Fibred links in S³

Baader, Sebastian; Graf, Christian (2016). Fibred links in S³. Expositiones Mathematicae, 34(4), pp. 423-435. Elsevier 10.1016/j.exmath.2016.06.006

[img] Text
1-s2.0-S0723086916300366-main.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (780kB)

We present a simple characterization for Seifert surfaces in S³ to be fibre surfaces. As an application, we give a short topological proof of the following well-known theorem: A Murasugi sum is a fibre surface if and only if its two summands are.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics

UniBE Contributor:

Baader, Sebastian, Graf, Christian

Subjects:

500 Science > 510 Mathematics

ISSN:

0723-0869

Publisher:

Elsevier

Language:

English

Submitter:

Olivier Bernard Mila

Date Deposited:

11 Oct 2017 15:31

Last Modified:

05 Dec 2022 15:07

Publisher DOI:

10.1016/j.exmath.2016.06.006

BORIS DOI:

10.7892/boris.105321

URI:

https://boris.unibe.ch/id/eprint/105321

Actions (login required)

Edit item Edit item
Provide Feedback