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Abstract We investigated the effect of sample size and sampling duration on methane bubble flux
(ebullition) estimates from peat using a computer model. A field scale (10 m), seasonal (>100 days) simula-
tion of ebullition from a two-dimensional (2-D) structurally varying peat profile was modeled at fine spatial
resolution (1 mm 3 1 mm). The spatial and temporal scale of this simulation was possible because of the
computational efficiency of the reduced-complexity approach that was implemented, and patterns of simu-
lated ebullition were consistent with those found in the field and laboratory. The simulated ebullition from
the peat profile suggested that decreases in peat porosity—which cause increases in gas storage—produce
ebullition that becomes increasingly patchy in space and erratic in time. By applying different amounts of
spatial and temporal sampling effort, it was possible to determine the uncertainty in ebullition estimates
from the peatland. The results suggest that traditional methods to measure ebullition can equally overesti-
mate and underestimate flux by 20% and large ebullition events can lead to large overestimations of flux
when sampling effort is low. Our findings support those of field studies, and we recommend that ebullition
should be measured frequently (hourly to daily) and at many locations (n> 14).

1. Introduction

Methane (CH4) is a greenhouse gas with a global warming potential much greater than carbon dioxide
[Myhre et al., 2013], and one of the major sources of naturally occurring CH4 is peatlands [Blodau, 2002; Lai,
2009]. Large amounts of CH4 can be transported from peat to the atmosphere via diffusion through the soil,
via plant-mediated transport, and as bubbles (ebullition) [Baird et al., 2004; Glaser et al., 2004; Chanton,
2005; Stamp et al., 2013]. The last of these processes—ebullition—can show considerable spatial and tem-
poral variability [Christensen et al., 2003; Tokida et al., 2007; Stamp et al., 2013] which can present challenges
when attempting to establish the strength of CH4 sources in different types of peatlands. Over a few meters,
peatlands can display pronounced spatial variability in vegetation composition [Bubier et al., 1995; Pelletier
et al., 2007], the position of the water table [Bubier et al., 1993; Laine et al., 2007; Bon et al., 2014; Chen and
Slater, 2015], near-surface peat temperature [Bubier et al., 1995], microtopography [Belyea and Clymo, 2001]
rates of decomposition and peat properties more generally [Belyea, 1996; Moore et al., 2007; Baird et al.,
2016]. Each of these factors may have an effect on where and when ebullition occurs, and the spatial vari-
ability of ebullition may partly reflect the spatial patterns of these factors. For example, it has been sug-
gested that variability in peat structure, including porosity, imparts a strong influence on ebullition [Comas
et al., 2008; Ramirez et al., 2016]. Differences in peatland permeability have also been advanced as an expla-
nation for ebullition hotspots as well as for locations where ebullition occurs rarely or not at all. For example,
in a study measuring changes in bog elevation, Glaser et al. [2004] recorded rapid decreases in bog eleva-
tion caused apparently by the escape of bubbles that had built up below layers of low-permeability woody
peat that had ruptured (because of the buoyancy of the bubble mass). Strack et al. [2006] measured ebulli-
tion at two sites located within a fen and suggested that peat structural differences were important, as at
one site with highly permeable peat ebullition occurred regularly, while in a second site that contained less
permeable peat bubbles were prevented from reaching the water table.

The magnitude and frequency of ebullition are also dependent on temporal variability in environmental
forcings that may drive the process. For example, short term (hourly) rising and falling atmospheric pressure
can trigger large episodic ebullition events [Glaser et al., 2004; Tokida et al., 2007, 2009; Comas et al., 2011;
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Klapstein et al., 2014], with Tokida et al. [2007] showing ebullition events coinciding with drops in atmo-
spheric pressure—that in total comprised 50% of the total CH4 flux from a peatland. As well as short-lived
changes in atmospheric pressure, longer-term (days to weeks) variations in water-table elevation may also
influence ebullition [Shurpali et al., 1993; Glaser et al., 2004].

Any sampling design for a field investigation of ebullition from peatlands should take into account the
aforementioned factors because they will have some control on where ebullition occurs in a study area and
whether the ebullition is characteristically erratic, or occurs regularly. If ebullition is spatially very variable,
many measurement locations are needed to capture the range in flux and the site-wide average across a
peatland. A study by Stamp et al. [2013] highlighted this point by demonstrating the amount of error in
ebullition estimates when few measurement locations (n� 5) are used. In their study, seasonal ebullition
from a bog was measured over two microform types (mixed sedge and Sphagnum lawns, and mud-
bottomed hollows) using 14 inverted funnels per microform type. Overall flux varied strongly spatially, with
nine funnels from the total of 28 accounting for �76% of the summed flux, and two funnels accounting for
�30% of the total. By calculating the mean flux (per microform type) for every combination of five funnels,
it was possible to estimate that there was a �20% probability of obtaining a mean flux that was 50% less
than the mean calculated with 14 funnels. This suggested that greater sampling effort (n � 5) would be
necessary to obtain an accurate estimate of ebullition from a peatland with this amount of spatial variability
in the process.

Similar considerations apply when ebullition is temporally very variable. Episodic or erratic ebullition may
be defined by an ebullition time series that comprises mostly zero or low fluxes punctuated by infrequent,
large, short-lived ebullition events. In contrast, regularly occurring or steady ebullition does not contain
these large ebullition events and would not require frequent measurements to correctly estimate flux
[Green and Baird, 2011]. This difference in the amount of temporal sampling effort required to measure
ebullition was noted by Coulthard et al. [2009]. To make their point, they assumed a hypothetical ebullition
series in which ebullition events were random in time and occurred on average once a day. From this
assumed series they calculated that regular weekly measurements for 30 min, a sampling effort that is typi-
cal for CH4 flux studies using manual flux chambers, would result in a 1.3% probability of recording an ebul-
lition event. This suggests that a substantially greater number of measurements are needed to record
erratic ebullition events, although the intensity required of any sampling effort will depend on the exact
nature of any episodic or erratic ebullition series.

Unresolved questions from two sources—spatial and temporal sampling frequency—need to be addressed
to further improve the accuracy of CH4 ebullition estimates. Herein we focus on peatland ebullition esti-
mates derived using static chambers. This method involves placing an air-tight enclosure over an area of
peat and measuring the change in concentration of CH4 over a short period of time (e.g., 30 min) [Tokida
et al., 2007]. Changes in the CH4 concentration in the chamber can be used to estimate episodic ebullition.
For example, sudden, stepped increases in CH4 concentration are characteristic of sudden bubble releases.
The degree to which episodic ebullition is captured using chambers will depend on how many are
deployed and how often they are used. Given the operational difficulties of working in the field, many spa-
tial and temporal sampling frequency questions are difficult, if not impossible, to answer via field-based
experiments. Whereas in the field ebullition can only be estimated, within a model the ‘‘real’’ gas flux is
known and it is possible to assess how well different sampling designs estimate ebullition. Therefore, we
used a computer model to simulate the effect of peat structure on ebullition, and from these simulations
determined what level of spatial coverage and temporal resolution is appropriate to sufficiently capture the
dynamics of peatland ebullition. For this investigation, the Model of Ebullition and Gas storAge (MEGA)
[Ramirez et al., 2015a,b] was chosen because it is a reduced-complexity model that can be used to simulate
relatively large spatial domains (unlike, for example, more detailed computational fluid dynamics models).
MEGA captures the essential nature of ebullition in peat soils through its representation of key processes
like the movement, storage, and release of gas from a peat pore structure (see supporting information for
more details about MEGA). Our aim was to answer the following research questions: (i) How many sites are
required to estimate ebullition flux from a variably structured peatland with an acceptable degree of confi-
dence? (ii) What is the effect of ebullition flux measurement duration on the certainty of ebullition esti-
mates? Although we focused on the measurement effort required to estimate ebullition losses from peats,
and how this is affected by soil properties such as permeability, our work is also of relevance to
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understanding the build-up and loss
of gasses from quasi-saturated soils
[sensu Faybishenko, 1995], which in
turn will affect rates of water flow
below the water table [e.g., Beckwith
and Baird, 2001].

2. Methods

In MEGA ebullition from a field-scale
2-D (10 m long and 1 m deep) profile
of spatially heterogeneous peat was
simulated. The grid cell size was set to
1 mm 3 1 mm (Figure 1a), and this
resulted in a profile partitioned into
10,000,000 cells, with 1000 rows and
10,000 columns. A 10 m profile was
chosen because it covers the distance

typically required to traverse the main peat types (found under different microhabitats) in many northern
peatlands [Belyea and Clymo, 2001]. The lengths of ‘‘shelves’’ (average shelf length 5 5.7 mm, standard
deviation 5 0.8 mm), which in MEGA represent the peat matrix [Ramirez et al., 2015a, 2015b], were set
according to measurements of Sphagnum branches imaged using x-ray tomography [Kettridge and
Binley, 2008]. Shelf placement throughout the profile was determined using two right trapezoidal distri-
butions, with one of the distributions used to randomly select a row within the profile and the second
distribution to randomly select a column. Using this method it was possible to produce a variable peat
structure that changed in porosity along a vertical and horizontal gradient (Figure 1a). In general, the
peat profile had higher porosity shelf arrangements near the peat surface and toward the left side of
the profile. Although natural peat was not used directly to guide the placement of shelves, higher
porosity shelf arrangements represented less decomposed peat, while shelves located in deeper parts
of the profile represented peat undergoing compression and more advanced decomposition [Boelter,
1965; Quinton et al., 2000, 2008]. The resulting profile had porosities (Figure 1b) that were similar to
measured values of porosity (91–98%) in shallow northern [Beckwith and Baird, 2001; Warner et al.,
2007; Kettridge and Binley, 2008, 2011; Parsekian et al., 2012] and subtropical [Wright and Comas, 2016]
peatlands.

The rate of bubble production across the peat profile was based on data from Stamp et al. [2013], who
reported maximum, seasonally averaged, bubble fluxes of 709 mL m22 d21 from mixed sedge and Sphag-
num lawns in a Welsh raised bog. Assuming a CH4 concentration of 5% [Tokida et al., 2005; Stamp et al.,
2013], this bubble flux is equivalent to 0.025 g CH4 m22 d21 and is within range of CH4 production values
for northern systems (0–5 g CH4 m22 d21) [Sundh et al., 1994; Le Mer and Roger, 2001; Comas et al., 2008].
The smallest bubble within MEGA was 1 mm2 in area and the up-scaled flux for the 10 m, 2-D profile
resulted in 7090 mm2 bubbles d21 available to construct an hourly CH4 production signal (bubbles h21)
based on the diurnal patterns observed by Panikov et al. [2007]. To reflect the spatial variability in CH4 pro-
duction at different depths [Sundh et al., 1994; Frenzel and Karofeld, 2000; Strack and Waddington, 2008], this
production signal was composed of three subsignals added randomly to the modeled peat profile at three
depth zones (0.0–0.3, 0.3–0.6, and 0.6–1.0 m) such that the long-term average over the entire domain was
7090 bubbles d21 (Figure 2). No horizontal spatial variability in CH4 production was modeled, whereas
in real peatlands it is very likely that there is such variability. Median bubble sizes from a preliminary
simulation and theoretical relationships between bubble size and rise velocity within a porous medium
[Corapcioglu et al., 2004] were used to set bubble velocities at a constant 1 mm s21 (see supporting informa-
tion for more details about bubble rise velocities).

Hourly ebullition totals were collected from every millimeter (1 cell) at the model’s peat surface, which was
also the height of the water table. The sizes of the individual bubbles comprising the ebullition were also
recorded, as was the amount of gas stored within the profile at the end of the simulation. To establish initial

Figure 1. (a) Representation of porosity in spatially variable peat profile.
(b) Porosity of profile calculated vertically (at each horizontal position the porosity
for a vertical stack of cells was calculated).
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conditions and saturate the profile with
gas, the profile was driven with the produc-
tion signal until the ebullition flux, averaged
over a 10 day period, stabilized. Model data
collected after this time period were ana-
lyzed. The collection period was 6087 h
(�254 days), and was similar in duration to
a field survey measuring ebullition from
peat by Goodrich et al. [2011]. The MEGA
simulation took 222 h to complete on a sin-
gle computer with a six core processor on
12 threads operating in parallel.

Bootstrapping is a method to gauge the
accuracy of observations and determine
how many sampling points may be appro-
priate [Stamp et al., 2013]. In summary, boot-
strapping begins by randomly selecting
(with replacement) a sample of n records
from the available observations (e.g., ebulli-

tion fluxes), and calculating a sample statistic (e.g., average hourly ebullition) [Efron, 1979; Sokal and Rohlf,
1995]. This process of randomly selecting records, and calculating a sample statistic is repeated many times
(100–1000 s of replicates) to obtain a distribution of sample statistics. Afterward, the precision of the sample
statistics, given a certain amount of sampling effort (n), can be gauged by calculating the sample statistic’s
standard deviation or confidence intervals. Herein, bootstrapping was performed on ebullition from the mod-
eled peatland that was spatially variable in structure. It would have been preferable to bootstrap field observa-
tions of ebullition from structurally different peats, but this was unfeasible given the number of sampling sites
(n 5 20—see below) and frequency of measurements (hourly) required. Thus bootstrapping the ebullition
from the computer model provided a general indication of the errors involved in field sampling peatlands,
and this method could show if researchers are falling short of the sampling effort needed for reliable esti-
mates of site-wide ebullition.

As noted above, it was assumed that the ebullition would be sampled using static chambers that were
placed on the peat surface. Rates of ebullition in MEGA were calculated as total ebullition (bubbles), per
hour, per chamber. This was accomplished by subdividing the peat profile into 40 subprofiles, with each
subprofile capable of being monitored by a chamber having a width of 250 mm. These chambers were
placed end to end on the modeled peat surface and, from these 40 chambers, random combinations of
chambers were created for bootstrapping.

Temporal sampling effort was determined by the time interval (e.g., hourly, daily, weekly) at which a
chamber was placed on the peat surface. For each placement, 1 h of ebullition was recorded. Temporal
sampling effort at long time intervals (e.g., 168 h) were chosen to represent traditional chamber methods
that sample sites infrequently (weekly) [Coulthard et al., 2009], and shorter time intervals (e.g., 1 h) repre-
sented frequent sampling using automated chambers [Goodrich et al., 2011]. A total of 580 combinations
of chambers and sampling time intervals were considered. This included between 1 and 20 chambers
and sampling time intervals between 1 and 168 h, incrementing by 6 h. Average ebullition was calculated
from each combination of chamber and sampling time interval and this was repeated 1000 times to cre-
ate a distribution of average ebullition. To gauge the uncertainty of the average ebullition, the 95% confi-
dence interval of each distribution was then calculated (see supporting information for more details
about bootstrapping).

To quantify the effect of different amounts of sampling effort (spatial and temporal), the relative
error between the average of the ebullition distributions and the true average ebullition were calcu-
lated. Furthermore, the error between the 95% confidence interval (lower and upper) of the ebullition
distributions and the true average ebullition were calculated. All relative errors are presented as
percentages.

Figure 2. Methane bubble production decomposed into subsignals that are
(a) weakly diurnal, (b) strongly diurnal, and (c) steady. Subsignals a, b, and c
consisted of 50%, 25%, and 25% of the daily methane production accord-
ingly and the gas equivalent in bubbles was added at three depth zones
across the entire peat profile.
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3. Results

During the 254 model days, the mean individual bubble size was 4 mm2, with a minimum and maximum
individual bubble size of 1 and 115 mm2, respectively. Overall bubble sizes from the peat profile display a
power law pattern (Figure 3a), with many occurrences of small bubbles and fewer large bubbles. For every
hour of the 6087 h simulation, at least one ebullition event, consisting of multiple bubbles, occurred some-
where across the model domain (i.e., the entire peat profile). The smallest hourly ebullition event was 79
bubbles and the largest 609 bubbles. The mean hourly ebullition was 299 bubbles. Plotting the magnitude
and frequency of ebullition events (Figure 3b) produces a histogram that is nonnormal and positively
skewed (skewness 5 0.5; n 5 6087; this value was interpreted as moderate skewness). Skewness was calcu-
lated with a formula adjusting for the sample size [Joanes and Gill, 1998].

Gas storage at the end of the simulation was 11% of the overall model domain, but structural differences
within the peat profile led to spatial variability in gas storage. This variability in gas storage was a result of
the two gradients (horizontal and vertical) that were used to position the ‘‘shelves’’ representing the peat
matrix within the profile. Across the profile, from left to right, the porosity of the shelf arrangements, when
measured vertically per mm width (along the x axis), decreased from 98% to 93% and gas storage, mea-
sured in the same manner, increased linearly from 3% to 37% (Figure 4a). This positive trend in gas storage
can also be visualized in three subsets of the profile taken at the end of the simulation (Figure 4b). By calcu-
lating the peat porosity and bubble storage of each subset, it was possible to ascertain that the subset from
the left side of the profile (Figure 4b, inset 1) had a peat porosity that is high (98%) and a low amount of
gas storage (5%). In contrast the subset from the right side of the profile (Figure 4b, inset 3) had lower peat
porosity (95%), and higher gas storage (23%). At the bottom-right of Figure 4b plot 3, the local porosity
over a 200 mm 3 200 mm area is the lowest for the entire profile (92%). This represents the lower end of
porosity values for northern peatlands and produces locally high gas contents (62%). These accumulations
are representative of gas content underneath well-decomposed layers of peat or semipermeable layers that
obstruct the upward movement of gas [Rosenberry et al., 2003; Glaser et al., 2004].

The effect of the vertical gradient used to place more shelves at greater depths contributed to more bub-
ble storage at the base of the peat profile. Thirty-two percent of the bubbles stored in the entire profile
were located at depths �0.5 m, with 68% at deeper locations (>0.5 m). This difference in bubble storage
is most evident on the right side of the profile (Figure 4b, inset 3) where gas storage was greatest at a
depth near 1 m.

Of the 10 m of peat simulated, only 47% of the peat surface emitted ebullition, and 50% of the ebullition
came from 3% of the profile. Overall the ebullition from the profile became more variable in space with
lower peat porosities (as controlled by shelf density). The effect of peat porosity on the location of ebullition
can be seen by comparing the higher porosity, left side of the profile (LSP, distance across the profile from
0 to 5 m) with the lower porosity, right side of the profile (RSP, distance across the profile from 5 to 10 m).
Although both sides of the profile produced similar amounts of ebullition (�900,000 bubbles), the RSP had
greater spatial variability with highly irregular ebullition, and the LSP produced ebullition more uniformly in

Figure 3. (a) Magnitude and frequency of bubble size from profile with fitted power law distribution (p< 0.05). (b) Magnitude and
frequency of hourly ebullition from profile.
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space (Figure 5). Locations of extreme ebullition were identified using the 99.9th percentile of the total
ebullition across the profile. Using this cut-off, locations of greater ebullition only occurred on the RSP (Fig-
ure 5, dashed line 5 99.9th percentile). Furthermore, these extreme amounts of ebullition were proximate
to locations of low ebullition and this disparity in ebullition contributed to greater spatial variability in ebul-
lition from the RSP.

The temporal variability of hourly ebullition was also dependent on the porosity of the underlying shelf
arrangements. Over the course of the 254 simulated days, the high porosity LSP and low porosity RSP had
noticeably different amounts of temporal variability in ebullition (Figures 6a and 6b). Both sides of the pro-
file had similar mean hourly ebullition (�150 bubbles h21), but the RSP generated hourly ebullition that
was more erratic (min 5 15 bubbles h21, max 5 498 bubbles h21, st. dev. 5 46 bubbles h21) than ebullition
from the LSP (min 5 46 bubbles h21, max 5 337 bubbles h21, st. dev. 5 37 bubbles h21). Moreover, the
extremely large hourly ebullition events (>99.9th percentile) only occurred on the RSP (Figures 6a and 6b,
dashed line 5 99.9th percentile). The erratic nature of ebullition from the RSP can also be identified in side-
by-side histograms of hourly ebullition from the LSP and RSP (Figure 6c). The RSP produced considerably
more small (<100 bubbles) and large (>350 bubbles) ebullition events than the LSP.

The true average ebullition from the
modeled peat profile was 7.5 bubbles
chamber21 h21. Error in average ebulli-
tion estimates decreases with greater
spatial and temporal sampling effort.
This trend is visible in the decreasing
amount of error in the averages and
95% confidence intervals of ebullition
distributions produced by performing
the bootstrapping resampling with 1–20
chambers, and visiting the profile once
every hour, day, or week (Figure 7a).

Figure 4. (a) Proportion of vertical gas storage per millimeter of peat profile. Dashed boxes correspond to shelf arrangements below. (b) Examples of gas storage for (1) high,
(2) moderate, and (3) low porosity shelf arrangements (peat fibres/particles in black, gas in grey, and water in white).

Figure 5. Total ebullition from peat profile, black dashed line is 99.9th percentile
of total ebullition.
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Figure 6. Hourly ebullition events from the (a) left side of the profile (LSP) and (b) right side of the profile (RSP). Dashed line is 99.9th percentile of hourly ebullition events from the entire
profile and white line is the mean hourly ebullition (�150 bubbles h21). (c) Histograms of the hourly ebullition events from the LSP and RSP.

Figure 7. (a) Percentage error between the true average ebullition and the average (black points) and 95% confidence interval (grey points) of the average ebullition distributions from
1 to 20 chambers sampled weekly, daily, and hourly. Dashed red line indicates locations of 610% error. (b) Error map representing the width of the 95% confidence interval of the
average ebullition distributions. Black arrows indicate peaks in error.
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Comparable amounts of error can be obtained with different amounts of sampling effort. For example, to
obtain a maximum of 610% error in average ebullition the profile could be sampled with 14 chambers
every week, four chambers every day, or one chamber every hour (Figure 7a, dashed lines). These error plots
(Figure 7a) also show that the upper and lower confidence intervals are nearly symmetrical, indicating an
equal probability of over or under estimating average ebullition for these sampling combinations.

Another approach to visualize the error in the average ebullition is to calculate the width of the 95% confi-
dence interval (i.e., the area between the upper and lower confidence intervals) (Figure 7b). As before, the
amount of possible error in predicting the true average ebullition is provided as a relative error. Figure 7b
summarizes the possible error for each combination of chamber and sampling time interval as an error
map. From the error map, it is possible to distinguish regions with similar amounts of error, but different
amounts of sampling effort. For example, the lower right corner of the map indicates sampling schemes
that produce the lowest amount of error. This includes schemes with high temporal and low spatial sam-
pling effort (e.g., seven chambers sampled hourly) or moderate temporal and high spatial sampling effort
(e.g., 20 chambers sampled every 36 h). Unexpectedly, the greatest amount of error does not correspond to
sampling with the fewest chambers, and sampling infrequently (1 chamber, every 168 h). Instead error is
greatest with one chamber visited every 126 h and the second largest amount of error occurs with one
chamber visited every 66 h.

4. Discussion

Ebullition from the simulated peat profile resulted in a positively skewed distribution of ebullition events
and was similar in shape to results reported by researchers measuring ebullition from peat in the field
[Kellner et al., 2006; Goodrich et al., 2011; Stamp et al., 2013] and laboratory experiments [Yu et al., 2014;
Ramirez et al., 2016]. The simulated ebullition comprised bubble sizes that displayed power law patterns,
and these were consistent with patterns found from laboratory experiments on peat [Ramirez et al., 2016].
Overall gas storage within the peat profile was 11% and within the range of gas storage reported in north-
ern peatlands (see Rosenberry et al. [2006] for review). Modeled vertical gas storage per millimeter of peat
profile was between 3% and 37%, and was comparable to gas content (0–32%) directly sampled from
northern peats with porosities (96–99%) similar to the modeled peat profile (93–98%) [Strack and Mierau,
2010]. Furthermore, the spatial distribution of storage in the simulation was dependent on the porosity of
the shelf arrangements. Here low-porosity shelf arrangements in the profile represent peat with small pores
and form a barrier within the profile that traps large quantities of gas. In contrast, high-porosity shelf
arrangements in the profile are peats with large pores and allow gas to move more freely through the pro-
file. This open peat structure stores lower amounts of gas within the peat profile. At the base of the profile
the porosity was lower and large amounts of gas accumulated underneath the shelves representing the
peat. These gas trapping properties have also been observed in peats with lower porosity [Glaser et al.,
2004; Strack and Mierau, 2010].

The structure of the peat profile in this simulation contributed directly to the variability of ebullition in space
and time. Here the variability in ebullition was directly caused by the porosity of the peat (shelf arrange-
ments) and the resulting amounts of bubble storage, because no environmental controls, such as changes
in atmospheric pressure or water-table position, were simulated. Within MEGA, high porosity shelf arrange-
ments cannot trap large quantities of gas and the resulting bubbles are emitted steadily. However, if low-
porosity shelf arrangements (e.g., woody layers or well-decomposed layers of peat) exist bubbles can accu-
mulate and are released as pulses or bursts (i.e., cyclical or episodic releases). Here locations in the profile
with high peat porosity and low bubble storage had few bubbles available for erratic or episodic ebullition.
These conditions were found in the LSP and resulted in ebullition that occurred uniformly in space, and reg-
ularly in time. In contrast, low peat porosity and high bubble storage resulted in large quantities of stored
bubbles. These isolated bubble storage ‘‘hotspots’’ were found in the RSP, and resulted in ebullition that
was spatially irregular and temporally erratic.

The near vertical banding in the error map (Figure 7b) indicates that error in ebullition was more dependent
on the number of chambers deployed than the frequency of measurements performed. Where the vertical
banding was irregular, temporal variability in ebullition contributed to uncertainty in ebullition estimates.
This uncertainty was greatest when sampling the profile at time intervals of 66 and 126 h (Figure 7b, black
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arrows). At these sampling intervals, the error propagated through the error map as horizontal peaks. This
pattern suggests that increasing the spatial sampling effort at these sampling intervals (66 and 126 h) has a
reduced effect on minimizing error. To understand these unexpected horizontal peaks in the error map, the
variability in the ebullition was examined at these sampling intervals. The temporal variability of ebullition
across the entire profile at the time intervals of 66 and 126 h reveals that a large spike in ebullition was
recorded in both time series (time 5 4158 h). Furthermore, the spatial distribution of this ebullition spike
was distributed across the peat profile in a highly clustered manner. This resulted in an ebullition ‘‘hot-
spot’’ that occurred within one chamber (chamber 38). The overall effect of this ebullition spike concen-
trated over a small area of the profile contributed toward the overestimation of average ebullition. From
the perspective of temporal sampling effort, the low number of records obtained when sampling the
peat every 66 and 126 h, n 5 93 and n 5 49, respectively, allowed the spike in ebullition to skew the aver-
age ebullition. When combining these low sample sizes, with a low number of deployed chambers, the
probability of overestimating or underestimating the average was compounded. For example, sampling
with one chamber visited every 126 h, the error in average ebullition may be overestimated by 88% or
underestimated by 42%. The effect of the ebullition spike was reduced when the peat profile was sam-
pled with more chambers, and increasing the number of chambers to five produced symmetrical
amounts of error of 620%. The ebullition spike that was simulated is only an example of many ebullition
spikes that could occur anywhere in time and more than likely from low porosity peat if the model were
to be rerun and the analysis repeated.

The variability in ebullition produced error in ebullition estimates, especially when low amounts of sampling
effort were used. Furthermore, this amount of error is conservative because the variability in ebullition
within the model is produced solely by the storage and release of gas from the shelf arrangements below
the peat surface. Greater variability and uncertainty in ebullition would be expected from a model or system
that includes: (1) variable gas production, (2) external triggers that produce large bubble releases, and (3)
peat containing impermeable woody layers that trap and release large amounts of gas. These are model
processes and properties that can be developed in MEGA and will be the subject of future work. Another
interesting result was that low sampling effort can ‘‘capture’’ large bubble events that likely result in ebul-
lition overestimates. A study that bootstrapped weekly field measurements of ebullition using 250 mm
diameter glass funnels recommended a sample size (e.g., number of funnels) >14, and found that sample
sizes �5 produced considerable error in ebullition estimates [Stamp et al., 2013]. Here the bootstrapping
of simulated ebullition, collected with chambers of the same dimension used by Stamp et al. [2013], sup-
ports this conclusion. Likewise, our modeled results suggest that weekly sampling with larger sample
sizes >14 can produce conservative amounts of error (64–10%) while smaller samples sizes <5 result in
larger amounts of error (620–43%) (Figure 7a, weekly sampling). Moreover our findings suggest that the
combination of larger sample sizes (n> 14) and frequent visitation of chambers (hourly to daily) consider-
ably reduces error in estimates (61–5%) (Figure 7a, hourly and daily). In addition to revealing the error
associated with measuring ebullition with different intensities of sampling effort, we have shown the
feasibility of using MEGA at the field scale. The model simulates spatial patterns in bubble accumulation
over scales that start to become relevant to understanding the wider ecohydrological behavior of
peatlands [see Comas et al., 2008; Baird et al., 2016], and has the potential to be coupled with groundwa-
ter models, so that the effect of trapped bubbles on water storage and flow within peat soils can be
simulated.

5. Conclusions

In this investigation, a field-scale (10 m) simulation of ebullition from peat was performed using MEGA.
This simulation demonstrated the computational efficiency of the reduced-complexity approach imple-
mented within MEGA. In less than 10 days of computer time, MEGA routed 100,000 s of microgas bubbles
(1 mm2) through a model peat profile consisting of shelves that were represented by a gridded structure
of 10,000,000 cells. Modeled ebullition and gas storage replicate patterns in natural peats. Within the
model, peat structure contributes directly to the variability of ebullition in space and time. Our results
suggest that traditional methods to measure ebullition can equally overestimate and underestimate flux
by 20%.
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