Baader, Sebastian; Graf, Christian (2016). Fibred links in S³. Expositiones Mathematicae, 34(4), pp. 423-435. Elsevier 10.1016/j.exmath.2016.06.006
Text
1-s2.0-S0723086916300366-main.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (780kB) |
Official URL: http://dx.doi.org/10.1016/j.exmath.2016.06.006
We present a simple characterization for Seifert surfaces in S³ to be fibre surfaces. As an application, we give a short topological proof of the following well-known theorem: A Murasugi sum is a fibre surface if and only if its two summands are.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics |
UniBE Contributor: |
Baader, Sebastian, Graf, Christian |
Subjects: |
500 Science > 510 Mathematics |
ISSN: |
0723-0869 |
Publisher: |
Elsevier |
Language: |
English |
Submitter: |
Olivier Bernard Mila |
Date Deposited: |
11 Oct 2017 15:31 |
Last Modified: |
05 Dec 2022 15:07 |
Publisher DOI: |
10.1016/j.exmath.2016.06.006 |
BORIS DOI: |
10.7892/boris.105321 |
URI: |
https://boris.unibe.ch/id/eprint/105321 |