
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
0
4
6
7
1

|

d
o
w
n
l
o
a
d
e
d
:

1
9
.
4
.
2
0
2
4

Flattening Traits

Oscar Nierstrasz, Stéphane Ducasse and Nathanael Schärli

Institut für Informatik und Angewandte Mathematik
University of Bern, Switzerland

IAM-05-005

April, 2005

Abstract

Traits are fine-grained components that can be used to compose classes, while avoiding many
of the problems of multiple inheritance and mixin-based approaches. Since most implemen-
tations of traits have focused on dynamically-typed languages, the question naturally arises,
how can one best introduce traits to statically-typed languages, like Java and C#? In this
paper we argue that the flattening property of traits should be used as a guiding principle
for any attempt to add traits to statically-typed languages. This property essentially states
that, semantically, traits can be compiled away. We demonstrate how this principle applies to
Featherweight-Trait Java, a conservative extension to Featherweight Java.

CR Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal
Definitions and Theory—Semantics; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Type structure; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Lambda calculus and related systems

1 INTRODUCTION 1

1 Introduction

Traits were introduced [16, 17] as a simple programming language mechanism for incremen-
tally composing classes from small, reusable components, while avoiding problems of fragility
in the class hierarchy that arise with approaches based on mixins or multiple inheritance.
Initial experiences using traits in Smalltalk to refactor complex class hierarchies have been
very promising [2], and the question naturally arises, how can we apply traits to statically-
typed languages like Java and C#?

Traits are essentially sets of methods, divorced from any instance variables or a superclass.
Composite traits may be composed from subtraits using the trait composition operators, sum,
aliasing and exclusion. A trait is bound to specific instance variables and a superclass only
when that trait is used in the composition of a given class. A trait is consequently very much
like an abstract class, so perhaps traits in statically-typed languages should be treated the
same way that abstract classes are. In particular, this would typically mean that every named
trait will define a type, since classes in C++, Java and C# define types.

The flaw in this reasoning is that traits support the flattening property, which says that
the semantics of a method defined in a trait is identical to the semantics of the same method
defined in a class that uses the trait. In principle, then, traits can be compiled away. But if
traits can be compiled away, then what happens to the types that they define?

We propose that the flattening property actually provides us with a principle for answering
this and other questions. Instead of first asking how to integrate traits with the semantics
of a given language, we should answer the question, how can we flatten traits to the base
language. Once we know how to flatten traits, we will know how to extend the language,
since the design space will then be drastically reduced.

In particular, if we are interested in adding traits to a statically-typed language L, then a
program p should be type-safe in the extended language T if and only if the flattened program
[[p]] is type-safe in L.

Featherweight Java (FJ) is an object calculus that captures just those aspects of Java
that are needed to explore certain questions concerning Java’s type system [8, 9]. In particular,
FJ was originally used to ascertain that Java’s type system could be extended to accommodate
generics without breaking existing programs. Since traits also offer a conservative extension
to Java-like languages and exhibit certain aspects of genericity, a natural starting point for
applying traits to Java-like languages (including C#) would be an investigation of introducing
traits to FJ. Liquori and Spiwack have taken FJ as a starting point to define Feather-
weight-Trait Java(FTJ) [11], a conservative extension of FJ that adds statically typed
traits.

We provide a brief overview of traits in Section 2. In Section 3 we show how programs in
FTJ can be flattened to FJ. This allows us to apply an “acid test” to FTJ— expressions in
FTJ should be type-safe if and only if their flattened counterparts are type-safe in FJ. We
show that, with some small caveats, this is in fact the case. In Section 4 we take the same
approach to investigate how named traits can be used to stand for types, if we first extend our
base language to support interfaces. In Section 5 we investigate the introduction of traits in
FGJ (FJ extended with generics). The principle of flattening leads us naturally to a notion
of generic traits. In Section 6 we provide a brief overview how traits are implemented in
Smalltalk. We briefly survey some related work in Section 7. We conclude in Section 8 with
some remarks about ongoing and future work.

2 TRAITS IN A NUTSHELL 2

2 Traits in a Nutshell

Traits [17] are essentially groups of methods that serve as building blocks for classes and
are primitive units of code reuse. As such, they allow one to factor out common behavior
and form an intermediate level of abstraction between single methods and complete classes.
A trait consists of provided methods that implement its behavior, and of required methods
that parameterize the provided behavior. Traits cannot specify any instance variables, and
the methods provided by traits never directly access instance variables. Instead, required
methods can be mapped to state when the trait is used by a class.

With traits, the behavior of a class is specified as the composition of traits and some glue
methods that are implemented at the level of the class. These glue methods connect the traits
together and can serve as accessor for the necessary state. The semantics of such a class is
defined by the following three rules:

• Class methods take precedence over trait methods. This allows the glue methods defined
in the class to override equally named methods provided by the traits.

• Flattening property. A non-overridden method in a trait has the same semantics as the
same method implemented in the class.

• Composition order is irrelevant. All the traits have the same precedence, and hence
conflicting trait methods must be explicitly disambiguated.

Because the composition order is irrelevant, a conflict arises if we combine two or more
traits that provide identically named methods that do not originate from the same trait.
Traits enforce explicit resolution of conflicts by implementing a glue method at the level of
the class that overrides the conflicting methods, or by method exclusion, which allows one to
exclude the conflicting method from all but one trait. In addition traits allow method aliasing.
The programmer can introduce an additional name for a method provided by a trait to obtain
access to a method that would otherwise be unreachable, for example, because it has been
overridden.

Example: Geometric Objects. Suppose we want to represent a graphical object such as
a circle or square that is drawn on a canvas. Such a graphical object can be decomposed into
three reusable aspects — its geometry, its color and the way that it is drawn on a canvas.

Figure 1 shows this for the case of a Circle class composed from traits TCircle, TColor and
TDrawing:

• TCircle defines the geometry of a circle: it requires the methods center, center:, radius, and
radius: and provides methods such as bounds, hash, and =.

• TDrawing requires the methods drawOn: bounds and provides the methods draw, refresh,
and refreshOn:.

• TColor requires the methods rgb, rgb: and provides all kind of methods manipulating
colors. We only show the methods hash and = as they will conflict with others at
composition time.

2 TRAITS IN A NUTSHELL 3

TColor
red
green
~=
=
hash

rgb
rgb:

TDrawing
draw
refresh
refreshOn:

bounds
drawOn:

TCircle
=
hash
...
bounds
area

center
center:
radius
radius:

Circle
initialize
=
hash
rgb
rgb:
center
center:
radius
radius:
drawOn:

X

TDrawing
draw
refresh
refreshOn:

bounds
drawOn:

TCircle
=
hash
...
bounds
area

center
center:
radius
radius:

TColor
red
green
~=
=
hash

rgb
rgb:

Figure 1: Class Circle is composed from traits TCircle, TColor and TDrawing.

3 FLATTENING TRAITS 4

CL ::= class C C C {C f;K M TA} Classes
TL ::= trait T is {M; TA} Traits
TA ::= T | TA with {m@n} | TA minus {m} Trait expressions
K ::= C(C f) {super(f);this.f=f;} Constructors
M ::= C m(C x) {↑e;} Methods
e ::= x | e.f | e.m(e) | new C(e) | (C)e Expressions

Figure 2: FTJ Syntax.

The class Circle specifies three instance variables center, radius, and rgb and their respective
accessor methods. It is composed from the three traits TDrawing, TCircle, and TColor. As there
is a conflict for the methods hash and = between the traits TCircle and TColor, we alias those
methods in both traits to be able to access them in the methods hash and = of the class Circle

resolving the conflicts.

3 Flattening traits

FJ strips Java down to a tiny functional calculus that expresses just enough of the language
to reason about the essential type features of Java. Issues like side effects, concurrency and
reflection are forgotten, but even some type issues such as interfaces and overloading are left
out as being non-essential.

Liquori and Spiwack have defined FTJ as a conservative extension of FJ, with minimal
syntactic and semantic changes to accommodate traits. But is their interpretation of traits
reasonable?

To answer this question, we explore in this section an alternative approach to defining
FTJ by flattening, i.e., by translation to FJ. In other words, we compile traits away to
obtain pure FJ programs. We then show that the static and dynamic semantics of FTJ
programs is (largely) consistent with that of the flattened programs in FJ.

The point of this exercise is to provide evidence that FTJ is in fact a reasonable extension
of FJ to traits, precisely because it correctly interprets the flattening property. In general,
we argue, any type system that accommodates traits should have the property that programs
with traits should be equivalent, in some way, to their flattened counterparts in the base
language.

3.1 Featherweight Trait Java

The syntax of FTJ is shown in Figure 2. The only differences with the syntax of FJ are the
modification of class definitions to include a sequence of used traits TA, and the addition of
syntax for trait definitions (TL) and trait expressions (TA). As in FJ, the notation C denotes a
possible empty sequence of elements C (with or without commas, as appropriate; • represents
the empty sequence.) For the sake of conciseness we abbreviate the keyword extends to the
symbol C and the keyword return to the symbol ↑.

With traits, the behavior of a class is specified as the composition of traits and some glue
methods (M) that are implemented at the level of the class (CL) or the composite trait (TL).
These glue methods connect the traits together and can serve as accessor for the necessary
state.

3 FLATTENING TRAITS 5

The operational semantics of FTJ specifies a modified method lookup algorithm that
ensures that methods of a class C take precedence over methods provided by any of the used
traits TA. Similarly, methods of a named trait T take precedence over methods provided by
subtraits TA used by T.

Because the composition order is irrelevant, a conflict arises if we combine two or more
traits that provide identically named methods that do not originate from the same trait. TA
is a composition of traits Ti, possibly giving rise to conflicts. Conflicts may be resolved by
overriding them with glue methods M in the class using TA, or by excluding the conflicting
methods. TA minus {m} removes the method named m from the trait expression TA.

In addition traits allow method aliasing. The programmer can introduce an additional
name for a method provided by a trait to obtain access to a method that would otherwise be
unreachable because it has been overridden. TA with {m@n} defines m to be an alias for the
existing method named n. (Note that the aliasing syntax of FTJ (m@n) puts the new name n
after the existing method name m, whereas the aliasing operator (→) expects its arguments
in the reverse order.)

3.2 Flattening FTJ

We have previously developed a simple set-theoretic model of traits [15]. The goals of this
model were to define the trait composition operators, to give an operational account of method
lookup (particularly self- and super-sends), and to develop a notion of equivalence for
traits. The model further makes precise the notion of method conflicts arising during trait
composition, and the notion that a class constructed using traits can always be flattened into
one that does not use traits.

The trait model defines method dictionaries as mappings from method names to method
bodies. A trait is just a method dictionary in which some method names may be bound instead
to >, representing a conflict. Traits may be constructed using the operators + (composition),
− (exclusion), B (overriding) and [→] (aliasing). The key point is that traits are always
composed using the composition operator +, which is associative and commutative [6], hence
insensitive to the order in which traits are composed. Conflicts are resolved by the composing
class by overriding or excluding the conflicts [17]. We shall use this framework for flattening
FTJ.

The flattening property simply states that we can always evaluate the trait composition
operators occurring within a class definition to obtain an equivalent class whose method
dictionary does not refer to traits — that is, the traits can be compiled away. In order to
flatten FTJ programs, then, we must interpret the parts of the FTJ syntax that represent
method dictionaries and traits, and we must define the trait composition operators for those
syntactic entities. The translation from FTJ to FJ will simply evaluate the composition
operators.

Figure 3 presents the trait composition operators interpreted in the context of FTJ. These
operators are used to define the flattening function [[·]] which translates an FTJ class to an
FJ class in Figure 4.

We interpret a sequence of methods M as representing a method dictionary, and sequence
of trait expressions TA as representing a trait composition

∑
i TAi

In order to define the composition operators, we first need a couple of auxiliary functions.
lookup(m, M) (1) returns the declaration of method m in M, if present. ⊥ represents an undefined
method. extract(X, M) (2) returns the subsequence of M containing the definitions of the

3 FLATTENING TRAITS 6

lookup(m, M) def=
{

M if M = C m(C x) {↑e;} ∈ M
⊥ otherwise (1)

extract(X, M) def=
∧
m∈X

lookup(m, M) (2)

mNames(M) def= {m | lookup(m, M) 6= ⊥} (3)

trait T is {M; TA}

local(T) = M

trait T is {M; TA}

subtraits(T) = TA
(4)

M− m
def= M\lookup(m, M) (5)

M1 B M2
def= M1, (M2\extract(mNames(M1), M2)) (6)

M[n→m] def=

 (M\lookup(n, M)), conflict(n) if lookup(n, M) 6= ⊥
M, C n(C x){↑e;} else if C m(C x){↑e;} ∈ M
M otherwise

(7)

mBodies(M1, M2)
def= extract(mNames(M1)\mNames(M2), M1) (8)

broken(M1, M2)
def= (mNames(M1) ∩mNames(M2))\mNames(M1 ∩ M2) (9)

M1 + M2
def= mBodies(M1, M2),mBodies(M2, M1), (M1 ∩ M2),∧

{conflict(m) | m ∈ broken(M1, M2)} (10)

where conflict(m) = Object m() {↑⊥; }

Figure 3: Composition operators for FTJ

[[class C C D {C f;K M TA}]] def= class C C D {C f;K M B [[TA]]} (11)

[[TA]] def=
∑

TAi∈TA

[[TAi]] (12)

[[T]] def= local(T) B [[subtraits(T)]] (13)

[[TA with m@n]] def= [[TA]][n→m] (14)

[[TA minus m]] def= [[TA]]− m (15)

Figure 4: Flattening FTJ to FJ

3 FLATTENING TRAITS 7

methods named in X (where
∧

builds a sequence from its operands — if X is empty, then
extract returns •, the empty sequence). mNames(M) (3) returns the set of method names of
methods declared in M. We will also make use of local(T) and subtraits(T) (4), which return,
respectively, the methods and the subtraits of a named trait T.

The exclusion operator (5) simply removes1 the definition of m from the method dictionary
M. Overriding (6) removes from M2 those methods already defined in M1, and concatenates
what remains to M1. Aliasing (7) simply concatenates an existing method definition for m
under the new name n. If, however, the “new” name n is already bound in M, then a conflict
is generated instead. (If m is absent, then we can just ignore the alias, so that any references to
n will generate errors.) Note that we have chosen here to represent a conflict by the method
body {↑⊥;}. The flattening function will therefore yield a valid FJ program if and only
if all conflicts are resolved. (An alternative approach could be to generate FJ code that is
syntactically valid, but contains a type error, such as a call to a non-existent method.)

Trait composition is slightly more complicated to define. We first define the auxiliary
functions mBodies and broken. mBodies(M1, M2) (8) represents the method declarations in
M1 that do not conflict with any methods declared in M2. M1 ∩ M2 represents the method
declarations that are (syntactically) identical in M1 and M2 (once again abusing set notation
to represent intersection of the method dictionaries). These methods also do not pose any
conflicts. broken(M1, M2) (9) represents the set of names of methods with non-identical decla-
rations in both M1 and M2. These represent actual conflicts. Finally, the composition of M1

and M2 (10) concatenates the non-conflicting and conflicting method declarations.
Now we are ready to define the translation function [[·]] (Figure 4). A flattened class is

one in which its locally defined methods override the (flattened) methods of the used traits
(11). Flattening a sequence of FTJ traits or a trait expression always yields a (possibly
empty) sequence of FJ methods. A sequence of traits (12) translates to the composition of
the translation of its parts. The local methods of a named trait (13) override the composition
of its subtraits. Aliasing (14) and exclusion (15) are directly interpreted by the aliasing and
exclusion operators.

3.3 Equivalence of trait-based and flattened programs

Now we can attempt to answer the question, does FTJ provide a reasonable interpretation
of traits?

Ideally, we expect the following result to hold:

If e is an expression in an FTJ program P , then e is well-typed in FTJ if and
only if [[e]] is well-typed in FJ.

As it turns out, we can obtain a very similar result, but due to some minor differences
in the interpretation of traits in the two approaches (i.e., the FTJ type system and our
flattening approach), we must state a slightly weaker result.

FTJ follows the formal trait model [15] fairly closely, but there are a number of small
discrepancies.

1Note that we also adopt the convention initiated by Igarashi et al. [9] of using set-based notation for
operators over sequences: M = C m(C x) ... ∈ M means that the method declaration M occurs in M, whereas
M\M stands for the sequence M with M removed. M1, M2 is the concatenation of the sequences M1 and M2. This
abuse of notation is justified since the order in which the elements occur in M is irrelevant.

4 TRAITS, TYPES AND INTERFACES 8

1. First, the aliasing mechanism of FTJ is more ambitious, automatically converting recur-
sive calls to the new aliased name. So, if method m contains the expression this.m(e),
and m is aliased to m1, then the body of m1 will be rewritten to contain this.m1(e). This
innovation is not part of the original definition of the trait model, and is not reflected
in the flattening.

2. Next, in the case where one attempts to define an alias m1 when m1 is already declared,
the trait model specifies that a conflict be generated (which is what the flattening
function does). FTJ, on the other hand, deals with this not operationally, but prohibits
this kind of aliasing at the level of the type system. This means the FTJ is more
restrictive, since such conflicts cannot be repaired by means of glue code. One can
debate which interpretation is preferable.

3. Finally, FTJ adopts the principle that two methods with the same name don’t conflict
only if they originate from the same subtrait. This is perfectly consistent with the
implementation of traits in Squeak [17]. The formal trait model leaves this point open,
however, allowing different interpretations of when two methods are “the same”. In
the concrete case of our flattening function, the definitions of broken (9) and + (10)
make use of the construct M1∩M2 to assess which methods are the same. Since methods
in FJ are just syntactic entities, this means conflicts only arise in flattening when two
methods are syntactically different. So flattening is more liberal than the FTJ type
system.

The first point interferes with our ideal result, so we must exclude such programs. The
second point poses no problems, since FTJ’s type system will reject programs with invalid
aliasing. The third point breaks the two-way implication: if we have traits TA and TB that
both provide a method m with syntactically identical implementations, and a class C uses both
TA and TB without overriding m, then the FTJ type system will flag this as a conflict, whereas
our flattening function will simply unify the two methods.

As a consequence, the best we can hope for is the following:

If e is well-typed within an FTJ program P , in which recursive methods are not
aliased, then e is also well-typed in the FJ program [[P]].

In order to obtain the stronger result, we should adapt either FTJ or our flattening
function to deal consistently with “not nice” programs. For example, we could modify our
flattening function to accommodate the FTJ interpretation of aliasing (7) by generating
{↑e[this.n/this.m]} as the body of the new method n.

We should also adapt the flattening function to be consistent with the more restrictive
interpretation of when methods conflict. A trivial solution would be to decorate methods
originating from traits with the name of the defining trait. We would then compare sets of
tuples {(Ti, Mi)} rather than simply sets of methods M in the definitions of broken and +.

Given our partial result, we can conclude that FTJ indeed offers a reasonable interpreta-
tion of traits that is consistent with the flattening property.

4 Traits, types and interfaces

As should be evident from the syntax of FTJ alone, traits in FTJ do not define types. And
because FJ and FTJ do not model interfaces, this means that only class names may be used

4 TRAITS, TYPES AND INTERFACES 9

to specify the signature of a method. While this simplifies the theoretical foundation of these
models, it poses serious practical problems because it makes it hard or impossible to write
traits that can be used across multiple classes.

As an example, suppose that we would like to have a trait TRectangle that is used to build
two classes Rectangle and VisualRectangle, which have Object as their only common superclass.
This trait should provide, amongst others, a method includes, which takes another rectangle
as an argument and returns a boolean indicating whether the argument rectangle is fully
included in the receiver. While the method includes can conceptually take as its argument an
object of any class that uses the trait TRectangle (e.g., Rectangle and VisualRectangle), FTJ
does not allow us to express this since trait names are not valid types.

One way to avoid this problem would be to extend FTJ so that traits, like classes, also
define types. In the above example, this means that the trait TRectangle will also define
a corresponding type with the same name that can then be used to define the type of the
argument in the signature of the method includes. However, in order for this to work, we
also need to extend the definition of subtyping in FTJ so that each class that uses the trait
TRectangle is a subtype of the type that is implicitly defined by this trait. And since we
want to flatten FTJ programs to FJ, this means that we need to add this form of multiple
subtyping also to FJ.

Since we need to extend FJ with a form of multiple subtyping anyway, an alternative
approach would be to introduce the notion of interfaces into the calculus. This means that as
in regular Java, each interface defines an FJ type, and classes as well as traits can be declared
to be subtypes of numerous interface types. Even though traits themselves cannot be used as
types, this allows us to solve the identified problem because we can declare a corresponding
interface for each trait that should be used as a type. In our example, this means that we
declare an interface IRectangle containing the same method signatures as the trait TRectangle,
and that we then declare all “rectangle-like” classes (in particular all classes that use the trait
TRectangle) as subtypes of IRectangle by implementing this interface.

While both approaches, introducing interfaces or using traits as types, require adding
multiple subtyping to the calculi, there are important conceptual differences between these
two approaches. While the approach of treating each trait as a type may be more convenient
in practice, the presence of exclusions and aliases add a certain complexity to the subtype
relation. Furthermore, making each trait be a type blurs the important conceptual distinction
between implementation and interfaces, which leads to two kind of problems. First, it does
not address the fact that in the same way as subclassing does not necessarily imply subtyping
[4], a trait may be composed form another trait without conceptually being a subtype of it.
Second, if there are multiple traits providing different implementations of the same conceptual
interface (e.g., TRectangle and TOptimizedRectangle), we end up with multiple identical types.

All these problems are avoided if we do not consider traits as types and use interfaces
instead. However, this comes at the cost that whenever traits are composed, the necessary
interfaces and subtype relationships have to be explicitly declared. Note that this is this
approach that has been followed by Denier and Cointe in their implementation of traits with
AspectJ [5].

4.1 FJI and FTJI

We now explore an approach in which traits generate interfaces rather than types. We will
first extend FJ with interfaces, obtaining Featherweight Java with Interfaces (FJI).

4 TRAITS, TYPES AND INTERFACES 10

CL ::= class C C C implements I {S f;K M} Classes
ID ::= interface I C I {SG} Interfaces
S ::= C | I Types
SG ::= S m(S) Method signatures
K ::= C(S f) {super(f);this.f=f;} Constructors
M ::= S m(S x) {↑e;} Methods
ID ::= interface I C I {SG} Interfaces
e ::= x | e.f | e.m(e) | new C(e) | (S)e Expressions

Figure 5: FJI Syntax.

S<:S

class C C D implements I {S f;K M}

C<:D ∀i.C<:Ii

S<:S′ S′<:S′′

S<:S′′

interface I C I {SG}

∀i.I<:Ii

Figure 6: FJI Subtyping.

Then we define Featherweight-Trait Java with Interfaces (FTJI) as an extension of
FTJ.

In fact, FJI is rather trivial to define. Figure 5 shows the syntax of FJI. The semantics
of FJI is almost identical to that of FJ. The rules for Small-step operational semantics and
Congruence are unchanged. The rules for Field lookup, Method body lookup, Expression typing
and Class typing require only trivial changes to reflect the new syntax for classes and types.
Finally, the rules for Subtyping, Method type lookup and Method typing require straightforward
extensions to accommodate the fact that interface definitions introduce new types. As an
example, we show the new subtyping rules for FJI in Figure 6.

We show a possible syntax for FTJI in Figure 7. Traits are as before in FTJ, with one
important difference: method signatures may now refer to trait names, since types may be
class names, interface names or trait names.

What does this imply for flattening? Clearly the only sensible approach is to translate
traits to interfaces — every trait declaration will generate an interface declaration in the
flattened system. We present a possible way of flattening FTJI to FJI in Figure 8.

We flatten classes as before, expanding the methods of all used traits. However we addi-
tionally generate an interface for every declared trait name, so that trait names may be used

CL ::= class C C C implements I {S f;K M TA} Classes
S ::= C | I | T Types

TL and TA are as in Figure 2 and ID, SG, K, M, ID, and e are as in Figure 5.

Figure 7: FTJI Syntax.

4 TRAITS, TYPES AND INTERFACES 11

[[class C C D
implements I {S f;K M TA}]]

def=
class C C D
implements I subtraitNames(TA)
{S f;K M B [[TA]]}

(16)

[[trait T is {M; TA}]] def=
interface T C subtraitNames(TA)
{interface(M)aliases(TA)} (17)

subtraitNames(TA) def=
∧
i

subtraitNames(TAi) (18)

subtraitNames(T) def= T

subtraitNames(TA with {m@n}) def= subtraitNames(TA)

subtraitNames(TA minus {m}) def= subtraitNames(TA)

interface(M) def=
∧
i

interface(Mi) (19)

interface(S m(S x) {↑e;}) def= S m(S)

aliases(TA) def=
∧
i

aliases(TAi) (20)

aliases(T) def= •

aliases(TA with {m@n}) def= S n(S), if S m(S) {...} ∈ lookup(m, [[TA]])

aliases(TA minus {m}) def= •

The translation of TA is the same as in Figure 4.

Figure 8: A possible flattening of FTJI to FJI

5 GENERIC TRAITS 12

as types. The only wrinkle in this translation is what to do about exclusion. If a trait TA
uses a trait TB, but excludes a method m from TB, then it is clear that the interface TA no
longer properly extends TB. However, exclusion is mainly intended as a mechanism to resolve
conflicts, not for “editing” traits. With this principle in mind, we should assume that TA will
in fact be a proper extension of TB since the method m that is excluded is implemented in
TA by some other path. The flattening function we present in Figure 8 takes this approach,
since subtraitNames extracts all used trait names, including those for which some methods
have been excluding. We rely on the fact that the type system of FJI will complain if the
resulting interface declarations lead to an inconsistency.

In FTJI, we can now declare the trait TRectangle to contain a method expecting an
argument of type TRectangle. Flattening to FJI tells us that this trait should be treated as
if it were an interface. Any class that uses this trait will then automatically implement the
interface TRectangle.

5 Generic traits

While multiple subtyping allows us to define the signature of the method includes so that it
is not specific to a single class, FTJ still suffers from a lack of expressiveness when it comes
to defining reusable trait methods. As an illustration, assume that the trait TRectangle also
provides a binary method intersect:, which takes another rectangle as an argument and returns
a new rectangle that is the intersection between the receiver and the argument. If we want
to implement this method in a statically typed language, we need to answer the question
what type should be used for the argument and the return value of this method so that this
trait can be used for both Rectangle and VisusalRectangle as well as any other class that has
a rectangle characteristics.

Regarding the argument type, the answer is the same as for the method includes: once
the language supports a form of multiple subtyping such as interfaces, we declare the argu-
ment type to be IRectangle and make sure that all classes supporting the rectangle protocol
implement this interface. However, when it comes to the type of the return value, things get
more problematic. This is because we would like the method intersect: to return an instance
of whatever class it is called on. In particular, this means that an instance of VisualRectan-
gle (Rectangle) must be returned when the method intersect: is called on a RectangleMorph
(Rectangle).

What makes this situation difficult is that the return type of the method intersect: is in
fact parametric; i.e., it depends on the class to which the trait TRectangle is finally applied.
Therefore, using an interface such as IRectangle as the return type does not solve our problem
because it would only allow a common subset of all the methods in Rectangle and VisualRect-
angle to be called on the return value. This problem can be addressed by extending FTJ
with a generics mechanism such as that of Generic Java (GJ) [3], recently introduced in
Java 1.5. Using generics, we can write the trait TRectangle with a type parameter that is
then used as the return type of the method intersect:. And whenever the trait TRectangle is
applied to a class such as Rectangle and VisualRectangle, we can then use the corresponding
type as the concrete parameter.

5 GENERIC TRAITS 13

CL ::= class C<X C N> C N {S f;K M TA} Classes
TL ::= trait T<X C N> is {M;TA} Traits
TA ::= T<S> | TA with {m@m} | TA minus {m} Trait expressions
K ::= C(S f) {super(f);this.f=f;} Constructors
M ::= <X C N> S m(S x) {↑e;} Methods
e ::= x | e.f | e.m<S>(e) | new N(e) | (N)e Expressions
S ::= X | N Types
N ::= C<S> Nonvariable types

Figure 9: FTGJ Syntax.

[[class C<X C N> C N {S f;K M TA}]] def= class C<X C N> C N {S f;K M B [[TA]]} (21)

[[TA]] def=
∑

TAi∈TA

[[TAi]] (22)

[[T<S>]] def= local(T, S) B [[subtraits(T, S)]] (23)

[[TA with m@n]] def= [[TA]][n→m] (24)

[[TA minus m]] def= [[TA]]− m (25)

Figure 10: Flattening FTGJ to FGJ

5.1 FGJ and FTGJ

In their paper about FJ, Igarashi et al. also present the calculus Featherweight Generic
Java (FGJ) [8], an extension of FJ that models Java with generics. Following the augmenta-
tion from FJ to FGJ, we now define the new calculus FTGJ, which is an extension of FTJ
with generics. We then show how FTGJ can be mapped to FGJ by defining an extended
version of the flattening function from FTJ to FJ shown in Figure 4.

The syntax of FTGJ is shown in Figure 9. The metavariable X ranges over type variables,
S ranges over types, and N ranges over nonvariable types (types other than type variables).
As in FGJ, we write X as a shorthand for X1, . . . Xn (and similarly for S and N), and assume
sequences of type variables contain no duplicate names. We also allow C<>, T<>, and m<> to
be abbreviated as C, T, and m, respectively.

The syntactic extension from FTJ to FTGJ is now analogous to the syntactic extension
from FJ to FGJ. In particular, class definitions, trait definitions, and method definitions
include generic type parameters.

Once the FTGJ syntax is defined, we can now define the flattening-based translation
from FTGJ to FGJ. This translation is shown in Figure 10. Before we go through the details
of the definitions, it is important to note that this translation does not perform any type
checks. Consequently, this translation produces an FGJ program for any FTGJ program; the

6 IMPLEMENTING TRAITS 14

lookup(m, M) def=
{

M if M = <X C N> S m(S x) {↑e;} ∈ M
⊥ otherwise (26)

trait T<X C N> is {M;TA}

local(T, S) = [S/X]M subtraits(T, S) = [S/X]TA
(27)

M[n→m] def=

 (M\lookup(n, M)), conflict(n) if lookup(n, M) 6= ⊥
M, <X C N> S n(S x) {↑e;} if <X C N> S m(S x) {↑e;} ∈ M
M otherwise

(28)

where conflict(m) = Object m() {↑⊥;}

Figure 11: Adapted composition operators for FTGJ

generated FGJ program may however be invalid due to inconsistent use of types2. Because
traits are compiled away in the translation, this means in particular that the bounds of
the type parameters of traits are not taken into account. This has the effect that all type
parameters in trait definitions are actually unbound; a native type system for FTGJ, however,
would use these bounds to perform type-checking of generic traits.

A comparison to the translation from FTJ to FJ (see Figure 4) shows that only the cases
(21) and (23) are changed. While (21) reflects the extended class definition syntax of FTGJ,
the change in (23) was necessary because a trait T that occurs in TA now takes a sequence S of
concrete type parameters. This sequence is then passed as a second argument to an extended
form of composition operators local and subtraits.

Figure 11 defines these two operators together with all the other composition operators
from Figure 3 that needed to be adapted. The most interesting case is (27), where we extend
the rule defining local and subtraits so that they take two arguments T and S, and then
replace the formal parameters in T and its subtraits with S before they return, respectively,
the methods and the subtraits of T. As in FGJ, replacing the formal type parameters is done
using a simultaneous substitution. The other two definitions (26) and (28) are the same as
in Figure 3, except that we use the method syntax of FTGJ instead of FTJ.

6 Implementing Traits

Although the flattening property is a critical aspect for the semantics of traits, it is not an
especially effective way to implement traits, since it quickly leads to code bloat. In this section
we provide a brief overview of the strategy used to implement traits in Squeak Smalltalk. We
conjecture that this strategy could easily be adapted for statically-typed languages as well.

To add traits to Squeak Smalltalk, we first extended the implementation of classes to
2This means that our translation has a character similar to that of C++ templates, which are only type-

checked after being instantiated.

7 RELATED WORK 15

include an additional instance variable to represent the composition clause. This variable
defines the traits used by the class, as well as any exclusions and aliases. We then introduced
a first-class representation for traits, which are essentially stripped-down classes that can
define neither state nor a superclass. In particular, this means that each trait is separately
compiled and keeps track of its own method dictionary containing the method objects (byte-
code) of all the methods implemented by the trait. Note that in this method dictionary, each
trait keeps track of both the provided and required methods.

When a class C uses a trait T, the method dictionary of C is extended with an entry for all
the methods in T that are not overridden by C. For an alias, we add to the method dictionary a
second entry that associates the new name with the aliased method. Since compiled methods
in traits do not usually depend on the location where they are used, the bytecode for the
method can be shared between the trait that defines the method and all the classes and traits
that use it. The only exception are methods that use the keyword super because they store
an explicit reference to the superclass in their literal frame. When a trait with such methods
is applied to a class, these methods are therefore copied with the entry for the superclass
changed appropriately. Note that copying of methods containing sends to super could be
avoided by modifying the virtual machine to compute super when needed.

Our implementation never duplicates source code, and duplicates byte code only if it
includes sends to super, which is relatively rare in trait methods. Because traits are actually
represented in the compiled code, they can also be reflected upon. For example, it is possible
to check at runtime whether an object is an instance of a class that uses a certain trait T.
A program with traits therefore exhibits the same performance as the corresponding single
inheritance program in which all the methods provided by traits are implemented directly in
the classes that use those traits. There may be a small performance penalty resulting from
the use of accessor methods, but such methods are in any case widely used because they
improve maintainability. JIT compilers routinely inline accessors, so we feel that requiring
their use is entirely justifiable.

7 Related work

Fischer and Reppy have previously presented a type system for traits, but they did not use
the framework of FJ [7]. Instead, they introduced an imperative calculus for statically typed
traits in Moby (of the ML family). Another important difference to FTJ is that their type
system deals with conflicts and excluded methods only in a simplified and limited way.

Traits are a built-in language mechanism of the language Scala [12], a modern multi-
paradigm programming language designed to express common programming patterns in a
concise, elegant, and type-safe way. The traits adaptation of Scala is particularly relevant
as Scala is a statically typed language with a type system similar to those of Java and
C#. Therefore, the Scala designers had to tackle many of the problems and trade-offs that
we have addressed in this paper. In Scala, traits are modeled as abstract classes that do
not encapsulate state, neither in form of variable definitions nor by providing a constructor
with parameters. Consequently, each trait, like each class, also defines a type. This is
important because it means that in Scala, traits without any concrete methods play the roles
of interfaces, and Scala therefore does not have a separate notion of interfaces. Because Scala
does not feature the exclusion and alias operators on traits, the subtype relation on traits is
defined in a clean and consistent way: a class (or a trait) is always a subtype of all the types

8 CONCLUDING REMARKS 16

corresponding to the used traits. In summary, we can say that the integration of traits in
Scala nicely corresponds to the flattening-based principle proposed in this paper.

Traits-mini-java (TMJ) [13] is an implementation of traits based on a subset of Java.
While TMJ does not feature generics (it is based on Java prior to version 1.5), it addresses
the problem of typing trait methods by reifying the class that actually uses a trait. This
means that TMJ features a new keyword ThisType, which can be used in traits to refer to
the class where the trait will eventually be used. Although this is not as expressive as a
more general notion of generics (e.g., the one featured in Java 1.5 and Scala), but it has the
advantage that often leads to simpler and more concise programs because it does not require
an explicit parameter for the class type. Furthermore, the keyword ThisType is, unlike generic
type parameters, fully equivalent to the (name of the) class it refers to, and it can therefore
be used to create new instance of this class.

Denier and Cointe have introduced traits in Java using AspectJ [5]. Their approach is
based on AspectJ introductions and interfaces: the interface declares the method signatures
of traits while the introduction defines the behavior (i.e. methods) of traits. They also discuss
how state can be introduced into the model. Their work is an interesting illustration of the
flattening property approach when the run-time of the language cannot be changed to support
traits as first class entities as in Squeak or Scala.

In the programming language literature, the term “trait” has been used for a variety of
concepts that are related but not identical to the trait construct that is the subject of this
paper.

In their theory of objects [1], Abadi and Cardelli use the term trait to denote a collection
of methods that is intended as a modular fragment of object behavior. While multiple of
those traits may be combined to generate individual objects, this kind of trait combination is
significantly different from our notion of trait composition. For example, there is no handling
of conflicts, no exclusion, and no alias operation.

8 Concluding remarks

We have shown how the trait flattening property can serve as guideline for a first approach
to introduce traits to an existing programming language. We are currently applying this
approach to introduce traits to C# in the context of the Rotor Shared Source Common
Language Infrastructure. We obtain a rapid prototype of traits for C# by defining traits as
a syntactic extension to C#, and then compiling away traits by flattening [14], essentially
as described in this paper. Nevertheless C# poses a few additional wrinkles. In particular,
in C# only virtual methods may be overridden, and one must explicitly declare when one
is overriding an inherited method as opposed to defining a new one. Trait composition (and
flattening) must take this into account in order to yield correct results.

Although semantically traits can be flattened, a proper integration of traits in a given
language cannot be achieved by mere syntactic transformation. In our Squeak implementation
of traits [10, 15] traits are first-class entities from which classes can be composed. First-class
traits enable code reuse. In addition we reuse methods at the level of method dictionaries, by
physically sharing common methods among traits and classes, without introducing run-time
penalties [17]. Similarly, an extension of a statically typed language with traits should be
consistent with flattening, but a robust implementation would require a deeper integration of
traits with the host language.

REFERENCES 17

Acknowledgments

We gratefully acknowledge the financial support of Microsoft Research for the project “Traits
in C#”. We warmly thank Luigi Liquori for his helpful comments and insights. We also
thank Arnaud Spiwack and Marcus Denker for reviewing the draft submission.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] A. P. Black, N. Schärli, and S. Ducasse. Applying traits to the Smalltalk collection
hierarchy. In Proceedings OOPSLA’03 (International Conference on Object-Oriented
Programming Systems, Languages and Applications), volume 38, pages 47–64, Oct. 2003.

[3] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the
past: adding genericity to the Java programming language. In Proceedings OOPSLA ’98,
ACM SIGPLAN Notices, pages 183–200. ACM Press, 1998.

[4] W. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In Proceedings POPL
’90, San Francisco, Jan. 1990.

[5] S. Denier. Traits programming with AspectJ. In P. Cointe, editor, Actes de la Première
Journée Francophone sur le Développement du Logiciel par Aspects (JFDLPA’04),
pages 62–78, Paris, France, Sept. 2004. Available at http://www.emn.fr/x-
info/obasco/events/jfdlpa04/.

[6] S. Ducasse, N. Schärli, O. Nierstrasz, R. Wuyts, and A. Black. Traits: A mechanism for
fine-grained reuse. Transactions on Programming Languages and Systems, 2005. under
revision.

[7] K. Fisher and J. Reppy. Statically typed traits. Technical Report TR-2003-13, University
of Chicago, Department of Computer Science, Dec. 2003.

[8] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. In Proceedings OOPSLA ’99, ACM SIGPLAN Notices, pages 132–146,
Nov. 1999.

[9] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. ACM TOPLAS, 23(3):396–450, May 2001.

[10] A. Lienhard. Bootstrapping Traits. Master’s thesis, University of Bern, Nov. 2004.

[11] L. Liquori and A. Spiwack. Adding multiple inheritance to Feather-
weight Java. INRIA Sophia Antipolis & ENS Cachan, available at www-
sop.inria.fr/mirho/Luigi.Liquori/PAPERS/ftj.pdf, 2004.

[12] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala programming lan-
guage. Technical Report 64, École Polytechnique Fédérale de Lausanne, 1015 Lausanne,
Switzerland, 2004.

http://www-sop.inria.fr/mirho/Luigi.Liquori/PAPERS/ftj.pdf
http://www-sop.inria.fr/mirho/Luigi.Liquori/PAPERS/ftj.pdf

REFERENCES 18

[13] P. J. Quitslund. Java traits — improving opportunities for reuse. Technical Report CSE-
04-005, OGI School of Science & Engineering, Beaverton, Oregon, USA, Sept. 2004.

[14] S. Reichhart. A protype of traits for C#. Informatikprojekt, University of Bern, 2005.
In preparation.

[15] N. Schärli. Traits — Composing Classes from Behavioral Building Blocks. PhD thesis,
University of Berne, Feb. 2005.

[16] N. Schärli, S. Ducasse, and O. Nierstrasz. Classes = traits + states + glue (beyond mixins
and multiple inheritance). In Proceedings of the International Workshop on Inheritance,
2002.

[17] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behavior.
In Proceedings ECOOP 2003 (European Conference on Object-Oriented Programming),
volume 2743 of LNCS, pages 248–274. Springer Verlag, July 2003.

	1
	Introduction
	Traits in a Nutshell
	Flattening traits
	Featherweight Trait Java
	Flattening FTJ
	Equivalence of trait-based and flattened programs

	Traits, types and interfaces
	FJI and FTJI

	Generic traits
	FGJ and FTGJ

	Implementing Traits
	Related work
	Concluding remarks

