a reusable and maintain-
able fashion.

Seaside is open-source software distrib-
uted under the MIT licence. It is under

constant development by an interna-
tional community using Squeak
Smalltalk. Due to the platform inde-
pendence of Smalltalk, Seaside can be
run on almost any platform. The Seaside
application server can be bridged with
industrial scale servers, such as Apache.
Seaside is supported by major commer-
cial Smalltalk vendors, GemStone
Smalltalk and Cincom VisualWorks, as
part of their product strategy, and is
widely used in an industrial context.

The official Seaside Web site uses Pier,
an open-source content management
system written on top of Seaside.

Link:

http://www.seaside.st

Please contact:

Alexandre Bergel
INRIA Futurs, Lille, France
E-mail: alexandre.bergel@inria.fr

Figure 1: A Web application built with Seaside.

EAGER: A Novel Development Toolkit for
Universally Accessible Web-Based User Interfaces
by Constantina Doulgeraki, Alexandros Mourouzis and Constantine Stephanidis

EAGER is an advanced toolkit that helps Web developers to embed in their artefacts accessibility
and usability for all. Web applications developed by means of EAGER have the ability to adapt to
the interaction modalities, metaphors and user interface elements most appropriate to each individual
user and context of use.

The constantly evolving Web is an
unprecedented and continuously growing
source of knowledge, information and
services, potentially accessible by any-
one, at any time and from anywhere.
Despite the universality of the Web and
the predominant role of Web-based user
interfaces in the evolving Information

Society, current approaches to Web
design do not embrace the notion of
adaptation and the principles of 'design
for all'. Consequently, they fail to satisfy
the individual interaction needs of target
users with different characteristics. A
common practice in contemporary Web
development is to deliver a single user-

interface design that meets the require-
ments of an 'average' user. However, this
'average' user is in fact an imaginary
entity, and differs radically from the pro-
files of a large portion of the population.
This is particularly the case for people
with a disability, elderly people, novice
IT users and users on the move.

	1

