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Abstract Assessing the danger of transition of HIV transmission from a concentrated to a

generalized epidemic is of major importance for public health. In this study, we develop a

phylogeny-based statistical approach to address this question. As a case study, we use this to

investigate the trends and determinants of HIV transmission among Swiss heterosexuals. We

extract the corresponding transmission clusters from a phylogenetic tree. To capture the

incomplete sampling, the delayed introduction of imported infections to Switzerland, and potential

factors associated with basic reproductive number R0, we extend the branching process model to

infer transmission parameters. Overall, the R0 is estimated to be 0:44 (95%-confidence interval

0:42—0:46) and it is decreasing by 11% per 10 years (4%—17%). Our findings indicate rather

diminishing HIV transmission among Swiss heterosexuals far below the epidemic threshold.

Generally, our approach allows to assess the danger of self-sustained epidemics from any viral

sequence data.

DOI: https://doi.org/10.7554/eLife.28721.001

Introduction
Epidemics of HIV and other blood-borne and sexually transmitted diseases (for instance syphilis,

HBV and HCV) can be subdivided into concentrated and generalized epidemics. While for the for-

mer, the rapid infectious agent transmission is restricted to core transmission groups involved in

high-risk behaviors (such as men who have sex with men and injecting drug users), the generalized
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epidemic refers to fast pathogen spreading in the heterosexual (general) population resulting in

higher overall disease prevalence. Mechanistically, the key factor explaining whether the HIV trans-

mission is concentrated or generalized, is the ability of HIV to spread among heterosexuals. If the

epidemic in this population is not self-sustained, the HIV epidemic remains concentrated; otherwise

the virus is spreading rapidly in the broad population leading to a generalized HIV epidemic.

In most resource-rich settings HIV transmission is concentrated, that is, driven mostly by transmis-

sion among men who have sex with men (MSM) and injecting drug users (IDU), whereas the limited

transmission among heterosexuals is maintained by either imported infections or spillovers from

other transmission groups (Kouyos et al., 2010; von Wyl et al., 2011; Ragonnet-Cronin et al.,

2016; Xiridou et al., 2010; Esbjörnsson et al., 2016; Sallam et al., 2017). This suggests that in

most Western European countries and similar epidemiological settings the basic reproductive num-

ber R0 among heterosexuals is below 1. However, it is not clear how far away from self-sustained the

epidemic is in heterosexuals. Moreover, the change in HIV transmission among heterosexuals over

time is another important, yet unknown, factor, especially with evidenced increasing risky sexual

behavior (Kouyos et al., 2015). It is therefore crucial to assess both the transmission and its time

trend in order to obtain meaningful insights into the epidemic.

Assessing the subcritical transmission of HIV in the general population shares some methodologi-

cal similarities with the analysis of stage III zoonoses, for instance, monkeypox (Wolfe et al., 2007),

which also exhibit stuttering transmission chains. Both cases follow a source-sink dynamics, i.e., a

flux of infections from a subpopulation in which the disease is self-sustained to a population where it

is not. For the case of stage III zoonoses and tuberculosis, it has been shown that the distribution of

outbreak sizes can be used to quantify the pathogen spread (Blumberg and Lloyd-Smith, 2013b;

Blumberg and Lloyd-Smith, 2013a; Borgdorff et al., 1998). The fundamental approach of our

study is to apply this concept to transmission of HIV in the general population. However, there are

two key differences between emerging zoonotic pathogens and human-to-human infectious agents.

Firstly, while the contact tracing data are not available for many sexually transmitted infections (STI),

the viral sequences carry valuable information about the transmission chain size distribution. Thus,

the approach of quantifying transmissibility from chain size distributions needs to be combined with

a tool to derive clusters from viral sequences. Compared to the animal-human transmission the

delayed introduction of the index case of an STI or blood-borne virus to the subpopulation of

eLife digest In epidemiology, the “basic reproductive number” describes how efficiently a

disease is transmitted, and represents the average number of new infections that an infected

individual causes. If this number is less than one, many people do not infect anybody and hence the

transmission chains die out. On the other hand, if the basic reproductive number is larger than one,

an infected person infects on average more than one new individual, which leads to the virus or

bacteria spreading in a self-sustained way.

Turk et al. have now developed a method to estimate the basic reproductive number using the

genetic sequences of the virus or bacteria, and have used it to investigate how efficiently HIV

spreads among Swiss heterosexuals. The results show that the basic reproductive number of HIV in

this group is far below the critical value of one and that over the last years this number has been

decreasing. Furthermore, the basic reproductive number differs for different subtypes of the HIV

virus, indicating that the geographical region where the infection was acquired may play a role in

transmission. Turk et al. also found that people who are diagnosed later or who often have sex with

occasional partners spread the virus more efficiently.

These findings might be helpful for policy makers as they indicate that the risk of self-sustained

transmission in this group in Switzerland is small. Furthermore the method allows HIV epidemics to

be monitored at high resolution using sequence data, assesses the success of currently implemented

preventive measures, and helps to target subgroups who are at higher risk of an infection – for

instance, by supporting frequent HIV testing of these people. The method developed by Turk et al.

could also prove useful for assessing the danger of other epidemics.

DOI: https://doi.org/10.7554/eLife.28721.002

Turk et al. eLife 2017;6:e28721. DOI: https://doi.org/10.7554/eLife.28721 2 of 47

Research article Epidemiology and Global Health Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.28721.002
https://doi.org/10.7554/eLife.28721


interest plays an important role, especially in viruses like HIV with long infectious periods in the

absence of treatment and higher transmissibility during the acute phase (Marzel et al., 2016;

Powers et al., 2011; Rieder et al., 2010; Rodger et al., 2016; Hollingsworth et al., 2008;

Cohen et al., 2011b; Cohen et al., 2011a; Cohen et al., 2016). This is especially important because

a considerable fraction of HIV cases in heterosexuals is found in migrants (Del Amo et al., 2004;

von Wyl et al., 2011; European Centre for Disease Prevention and Control/WHO Regional

Office for Europe, 2016). If, for example, a migrant infected with HIV abroad moves to Switzerland

in the chronic stage of the infection, he/she has (from the perspective of the Swiss population) lost

some transmission potential upon entering Swiss heterosexual transmission network.

In order to quantify the subcritical transmission we combine phylogenetic cluster analysis with an

adapted version of a branching process model based estimator that derives the basic reproductive

number R0 from the size distribution of transmission chains. We further extend this approach to

determine the impact of calendar time and other potential determinants on R0; especially in order to

assess whether R0 exhibits an increasing time trend or is high in particular subgroups. Applying this

method to the phylogenetic transmission clusters among heterosexuals in the Swiss HIV Cohort

Study (SHCS), we can assess transmission of HIV in this population and in particular the risk of a gen-

eralized HIV epidemic together with the main determinants of transmission.

Results
We developed a method to assess how far HIV transmission in populations with basic reproductive

number R0<1 is from the epidemic threshold, that is, how far it is from being self-sustained in these

populations (see Materials and methods). A classical application of this question/method is HIV-1

transmission in heterosexuals in settings with a concentrated epidemic. Heterosexual HIV-1 transmis-

sion in Switzerland is a case in point for such a non-self-sustained HIV epidemic. We identified 3;100

transmission clusters among heterosexuals in the SHCS. These clusters were small in size (Table 1)

and comprised individuals of broad demographic background (see Table 2). Based on the most

likely geographic origin of the transmission clusters, we classified 1;133 transmission chains as being

of Swiss origin, that is, to represent introductions from other transmission groups in Switzerland into

the heterosexual population, and 1;967 to be of non-Swiss origin. For these latter transmission

chains, we assumed that the R0 of the index case was reduced by a factor of �index ¼ 0:35 (see Materi-

als and methods). To take into account the imperfect sampling density we fixed the subtype-

depending sampling probabilities based on the results from the study by Shilaih et al. (2016), cor-

rected by the proportion of the HIV infected individuals linked to care (80% based on Kohler et al.,

2015) and the fraction of heterosexuals from the SHCS with an HIV sequence in the phylogenetic

tree (57:22%). The model parameters used in this study are summarized in Table 1 (see Sensitivity

analyses, Appendix 1—figure 1 and Appendix 1—figure 2 for the corresponding sensitivity

analyses).

R0 of the HIV transmission in Swiss heterosexuals
To obtain an overall estimate for the R0 of HIV transmission in Swiss heterosexuals, the baseline

model was fitted to all of the previously described transmission chain data. In this baseline model

the R0 was estimated to be 0:44 (95%-confidence interval (CI) 0:42—0:46). The fact that R0 was clearly

below 1 (p-value <0:001 from one-sided Wald hypothesis testing H0 : R0 ¼ 1 against the alternative

HA : R0<1) indicated that HIV transmission is far away from a self-sustained epidemic.

Although the overall R0 estimate was clearly below 1, individual subtypes represent different epi-

demiological settings and hence individual subtypes may have R0 closer to the epidemic threshold.

The subtype-stratified analyses indeed yielded lower R0 of 0:35 (95%-CI 0:33—0:39) for subtype B as

compared to the non-B subtypes (Figure 1). The recombinant form CRF02_AG had the highest esti-

mated R0 of 0:62 (95%-CI 0:56—0:69). Despite these differences among the R0 estimates for different

subtypes they were all significantly below 1 (with all p-values from the one-sided test smaller than

0:001). Therefore, we concluded that there is no danger of a self-sustained HIV epidemic in Swiss

heterosexuals of any HIV subtype.
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Time trend of the R0

Despite consistently low R0 estimates, an increasing time trend for R0 would impose a potential con-

cern, especially if the time trend would predict a crossing of the epidemic threshold in the near

future. To investigate this, we fitted a univariate model with log R0ð Þ as a linear function of the estab-

lishment date of the transmission chain. We found that overall the R0 is decreasing at a factor 0:89

per 10 years (95%-CI 0:83—0:96). The per subtype-stratified analyses showed the consistently

decreasing time trend among the subtypes ranging from factor 0:65 per 10 years for subtype A to

0:89 for B-subtype.

To better capture the changes of R0 over time we included higher-order polynomials of the estab-

lishment date to our model (Figure 2). With the reference date on the 1st of January 1996 (which

corresponds to the median estimated date of infection - see Table 2) a cubic spline (without the lin-

ear term) was identified as the optimal model according to the Bayesian information criterion (BIC).

This model exhibits a mild increase of the R0 from the mid 1980’s to the mid 1990’s, with a peak-R0

of 0:49 (95%-CI 0:46—0:53) reached in 1996 and followed by a steep and monotonic decrease. It is

noteworthy that the time of peak-R0 coincided with the introduction of highly active antiretroviral

therapy. Shortly after the R0 started to rapidly decrease and has never rebounded. This extrapolation

should be, however, taken with a grain of salt and seen more as a trend rather than a prognosis,

since only a few transmission chains have been observed for the recent years (which is reflected by

wide confidence intervals).

Table 1. Transmission chain size distribution and model parameters.

Subtype

OverallB C 01_AE 02_AG A Other

Total number of chains, n (%)
1643
(53%)

322
(10%)

239
(7.7%)

331
(11%)

327
(11%)

238
(7.7%)

3100
(100%)

Chain size, n (%)

1
1437
(87%)

280
(87%)

206
(86%)

272
(82%)

269
(82%)

195
(82%)

2659
(86%)

2
158

(9.6%)
34

(11%)
31

(13%)
40

(12%)
44

(13%)
36

(15%)
343

(11%)

3
30

(1.8%)
7

(2.2%)
1

(0.42%)
10

(3.0%)
10

(3.1%)
6

(2.5%)
64

(2.1%)

4
12

(0.73%)
- 1

(0.42%)
6

(1.8%)
3

(0.92%)
1

(0.42%)
23

(0.74%)

5
1

(0.06%)
1

(0.31%)
- 2

(0.6%)
1

(0.31%)
- 5

(0.16%)

6
1

(0.06%)
- - 1

(0.3%)
- - 2

(0.06%)

7
1

(0.06%)
- - - - - 1

(0.03%)

8
2

(0.12%)
- - - - - 2

(0.06%)

9
1

(0.06%)
- - - - - 1

(0.03%)

Sampling probability, p (SD)
0.39 0.29 0.34 0.26 0.33 0.29 0.35

(0.05)

Chain origin, n (%)

Swiss (�index ¼ 1)
948

(58%)
36

(11%)
36

(15%)
36

(11%)
47

(14%)
30

(13%)
1133
(37%)

non-Swiss (�index ¼ 0:35)
695

(42%)
286

(89%)
203

(85%)
295

(89%)
280

(86%)
208

(87%)
1967
(63%)

DOI: https://doi.org/10.7554/eLife.28721.003
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Determinants of the HIV-transmission
Finally, we identified the characteristics associated with higher R0 and therefore potential focal sub-

populations, in which the basic reproductive number R0 could be above 1. The simplest model con-

taining only the linear terms of risk factors showed that the R0 is decreasing with the establishment

date of the transmission chain and that all non-B subtypes have higher R0 compared to subtype B,

which was consistent with the findings from the univariate model and per-subtype stratified analyses.

Moreover, we found that reporting sex with occasional partners and longer time to HIV diagnosis of

the index case are associated with higher R0, whereas the earliest CD4 cell count and the age do not

have significant effects (Figure 3).

These trends remained robust (Figure 4) when allowing the covariables to enter the model non-

linearly (for instance as polynomials like in the case of the time trend above). The final multivariate

model identified subtype, establishment date of the transmission chain, frequency of reporting sex

with occasional partner and time to diagnosis of the index case as the significant risk factors associ-

ated with R0 (see Selection of the predictive models). Allowing nonlinear terms for the time to diag-

nosis provided better goodness-of-fit than the linear model. The steep increase of R0 in the early/

acute phase (see Figure 4) of the infection indicates the importance of early diagnosis (which is now-

adays closely related to early treatment initiation) while the time becomes less relevant in the cases

diagnosed late in the chronic phase.

Discussion
Our approach demonstrates that viral sequences combined with basic demographic information can

be successfully used not only to estimate the basic reproductive number R0 of HIV in a subcritical

setting and thereby assess the danger of a generalized HIV epidemic but also to shed light on the

trends and other determinants of viral transmission. As a proof of concept, this approach was

applied to HIV transmission in Swiss heterosexuals, for which we found an R0 far below the epidemic

threshold with a decreasing time trend - indicating a low and decreasing danger of a generalized
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Figure 1. Overall basic reproductive number R0 and R0 per subtype from stratified analysis. The dark gray point

indicates the overall basic reproductive number R0 estimate (by neglecting the transmission chain subtypes) and

the corresponding 95%-confidence interval is shown with the dark gray line and the gray-shaded band. The

analogous results from the per-subtype stratified analysis are represented by colored points and lines, each color

corresponding to one of the subtypes (B, C, CRF01_AE, CRF02_AG or A) or the group of subtypes (other).
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Figure 2. Time trends for R0. The upper smaller panels show the time trends for R0 from the subtype-stratified analyses, in which the log R0ð Þ’s were
modeled as linear functions of establishment date (i.e., for each subtype the time trend rate was assumed to be constant). The colored shaded-bands

correspond to the 95%-prediction bands. The (best-fitting) nonlinear time trend for R0 from the overall analysis is displayed in the lower panel (dark gray

curve) together with the 95%-prediction band (gray-shaded area). The black points represent the R0 estimates from the per establishment year stratified

analyses and the gray vertical lines the corresponding 95%-confidence intervals.

DOI: https://doi.org/10.7554/eLife.28721.005

Table 2. Patients’ demographic characteristics.

Patients

Transmission chains

Index case

Total number, n 3698 3100

Age at estimated date of infection [in years], median (IQR) 29.2 (23.1—37.8) 28.8 (22.8—37.4)

Estimated date of infection, median (IQR) Jun 1996 (Sep 1990—Nov 2001) Nov 1995 (Sep 1989—May 2001)

Time to diagnosis [in years], median (IQR) 3.40 (1.66—5.24) 3.54 (1.78—5.43)

Reported sex with occasional partner [as fraction of FUPs*], median (IQR) 0.53 (0.09—0.89) 0.50 (0.07—0.88)

No available FUP†, n (%) 250 (6.8%) 226 (7.3%)

Earliest CD4 count [per mL]‡, median (IQR) 310 (143—510) 300 (134—507)

*Follow-up visit (FUP).
†Patients without FUP questionnaire regarding the sexual risk behavior. See Sensitivity analyses.
‡One patient did not have any available CD4 cell count. The missing value was imputed with the mean CD4 cell count.

DOI: https://doi.org/10.7554/eLife.28721.006
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epidemic. Even though the Swiss HIV epidemic is captured in outstanding detail and representative-

ness by the SHCS, our approach can be easily used in other non-self-sustained epidemics since viral

sequences from genotypic resistance testing are nowadays routinely produced in most resource-rich

settings. Moreover, the generalizability of our approach might be broadened to other settings and

viruses due to the increased availability of viral sequences boosted by decreasing sequencing costs

and the ability of the method to adjust for imperfect sampling.

To our knowledge our study represents the first systematic assessment of the basic reproductive

number for subcritical HIV transmission among heterosexuals, which makes it difficult to compare

our results to other estimates. In addition, it was conducted in one of the most densely sampled set-

tings. Most of the studies investigated the transmission route composition of larger transmission

clusters across different B and non-B subtypes (Esbjörnsson et al., 2016; Chaillon et al.,

2017; Ragonnet-Cronin et al., 2016; Sallam et al., 2017; Kouyos et al., 2010; von Wyl et al.,

2011), or focused on homosexual men or injecting drug users as the main drivers of HIV transmission

(Amundsen et al., 2004). Stadler et al. (2012) previously presented a birth-death process based

analysis of HIV transmission in Switzerland. However, since this approach is restricted to sufficiently

large clusters, it is not suitable for subcritical settings and might potentially overestimate R0 due to

B
C
01_AE
02_AG
A
other

1.1.1996
Date per 10 years

32 years
Age per 10 years

never reported
Fraction of FUPs with reported risk

3 years
Time to diagnosis per 10 years

350 cells/�L
CD4 per 100 cells/�L

Basic reproductive number R0

Subtype

Establishment date

Age at infection

Sex with occasional partner

Time to diagnosis

Earliest CD4 cell count

Reference

0.75 1.00 1.25 1.50 1.75 2.00

0.29 (0.26-0.32)

< 0.001

0.019

< 0.001

< 0.001

< 0.001

< 0.001

0.799

< 0.001

< 0.001

0.980

Effect factor exp (�) p-value

Figure 3. Effect of different factors on the basic reproductive number R0 from the multivariate model with only linear factor terms. The black square

and the black line show the reference basic reproductive number R0 and its 95%-confidence interval (for a transmission chain of subtype B which started

on 1.1.1996, and in which the index case was diagnosed 3 years after the infection, was 32 years old upon infection, never reported on having sex with

occasional partner and had the earliest CD4 cell count of 350 cells per mL). The vertical gray line separates the factors associated with lower R0 (left;

effect factor <1) and from the factors contributing to higher R0 (right; effect factor >1). The black points on this line refer to the reference transmission

chain. The colored and dark gray lines represent the effect sizes from multivariate model (black circles depicting the estimates) for different factors and

their 95%-confidence intervals. The corresponding p-values are shown in the rightmost column. FUP, follow-up visit.
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selection bias. Hence, our approach, which is tailored to subcritical viral transmission, is complemen-

tary to theirs. Among other studies specific for heterosexual populations, Hughes et al. (2009)

focused on the clusters of size at least 2 across non-B subtypes, and Xiridou et al. (2010) studied

the impact of sexual behavior of migrants on the HIV prevalence, while none of them directly

assessed the danger of self-sustained epidemics.

Epidemiological differences between the HIV-1 subtypes, especially between B and non-B sub-

types, have been pointed out previously (Kouyos et al., 2010; von Wyl et al., 2011). Yet the exact

factors contributing to the differences are difficult to identify. On the one hand, the non-B subtypes

are often seen in relation to the infections imported from abroad, which could be introduced either

by immigrants or by residents who got infected while temporarily abroad. A proportion of these

introductions could be attributed to the sex tourism (Rogstad, 2004). However, even the differences

between the various non-B subtypes could be substantial, as they represent different epidemiologi-

cal settings. For instance, the CRF01_AE is often found in Asians and it also most likely originates

from Southeastern Asia (Angelis et al., 2015), while subtypes originating from Africa, such as

CRF02_AG (Mir et al., 2016), are frequently found in people of black ethnicity. Additionally, poverty

and different policies regulating prostitution worldwide also have an impact on the transmission pat-

terns, like on rate of condom use, access to HIV testing and treatment (Shannon et al., 2015). On

the other hand, disentangling the effect of different epidemiological characteristics and even of the

strains remains challenging, as R0 was significantly affected by the HIV subtype even in the multivari-

ate model (Figure 3).

One of the key components of our model is the index case relative transmission potential �index,

which is also associated with some degree of uncertainty. To illustrate its role and influence on the

transmission parameters we performed a range of sensitivity analyses (Appendix 1—figure 1). On

the one hand, omitting the reduced transmissibility of the index case, that is, assuming �index ¼ 1,

leads to largely underestimated R0 (overall R0 of 0:33, 95%-CI 0:31—0:35) affirming the importance of

this extension. Then again, the concrete value chosen may be debatable, especially due to arguable

infectivity in chronic phase (studied by Bellan et al., 2015); thus a small �index can be caused both by

immigration later during chronic infection and by elevated infectivity in the acute phase. To address

this issue we lowered the �index for the transmission chains of non-Swiss origin to 0:25 to obtain a
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reference transmission chain (of subtype B, started on 1.1.1996, in which the observed index case did not report having sex with occasional partner and

was diagnosed after 3 years after the infection). The left y-axis represents the basic reproductive number whereas the right y-axis corresponds to the

relative values of R0 as compared to the baseline R0. The R0 as the function of specific factor (with the other factors held fixed at the reference value) is

displayed by the colored (for HIV-1 subtype) and the dark gray (establishment date, sexual risk behavior and time to diagnosis) lines. The vertical bars

and the shaded bands, respectively, correspond to the 95%-confidence intervals.
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more conservative estimate of R0, which was, nevertheless, still safely below 1 (0:47, 95%-CI 0:44—

0:49). Furthermore, even though theoretically the transmission potential of some index cases could

also be enhanced (i.e., �index>1), for instance for sex workers, we do not expect that this is the case

for many transmission chains and would therefore have only marginal effect on our estimates.

Besides, since a �index>1 would lead to even lower R0, our main conclusions would not change (in

fact, the assumption of �index<1 is conservative with respect to our conclusion of R0<1).

The presented model is based on source-sink dynamics, which is reflected in the importance of

the index case and its immigration background, while the role of emigration is neglected. However,

in many resource-rich settings similar source-sink patterns can be observed, both in the migration

related influxes and the new virus introductions in the heterosexual population from other risk

groups. Namely, the immigration from a setting with a generalized epidemic to a setting with a con-

centrated epidemic is by far more likely than the emigration. Similarly, occasional spillovers from

other risk groups, such as MSM and IDU, to the generalized population are more probable than the

reverse. Therefore, the assumption of absence of such outflow from the epidemiological setting

under consideration is not problematic when considering a country like Switzerland, but might pres-

ent a potential limitation if the unit of interest is smaller, like a region or a city.

Our approach has theoretically several limitations, which we, however, expect to have only mod-

erate impact. First, we assumed stuttering transmission chains, or in other words, that the basic

reproductive number R0 is below 1. If R0 was larger than 1 the observed transmission chains would

have been much longer (see Sensitivity analyses and Appendix 1—figure 5) which is inconsistent

with rather small clusters observed in HIV transmission among Swiss heterosexuals (Kouyos et al.,

2010; von Wyl et al., 2011 and Shilaih et al., 2016). Second, some transmission chains might still

be active, meaning that some patients from the chain could be still infectious and therefore able to

further spread the virus. The consequence of this would be an underestimation of R0 for recent

years. However, given much higher transmissibility of HIV in the acute and recent infection

(Marzel et al., 2016) and estimated mean time to being non-infectious of approximately 2—2:5

years in recent years (Stadler et al., 2012; Hughes et al., 2009) the majority of the observed trans-

mission chains had most likely been stopped by the time of sampling and hence we do expect that

this issue will not lead to a major bias of our estimates (see Sensitivity analyses and Appendix 1—

figure 4). Third, since our method is based on transmission clusters their misidentification and negli-

gence of their structure could be another constraint. Possible overlapping transmission chains (as it

was also noted in Blumberg and Lloyd-Smith, 2013b), that is, misidentifying two transmission chains

resulting from two separate introductions of closely related viruses as one single chain, represent

the biggest concern in this regard. Failing to identify separate clusters would lead to a higher R0 esti-

mate. However, this means that our method will tend to overestimate R0 and is hence conservative

with respect to its main aim of assessing the danger of self-sustained epidemics; thus, if the method

predicts an R0 strongly below 1, the corresponding epidemic will indeed be far away from being

self-sustained. Moreover, our method neglects the transmission chain structure and consequently

uses only the aggregated number of infections, and assumes the same R0 for the entire chain except

for the index case. Yet, this issue is likely to have a weak impact, since we focus on subcritical trans-

mission; the transmission chains are hence short (see Table 1), and their structure conveys only lim-

ited information. Indeed, although a huge variation in sexual behavior has been shown previously

(Liljeros et al., 2001), our sensitivity analyses exhibited no major impact of varying sexual risk behav-

ior on risk determinants (Sensitivity analyses and Appendix 1—figure 6). Finally, even though the

negative binomial model was proposed as the favorable choice for the offspring distribution com-

pared to the Poisson distribution (Blumberg and Lloyd-Smith, 2013b) we did not observe any sig-

nificant differences in the R0 estimates (see Sensitivity analyses and Appendix 1—figure 7). On the

contrary, due to the simplicity of the Poisson distribution we managed to integrate the index case

transmission potential reduction and the heterogeneity between the transmission chains into our

Poisson-based model in a more systematic manner through the observed variability of the demo-

graphic characteristics.

Conclusion
Generally, our approach allows the assessment of the danger of a concentrated epidemic to become

generalized based on the viral sequence data. We demonstrated this approach for the case of het-

erosexual HIV transmission in Switzerland. In particular, even though the study highlighted some
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heterogeneity between the HIV subtypes, our findings indicate that there is no imminent danger of a

self-sustained epidemic among Swiss heterosexuals, but rather diminishing HIV transmission far

below the epidemic threshold. Hence, the HIV epidemic in Switzerland is and most likely will remain

restricted to high risk core groups, especially MSM. Moreover, the results suggest that integrated

(i)

(ii) (iv)

(iii)

(v)

other Swiss HIV

transmission groups

non-Swiss

HIV infected

unsampled/sampled

Swiss HIV heterosexuals

Chain size

distribution model

log
(

R0

)

= �T
x

Transmission clusters

from phylogenetic tree

Modified

transmission potential

of the index case
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R̂0
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�̂
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characteristics

x

Figure 5. Graphical representation of our phylogeny-based statistical approach. (i): HIV transmission among heterosexuals in Switzerland (white arrow)

has never led to a self-sustained epidemic. However, the unknown potential of imported infections (black arrows) either from abroad or from other

transmission groups in Switzerland remains a large concern. (ii): The HIV transmission chains corresponding to Swiss heterosexuals (depicted in red)

were identified from the phylogenetic tree containing the SHCS and background viral sequences. (iii): Our mathematical model is based on the

discrete-time branching process with nodes of three different types: sampled Swiss infection (red), unsampled Swiss infection (light red) and foreign

infection infected by a Swiss index case before moving to Switzerland (green). (iv): Our method for inferring R0 accounts for both imperfect sampling

and modified transmission potential of the index case. (v): Moreover, it includes the baseline transmission chain characteristics to assess the

determinants of R0.
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prevention measures in Switzerland taken over time were successful within the heterosexual

population.

Materials and methods
We combined a phylogenetic cluster detection approach to identify transmission chains in the popu-

lation under consideration with an adapted version of the model developed in Blumberg and Lloyd-

Smith (2013a) to infer the basic reproductive number R0 (Figure 5). In particular, we accounted for

both imperfect detection (included in Blumberg and Lloyd-Smith, 2013a) and modified transmissi-

bility of the index case (not included in Blumberg and Lloyd-Smith, 2013a) from the perspective of

the setting under consideration because it enters the population only (late) in chronic infection –

e.g., via immigration. Moreover, we included the baseline transmission chain characteristics (such as

HIV-1 subtype, date of infection, time to diagnosis, risky sexual behavior, etc.) to explain the hetero-

geneity among transmission chains. Note that our approach in principle estimates the effective

reproductive number defined as the number of secondary infections for the current state of popula-

tion; however, in case of a non-self-sustained epidemic with low prevalence, the vast majority of the

population is susceptible and hence the effective reproductive number is a very good approximation

for the basic reproductive number.

SHCS and viral sequences
The SHCS is a multicenter, nationwide, prospective observational study of HIV infected individuals in

Switzerland, established in 1988 (Swiss HIV Cohort Study et al., 2010). The SHCS was approved by

the ethics committees of the participating institutions (Kantonale Ethikkommission Bern, Ethikkom-

mission des Kantons St. Gallen, Comite Departemental d’Ethique des Specialites Medicales et de

Medicine Communataire et de Premier Recours, Kantonale Ethikkommission Zürich, Repubblica e

Cantone Ticino–Comitato Ethico Cantonale, Commission Cantonale d’Étique de la Recherche sur

l’Être Humain, Ethikkommission beiderBasel; all approvals are available on http://www.shcs.ch/206-

ethic-committee-approval-and-informed-consent), and written informed consent was obtained from

all participants. Up to December 2016 over 19;500 patients have been enrolled. The SHCS is highly-

representative as it covers more than 75% HIV-positive individuals on antiretroviral therapy (ART) in

Switzerland (Swiss HIV Cohort Study et al., 2010). In addition to the extensive demographic and

clinical data collected at biannual/quarterly follow-up (FUP) visits, for approximately 60% of the

patients at least one partial pol sequence from the genotypic resistance testing is available (in total

22;036 sequences from the SHCS resistance database until August 2015). The patients with hetero-

sexual contact as the most likely transmission route comprise about one third of all SHCS

participants.

Phylogenetic tree
The phylogenetic tree was constructed from the Swiss HIV sequences of the SHCS patients and non-

Swiss background sequences exported from the Los Alamos National Laboratory, 2016 database

(241;783 HIV-1 viral sequences of any subtype and including the circulating recombinant forms 01–74

retrieved on February 23rd, 2016 spanning over the protease and RT regions with fragments of at

least 250 nucleotides; the HXB2 sequence and sequences from Switzerland were removed after-

wards). The sequences of 8 HIV-1 subtypes and circulating recombinant forms (B, C, CRF01_AE,

CRF02_AG, A(1-2)), G, D and F(1-2)) were pairwise aligned to the reference genome HXB2 (acces-

sion number K03455) using Muscle v3.8.31 (Edgar, 2004). Sequences with insufficient sequencing

quality of the protease region (coverage of less than 200 nucleotides between the positions 2253 and

2549 of HXB2) or reverse transcriptase region (less than 500 nucleotides between positions 2550 and

3869) were excluded. Using the earliest available of the remaining sequences for each patient, the

phylogenetic tree was built with the FastTree algorithm under the generalized time-reversible model

of nucleotide evolution (Price et al., 2009) including 10;840 SHCS and 90;933 background

sequences.

Transmission chains
The Swiss heterosexual transmission chains were defined as clusters in the phylogenetic tree contain-

ing exclusively Swiss HIV sequences from individuals with heterosexual contact as the most likely
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route of the transmission, regardless of the respective genetic distances and local support values

(see Sensitivity analyses and Appendix 1—figure 8 for alternative definition). The transmission

chains and the patients enrolled in the SHCS forming them were identified with custom written func-

tions in R (version 3.3.2).

For each transmission chain we determined if it was introduced to the Swiss HIV heterosexuals

either as an imported infection from abroad or from other HIV transmission groups within Switzer-

land. The geographic origin for a given chain was obtained as the country of the closest sequence,

which did not belong to Swiss heterosexuals. Specifically, we considered the smallest clade that con-

tained both the transmission chain and either a non-Swiss or non-heterosexual sequence, and chose

the sequence with the smallest pairwise genetic distance to the transmission chain (with respect to

the Jukes and Cantor (JC69) model).

Additionally, in each extracted transmission chain the observed index case was identified as the

patient with the earliest estimated date of infection in the chain. The date of HIV infection for each

single individual was imputed with the model described by Taffé et al. (2008) if the patient had

enough CD4 cell count measurements before the ART initiation and the estimated date of infection

fell within the seroconversion window; otherwise the midpoint of the seroconversion window was

used. The demographic characteristics (Table 2) of the index case were extracted from the SHCS,

including age at infection, time to diagnosis, first available CD4 cell count and sexual risk behavior.

The latter was quantified as the fraction of semiannual follow-up visits at which the patient reported

sex with occasional partners. The patients with no available questionnaire regarding the sexual risk

behavior were assumed to have never reported on having sex with occasional partner (see Sensitivity

analyses and Appendix 1—figure 9 for the corresponding sensitivity analysis). The characteristics of

the index case were then used to define the features of each corresponding transmission chain.

Estimating the basic reproductive number from a model
Our model is based on the basic discrete-time branching process. The basic reproductive number R0

was inferred from the model as the expected number of offsprings, therefore the offspring distribu-

tion represents the crucial component of the chain size distribution model. In the following sections

we describe the main extensions of the basic branching process theory, which were implemented in

our model. The detailed derivations can be found in Appendix 3.

Offspring distribution
We modeled the offspring distribution in a transmission chain using a Poisson distribution, which is a

special case of the negative binomial distribution. The latter has been suggested in the literature

(Blumberg and Lloyd-Smith, 2013b) in order to infer R0; however since we did not observe any

large differences between the two distributions (see Sensitivity analyses and Appendix 1—figure 7),

we decided to use the simpler Poisson model.

Suppose that Rk;n denotes the number of secondary infections of transmission degree n caused

by the kth individual from the preceding generation (i.e., infected individuals with transmission

degree n� 1), where the transmission degree refers to the number of transmissions needed to trans-

fer the pathogen from the index case (see Appendix 3 for detailed model description). Under the

Poisson offspring distribution the number of secondary infections is modeled by

Rk;n ~Pois R0ð Þ;

which coincides with the definition of the basic reproductive number R0 ¼E Rk;n

� �
. Some index cases

may have lower transmission potential, e.g., immigrants that arrive during their chronic infection

phase, while other index cases may exhibit enhanced transmissibility, for example, sex workers or

foreigners living in Switzerland without a partner. To capture a potentially modified transmissibility

of the index case we assumed a different offspring distribution of the root, namely

R1;0 ~Pois �indexR0ð Þ;

where �index denotes the index case relative transmission potential.

To assess the trends and determinants of R0, we further extended the offspring distribution based

on the baseline characteristics x of the transmission chain. More precisely, we assumed that the
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logarithm of R0 can be linearly described by the chain characteristics which resulted in the offspring

distributions

Rk;n ~Pois exp bT
x

� �� �
and R1;0 ~Pois �index exp bT

x
� �� �

for the secondary and the index cases, respectively. Hence, the R0 can be predicted from the effect

sizes b of factors x as

R0 ¼ exp bT
x

� �
:

Note that since each transmission chain i has its specific baseline characteristics xi (perhaps even

sampling density pi and index case relative transmission potential �index;i) the notation above repre-

sents a simplification. More precisely, the R0 of the ith transmission chain equals R0;i ¼ exp bT
xi

� �
.

Likelihood function
The likelihood function was expressed in terms of the probability generating function (PGF) of the

transmission chain size distribution assuming independent and stuttering (i.e., R0<1 assures that

each transmission chain goes extinct almost surely) transmission chains. The following assumptions

were made when incorporating the incomplete sampling of the sequences:

. For each transmission chain at most one observed transmission chain can be extracted from
the phylogeny. In other words, all observed cases belonging to the same transmission chain
can be identified as the cases forming the corresponding observed transmission chain,
although some intermediate transmitters might not have been sampled. For a phylogeny, this
represents by a definition a weak assumption; in contrast, for contact tracing approaches miss-
ing one ancestor can lead to misidentifying one transmission chain as two or more.

. The sampling density is independent of the transmission chain size or the transmission degree
of the individual, namely each case of the transmission chain can be observed independently
from the rest of the chain with probability p.

Let T denote the true size of a transmission chain and eT the size of the corresponding observed

transmission chain. The above two assumptions can be summarized as

eT j T ~Bin T ;pð Þ;

and the PGF eT of the observed transmission chain size hence equals

eT z;R0;�index;pð Þ ¼ T 1� pð Þþ pz;R0; �indexð Þ

in terms of the PGF T of T. The probability that a transmission chain has observed size of et� 0

(whereet¼ 0 means that none of the cases of the transmission chain is detected) is given by

P eT ¼et
� �

¼ 1

et!
eT et
� �

0;R0;�index;pð Þ:

In particular, the probability that a transmission chain is observed (i.e., the observed size is strictly

positive) can be calculated as

P eT>0
� �

¼ 1�P eT ¼ 0
� �

¼ 1� eT 0;R0;�index;pð Þ:

However, since only the transmission chains with at least one detected case can be extracted

from the phylogeny (and therefore to account for the unobserved transmission chains) we are inter-

ested in the probability that an observed transmission chain has a specific size. The probability of

observing a transmission chain of sizeet>0 is

P eT ¼etjeT>0
� �

¼ P eT ¼et
� �

P eT>0
� � ¼ 1

et!
eT et
� �

0;R0;�index;pð Þ
1� eT 0;R0;�index;pð Þ

:

Finally, for a set of independent observed transmission chain sizes eti
� 	I

i¼1
the likelihood function

equals
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L R0j eti
� 	I

i¼1
;�index;p

� �
¼
YI

i¼1

1

eti!
eT eti
� �

0;R0;�index;pð Þ
1� eT 0;R0; �index;pð Þ

if the same R0, �index and p are assumed for all transmission chains. For transmission chains with dif-

ferent baseline characteristics and different parameters, the generalized likelihood function is

L bj eti;xi; �index;i;pi
� 	I

i¼1

� �
¼
YI

i¼1

1

eti!
eT eti
� �

0; exp bT
xi

� �
; �index;i;pi

� �

1� eT 0; exp bT
xi

� �
; �index;i;pi

� � :

Model fit
The maximum likelihood (ML) estimator for b, the predictor for R0 and the corresponding statistics

(confidence intervals, p-values, etc.) were implemented in the R package PoisTransCh (Turk, 2017,

https://github.com/tejaturk/PoisTransCh; copy archived at https://github.com/elifesciences-publica-

tions/PoisTransCh). The provided confidence intervals are the Wald-type 95%-confidence intervals

(see Sensitivity analyses for the comparison against different types) and the p-values are based on

the Wald statistic. Initially, we assessed the impact of covariables potentially associated with HIV

transmission. Specifically, we considered HIV-1 subtype, establishment date of the transmission chain

(i.e., the earliest estimated date of infection in the transmission chain), reported sex with occasional

partner, age at infection, first measured CD4 cell count and time to diagnosis of the index case. Final

model selection was carried out by the forward selection and backward elimination algorithms based

on the Akaike and Bayesian information criterion (AIC and BIC, respectively). The detailed steps are

provided in Selection of the predictive models.

Datasets
Previously published datasets from Kouyos et al. (2010) and von Wyl et al. (2011) were used in

this study. As previously discussed in these publications, due to the large sampling density this data

would, in principle, allow for the reconstruction of entire transmission networks and could thereby

endanger the privacy of the patients. This is especially problematic because HIV-1 sequences fre-

quently have been used in court cases. Therefore, a random subset of 10% of the sequences are

accessible via GenBank. These accession numbers are as follows: GU344102-GU344671, EF449787,

EF449788, EF449796, EF449798, EF449828, EF449829, EF449838, EF449844, EF449852, EF449853,

EF449854, EF449860, EF449880, EF449883, EF449889, EF449895, EF449901, EF449904, EF449905,

EF449917, EF449921, EF449928, EF449930, EF449943, EF449950, EF449960, EF449971, EF449980,

EF449987, EF450004, EF450005, EF450011, EF450024, EF450026, GQ848113, GQ848120,

GQ848140, GQ848145, GQ848149, JF769777-JF769851
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Sensitivity analyses

Relative transmission potential of the index case
To assess the role of the index case relative transmission potential we carried out three

different sensitivity analyses regarding parameter �index. Firstly, we varied the �index for the

transmission chains of non-Swiss origin from 0:05 to 1:5. Secondly, we assumed the same �index

for all transmission chains regardless of their origin and fit the models over a range of �index
values. Finally, we restricted the analysis only to the transmission chains of non-Swiss origin

and varied �index.
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Appendix 1—figure 1. Sensitivity analysis regarding the index case relative transmission poten-

tial. Panel (i) shows the sensitivity of the R0 estimates from baseline model and panel (ii) the

sensitivity of the time trend factor. The colored lines represent the subtype-stratified analyses,

while the results from the overall models are shown in gray. In the first sensitivity analysis, the
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�index of Swiss-originating transmission chains was held at 1 and the �index of non-Swiss origin

varied (solid lines). In the second analysis, the �index of Swiss and non-Swiss origin was the

same (dashed lines). The dotted lines show the results from the sensitivity subanalysis

including only the transmission chains of non-Swiss origin. The vertical and horizontal lines

depict the parameters and estimates from the main analysis, respectively.

DOI: https://doi.org/10.7554/eLife.28721.012

These sensitivity analyses (see Appendix 1—figure 1) implied that the conclusion of no

danger for a self-sustained epidemic is stable with respect to �index even in the case when

some of the Swiss-originated transmission chains are misclassified. In addition, while slightly

higher R0 estimates in the non-Swiss transmission chain subanalysis were mostly driven by the

non-B subtypes, the results were safely below 1 indicating the non-sensitivity of the main

conclusion also when some non-Swiss transmission chains would be falsely identified as such.

Sampling density
To study the impact of the sampling densities we performed subtype-stratified sensitivity

analyses as well as the overall sensitivity analysis by keeping the sampling density constant

among the transmission chains. In all scenarios, we varied the sampling density between 0:02

and 1, while �index remained the same as in the main analyses.
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Appendix 1—figure 2. Sensitivity analysis regarding the sampling density. The index case

relative transmission potential parameter �index was the same as used in the main analyses,

while the sampling densities varied (x-axis). In the pooled analysis (larger plots) the sampling

density was the same for all transmission chains. Panel (i) shows the corresponding estimates

of the basic reproductive number R0 and the time trend factor estimates are displayed in

panel (ii). The dotted vertical lines depict the sampling densities used for each subtype in our

study (subtype-stratified plots) and the mean sampling density over all transmission chains

(overall plots). The horizontal dotted lines represent the estimates from the main analysis.

DOI: https://doi.org/10.7554/eLife.28721.013

The sensitivity analyses (see Appendix 1—figure 2) showed that neither the R0 from the

baseline model nor the time trend are sensitive to the sampling density, namely the

conclusions of R0 being significantly below 1 and decreasing time trend could be made even

for slightly lower or higher sampling densities.
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Ongoing transmission and stuttering transmission chains
assumption

Duration of infectious period in relation to ongoing transmission
Some of the observed transmission chains may still experience ongoing transmission due to

either not yet diagnosed cases or unsuppressed patients within the transmission chain who still

have the ability to spread the virus. The transmission chain sizes might thus be too small and

R0 underestimated. However, the gradually increasing treatment success (Castilla et al., 2005;

Kohler et al., 2015), benefits of earlier ART initiation (Kitahata et al., 2009; INSIGHT START

Study Group et al., 2015) and consequently updated treatment guidelines (Günthard et al.,

2016) resulted in a shorter duration of infectious period. Transmission chains which started

earlier are thus more strongly affected by ongoing transmission than recent transmission

clusters.

One possibility to assess this issue is to investigate the highest possible transmission degree

that has completed a transmission at a given time point; that is the maximum number of

generations which are not infectious anymore and therefore have used their transmission

potential. We assumed that the length of the infectious period is changing linearly with

calendar year and fitted a linear regression model to the duration of infectious period of the

index cases (measured by time to suppression or treatment start). To ensure a more

conservative approach we truncated the fitted infectious period durations from below, such

that the minimum was 3 years. Let d tð Þ define the infectious period duration of an individual

who became infected at time t. The worst-case scenario in the context of ongoing

transmission and related potential bias is represented by a transmission chain, in which each

infected individual transmits the virus just at the end of his/her infectious period. The

(conservative) maximum number of completed transmission degrees at time t of a

transmission chain i that started at t0 therefore equals

Nmax;i tð Þ ¼max k 2Njtk � tf g;

where tk denotes the latest possible time at which the transmission of the kth generation was

complete and is calculated iteratively as tkþ1 :¼ tk þ d tkð Þ for k 2 N0 (Appendix 1—figure 3). If

its index case is still infectious at time t, it can still produce new infections (which would have a

transmission degree 1) and hence Nmax;i ¼ 0.
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Appendix 1—figure 3. Conservative (with respect to ongoing transmission) maximum number

of completed transmission degrees by a given date. The red lines show the date (y-axis) by

which at least a certain number (red numbers) of transmission degrees have been completed

for a transmission chain with a specific establishment date (x-axis). The diagonal dotted gray

lines depict the number of years since the establishment date, and the horizontal blue line

represents the last sampling date.

DOI: https://doi.org/10.7554/eLife.28721.014

Ongoing transmission
To assess the potential bias due to ongoing transmission we compared the estimates based

on the transmission chains formed by the cases with the estimated date of infection before a

specific date (b!) and based on the transmission chains that had been completed (with respect

to the last sampling date) by the same date (!). The relative bias arising from neglecting the

ongoing transmission hence equals

drel ¼
b!�!

!
:
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Appendix 1—figure 4. Relative bias due to ongoing transmission. The upper panel shows the

relative bias of the basic reproductive number R0 from the baseline model and the lower panel

the relative bias of the linear time trend factor from the corresponding generalized linear

model. The proportion of active transmission chains over time is represented by the black line.

The relative bias associated with overestimation and underestimation is displayed with green

and red bars-points, respectively. Absence of bias is depicted by the horizontal gray lines.

DOI: https://doi.org/10.7554/eLife.28721.015

The proportion of ongoing transmission chains is decreasing with time, which is in line with a

decreasing duration of infectious period, hence indicating that the ongoing transmission is less

of an issue for recent years than for older transmission chains. Our sensitivity analyses revealed

that the expected bias stemming from neglecting the ongoing transmission is less than 5%

since the early 2000’s for both key questions (Appendix 1—figure 4): the basic reproductive

number R0 and its linear time trend factor. Moreover, the relative bias is positive for most of

the recent dates, implying that the negligence of ongoing transmission results in rather

conservative estimates with respect to our conclusions.

Subcritical transmission assumption
Like the models described by Blumberg and Lloyd-Smith (Blumberg and Lloyd-Smith,

2013b; Blumberg and Lloyd-Smith, 2013a), our model also implicitly assumes subcritical

transmission. To justify that the extracted HIV transmission chain sizes of the Swiss

heterosexuals did not violate this assumption, we simulated transmission chains for various R0

(including the estimated R0) and compared the empirical quantiles between the simulated

transmission chain sizes and the transmission chain sizes extracted from the phylogenetic tree.

Since some transmission chains (observed or simulated) might still exhibit ongoing

transmission at the time of the sampling, we restricted the maximal number of generations

(i.e., transmission degrees), which were simulated according to the duration of infectious

periods (Appendix 1—figure 3).

More precisely, from each observed Swiss heterosexual transmission chain we kept sampling

transmission chains (for different ‘known true’ R0 scenarios) with the maximal number of
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simulated generations until a simulated transmission chain was observed (i.e., at least one case

was observed) to reflect the more realistic observed transmission chain size distribution. We

repeated these steps for each extracted Swiss heterosexual transmission chain.

Appendix 1—figure 5. Sensitivity analysis regarding the stuttering transmission chains assump-

tion. The Q-Q plots compare the hypothetical transmission chain size distributions (y-axis

showing their empirical permilles) with the transmission chain size distribution (empirical

permilles on the x-axis) inferred from the phylogeny. The upper left plot compares the

distribution of the simulated transmission chain sizes based on the estimated R0 with the (from

the phylogeny) observed transmission chain sizes and thus verifies the R0 estimate. The

remaining plots compare the simulated transmission chain size distributions against the

extracted transmission chain sizes for R0 closer to 1 to justify the subcritical transmission

assumption. Each point represents a permille, hence the darker points indicate more

overlapping permilles.

DOI: https://doi.org/10.7554/eLife.28721.016

Finally, we compared the 1000-quantiles (permilles) of the transmission clusters extracted from

the phylogeny against simulated transmission chains (Appendix 1—figure 5). The Q-Q plots

clearly show that the extracted transmission chains would be indeed much longer (the largest

observed transmission chain would be of size greater than 30) if the true R0 were above 1 (or

even close to 1). Moreover, the size distribution of the transmission chains simulated for the

estimated R0 showed a good concordance with the observed transmission chains (upper left

Q-Q plot of Appendix 1—figure 5).
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Variation in sexual behavior along transmission chains
Our model assumes constant sexual risk behavior along transmission chains. In this sensitivity

analysis we assessed how a changing sexual risk behavior would affect our conclusions. We

approached this question by slightly changing the definition of the sexual risk behavior of each

transmission chain, while the other characteristics stayed the same.

. Instead of the index case determining the risk behavior for each transmission chain a ran-

domly sampled infected individual from the transmission chain was chosen to determine the

sexual risk behavior of the transmission chain. Noteworthy, this only affects the minority of

the transmission chains, namely those with the observed length � 2. The multivariate model

including only the linear terms was then fitted to the transmission chains with slightly modi-

fied sexual risk behaviors. We repeated this 1000 times to get the empirical distribution of

the effect sizes on R0 (Appendix 1—figure 6).
. We considered the reported sex with an occasional partner on the level of a transmission

chain as a proxy for its sexual risk behavior. More precisely, we used the fraction of FUPs of

all infected individuals in a transmission chain in which any of these patients reported sex

with occasional partner. We then fitted the same multivariate model with only linear terms as

in the main analysis and compared the effect sizes and directions (Appendix 1—figure 6).
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Appendix 1—figure 6. Comparison of effect sizes in the multivariate model with linear terms

only for different sexual risk behavior definitions of a transmission chain. The thick lines with

black circles show the original effect sizes (where the index case determined the sexual risk

behavior of the transmission chain) and their 95%-confidence intervals. The empirical

distribution of the effect sizes where a random individual in a transmission chain determines its
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sexual risk behavior is displayed by the shaded areas. The thinner horizontal double sided

arrows with the filled circles correspond to the effect sizes and their 95%-confidence intervals

for the transmission chain level fraction of follow-up visits (FUPs) with reported sex with

occasional partner by any of the infected individuals from the transmission chain. The vertical

dotted gray line depicts the reference R0 from the original model, i.e., using the index case to

define the sexual risk behavior.

DOI: https://doi.org/10.7554/eLife.28721.017

Our transmission chains are short in size; therefore we did not expect to see a huge impact of

the variations in sexual behavior on the effects. Indeed, the analyses revealed that even with

the modified definitions of the risky sexual behavior (and therefore addressing its variation) the

effect directions did not change, while the effects sizes did not exhibit a huge difference. In

particular, the significance of all risk determinants at the 5% level remained the same.

These findings indicate that the simplification of the equal distribution for the number of

secondary infections does not exhibit a dramatic impact on the outcomes in the case of short

transmission chains, which dominate in subcritical settings.

Comparison between Poisson and negative binomial offspring
distribution based models
To evaluate the rationale of using the simpler Poisson model we compared the estimates from

the baseline models over a range of sampling densities for both Poisson and negative

binomial offspring distribution. Since an implementation with modified transmission potential

of the index case is not available for the negative binomial model, we conducted the

sensitivity analyses with a fixed �index ¼ 1.
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Appendix 1—figure 7. Comparison between the Poisson and the negative binomial offspring

distribution baseline model R0 estimates. The dark gray and colored lines show the estimates

from the model with Poisson offspring distribution, while the black lines correspond to the

negative binomial distribution. The index case relative transmission potential parameter �index
was fixed to 1 and the sampling density (x-axis) varied. In the overall analysis the sampling

density was the same for all transmission chains regardless of their subtype. The vertical gray

lines depict the sampling densities used for each subtype in our study (above panels) and the

mean sampling density in the overall analysis (bottom panel).

DOI: https://doi.org/10.7554/eLife.28721.018

While the R0 estimates for the majority of the non-B subtypes were practically equal between

the two models (see Appendix 1—figure 7), the observed differences in the overall analysis
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and in the case of B and 02_AG subtypes were mostly larger for low sampling densities.

However, we also found that the Poisson model provided rather conservative R0 estimates and

therefore this should not affect our main conclusions.

In addition, we performed a likelihood ratio test to evaluate if the multivariate linear negative

binomial model (with �index ¼ 1) is significantly better than the corresponding Poisson model

(from Figure 3). The p-value of 0:74 indicated no strong preference of the negative binomial

over the Poisson model. Noteworthy, this implies that modelling the variability among the

transmission chains in terms of their characteristics sufficiently explains the heterogeneity

(dispersion parameter � of the negative binomial distribution) between the infected

heterosexuals forming these transmission chains.

Relaxed transmission cluster definition
We defined the Swiss heterosexual transmission chains as clusters on the phylogeny containing

100% viral sequences belonging to Swiss heterosexuals. To assess the impact of this definition

we relaxed the 100% threshold to 75%. All the sequences belonging to the Swiss heterosexuals

from these clusters formed more liberally defined transmission chains.
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Appendix 1—figure 8. Sensitivity analysis regarding the transmission cluster definition. The

upper panel (i) compares the estimated R0 with the original cluster definition (brighter lines)

with the R0 estimated based on the relaxed cluster definition (darker lines) from the overall

analysis (in gray) and subtype-stratified analyses (in colors). Similarly, the bottom panel (ii)

shows the comparison between the estimated time trend factors obtained from the

transmission chain sizes based on different cluster definition thresholds.

DOI: https://doi.org/10.7554/eLife.28721.019

With the relaxed threshold, we identified 3;039 transmission chains and repeated the main

analyses (Appendix 1—figure 8). As expected the R0 slightly increased, but stayed below 1.

Overall, we did not observe any noteworthy deviations.
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Missing follow-up data for reported sex with occasional partner
In the main analysis of the possible determinants of HIV transmission we imputed missing

follow-up information regarding sex with occasional partner with never reporting it (which is

equivalent to 0 reporting rate). To evaluate this imputation, we fitted the same multivariate

model with linear terms to the subset of the transmission chains in which the data about the

sex with occasional partner of the index case was available. However, the effect sizes did not

change dramatically; in particular, the effect directions did not change and the same set of

determinants was found to be significant (Appendix 1—figure 9).
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Appendix 1—figure 9. Subanalysis for the transmission chains with available follow-up informa-

tion about sex with occasional partner of the index case compared to the main analysis with

imputed data. The effect sizes from the subanalysis are shown in brighter colors and those from

the main analysis in dark. In the main analysis, the missing data were replaced by never

reporting sex with an occasional partner.

DOI: https://doi.org/10.7554/eLife.28721.020

Confidence intervals
In our study we used the normal approximation of the ML estimator to construct the 95%-CIs

and the prediction intervals. To verify the reliability of this assumption we considered

bootstrap and profile likelihood based CIs for each of the models.

For the parametric bootstrap, we sampled B ¼ 1000 new datasets of transmission chains from

the estimated transmission parameters (i.e., under the assumption that our estimated

parameters are the true parameters) for each model. To ensure that the newly sampled

datasets had the same sample size, in each repetition b 2 1; . . . ;Bf g we kept simulating from

each transmission chain until the new transmission chain had at least one observed infection (i.

e., such that the observed length was positive). Finally, for each sampled dataset we fitted the

same model, extracted the estimated transmission parameters and the corresponding Wald-
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type 95%-CIs. The overview of the parameters and the models is provided in Appendix 1—

table 1.

Appendix 1—table 1. Overview of all the parameters, their estimates and the 95%-confidence

intervals fitted in all the models presented in this study.

Subtypes
Parameter
number

Parameter
name

Parameter
estimate

Wald-type
95%-CI

Profile likelihood
95%-CI

Overall 1 log R0ð Þ �0:823 �0:876;�0:770ð Þ �0:878;�0:772ð Þ
B 2 log R0ð Þ �1:037 �1:121;�0:952ð Þ �1:124;�0:955ð Þ
C 3 log R0ð Þ �0:719 �0:879;�0:559ð Þ �0:892;�0:571ð Þ
01_AE 4 log R0ð Þ �0:826 �1:036;�0:615ð Þ �1:057;�0:632ð Þ
02_AG 5 log R0ð Þ �0:483 �0:587;�0:378ð Þ �0:594;�0:384ð Þ
A 6 log R0ð Þ �0:618 �0:751;�0:485ð Þ �0:760;�0:492ð Þ
other 7 log R0ð Þ �0:605 �0:758;�0:451ð Þ �0:771;�0:461ð Þ

Overall
8 log R0;ref

� �
�0:839 �0:894;�0:784ð Þ �0:895;�0:785ð Þ

9 Dateinfection�1:1:1996

365�10 �0:112 �0:187;�0:037ð Þ �0:188;�0:037ð Þ

B
10 log R0;ref

� �
�1:070 �1:165;�0:975ð Þ �1:169;�0:979ð Þ

11 Dateinfection�1:1:1996

365�10 �0:112 �0:234; 0:010ð Þ �0:236; 0:008ð Þ

C
12 log R0;ref

� �
�0:692 �0:851;�0:533ð Þ �0:864;�0:544ð Þ

13 Dateinfection�1:1:1996

365�10 �0:209 �0:466; 0:049ð Þ �0:473; 0:046ð Þ

01_AE
14 log R0;ref

� �
�0:781 �0:991;�0:570ð Þ �1:013;�0:588ð Þ

15 Dateinfection�1:1:1996

365�10 �0:255 �0:616; 0:106ð Þ �0:629; 0:101ð Þ

02_AG
16 log R0;ref

� �
�0:434 �0:539;�0:329ð Þ �0:545;�0:333ð Þ

17 Dateinfection�1:1:1996

365�10 �0:415 �0:609;�0:222ð Þ �0:615;�0:226ð Þ

A
18 log R0;ref

� �
�0:725 �0:892;�0:558ð Þ �0:907;�0:571ð Þ

19 Dateinfection�1:1:1996

365�10 �0:430 �0:660;�0:199ð Þ �0:672;�0:209ð Þ

other
20 log R0;ref

� �
�0:600 �0:754;�0:446ð Þ �0:767;�0:456ð Þ

21 Dateinfection�1:1:1996

365�10 �0:162 �0:397; 0:073ð Þ �0:403; 0:072ð Þ

Overall

22 log R0;ref

� �
�0:710 �0:780;�0:640ð Þ �0:782;�0:641ð Þ

23
Dateinfection�1:1:1996

365�10

� �2 �0:313 �0:451;�0:176ð Þ �0:457;�0:182ð Þ

24
Dateinfection�1:1:1996

365�10

� �3 �0:184 �0:283;�0:086ð Þ �0:288;�0:091ð Þ

Overall

25 log R0;ref

� �
�1:252 �1:366;�1:137ð Þ �1:369;�1:140ð Þ

26 SubtypeC 0:352 0:167; 0:538ð Þ 0:158; 0:531ð Þ
27 Subtype01 AE 0:274 0:046; 0:502ð Þ 0:029; 0:490ð Þ
28 Subtype02 AG 0:575 0:428; 0:721ð Þ 0:426; 0:720ð Þ
29 SubtypeA 0:430 0:271; 0:588ð Þ 0:266; 0:584ð Þ
30 Subtypeother 0:426 0:247; 0:606ð Þ 0:238; 0:600ð Þ

31 Dateinfection�1:1:1996

365�10 �0:214 �0:301;�0:127ð Þ �0:301;�0:128ð Þ

32 Age�32

10
0:007 �0:045; 0:058ð Þ �0:046; 0:057ð Þ

33 CD4�350

100
0:000 �0:018; 0:019ð Þ �0:019; 0:018ð Þ

34 Raterisk 0:230 0:095; 0:364ð Þ 0:096; 0:365ð Þ

35 Yearsdiagnosis�3

10
0:351 0:210; 0:492ð Þ 0:207; 0:490ð Þ

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Subtypes
Parameter
number

Parameter
name

Parameter
estimate

Wald-type
95%-CI

Profile likelihood
95%-CI

Overall

36 log R0;ref

� � �1:173 �1:301;�1:045ð Þ �1:304;�1:048ð Þ

37 1

10
log

Yearsdiagnosis
3

� �
1:727 1:049; 2:405ð Þ 1:064; 2:420ð Þ

38 SubtypeC 0:322 0:140; 0:505ð Þ 0:131; 0:498ð Þ
39 Subtype01 AE 0:246 0:020; 0:472ð Þ 0:004; 0:460ð Þ
40 Subtype02 AG 0:516 0:374; 0:659ð Þ 0:372; 0:658ð Þ
41 SubtypeA 0:404 0:246; 0:562ð Þ 0:241; 0:558ð Þ
42 Subtypeother 0:401 0:223; 0:580ð Þ 0:214; 0:574ð Þ
43

Dateinfection�1:1:1996

365�10

� �3 �0:231 �0:337;�0:124ð Þ �0:345;�0:131ð Þ

44
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Raterisk

p
0:230 0:094; 0:366ð Þ 0:096; 0:368ð Þ

45
Dateinfection�1:1:1996

365�10

� �4 �0:129 �0:227;�0:031ð Þ �0:235;�0:038ð Þ

DOI: https://doi.org/10.7554/eLife.28721.021

For a single parameter b (under the assumption that the true value equals the estimated

value bb) we therefore obtained a sample of ML estimators bb 1ð Þ; . . . ; bb Bð Þ, from which we

estimated the kernel densities and compared them to the normal approximation densities

used in the Wald CIs construction (Appendix 1—figure 10). Moreover, from the sample of

Wald-type 95%-CIs we calculated the coverage rate as the proportion of these CIs that

contained the true value bb.
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Empirical probability density function of ML estimator
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Appendix 1—figure 10. Empirical distribution of maximum likelihood (ML) estimator and the

Wald-type confidence intervals (CI) coverage rates. Each plot represents a single parameter

from a single model (see Appendix 1—table 1 for the parameters overview including their

values), where the number in the lower left corner denotes the parameter’s consecutive

parameter number. The light gray-shaded area represents the proportion of the Wald-type

95%-CIs from the parametric bootstrap simulations which contained the true value (depicted

by the vertical orange line), while the green-shaded area corresponds to those CIs from the

simulations that missed the true value. The numbers in the upper left corners are the

coverage rates from the parametric bootstrap. The original Wald 95%-CIs used in our study

are displayed with the light orange-area. The dark blue and gray lines show the empirical

distribution of ML estimators from the parametric bootstrap samples and the normal

approximation based probability density function, respectively. The horizontal red lines

depict the target coverage rate of 95%.

DOI: https://doi.org/10.7554/eLife.28721.022

Comparing the empirical distribution of the ML estimator from these simulations

(Appendix 1—figure 10) with the normal approximation from the Wald test, we concluded

that the latter represents a valid approximation. In addition, the coverage rates were all very

close to the target 95% or above.

Next, in addition to the parametric bootstrap as described above, we also performed a

nonparametric bootstrap. New datasets were generated by randomly sampling with

replacement from the existing dataset. To each newly sampled dataset all the models were

fitted to obtain nonparametric bootstrap samples of ML estimators for each individual

transmission parameter from Appendix 1—table 1. We then constructed the basic bootstrap

95%-CIs (Davison and Hinkley, 1997) as
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2bb� q�
97:5%;2

bb� q�
2:5%

� �
;

where q� denotes the corresponding percentile of the bootstrap sample bb 1ð Þ; . . . ; bb Bð Þ. Finally,
we constructed the profile likelihood based CIs (Held and Bové, 2013) and compared

different types of CIs against the Wald-type CIs (Appendix 1—figure 11).
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Profile likelihood based 95%-CI relative to the Wald-type 95%-CI

Basic nonparametric bootstrap 95%-CI relative to the Wald-type 95%-CI

Basic parametric bootstrap 95%-CI relative to the Wald-type 95%-CI

Appendix 1—figure 11. Comparison of different types of 95%-confidence intervals (CI) with

the normal approximation based Wald-type 95%-CIs. Each column corresponds to a different

type of CIs, namely the profile likelihood based CIs, the basic nonparametric bootstrap CIs

and the basic parametric bootstrap CIs. Each row represents a single parameter (the

overview of the parameters is provided in Appendix 1—table 1). The colorful lines show the

specific CIs compared to the corresponding Wald-type CIs, namely their relative widths and

positions. The gray-shaded areas represent the Wald-type 95%-CIs.

DOI: https://doi.org/10.7554/eLife.28721.023

These simulations indicated no significant difference between the widths of Wald-type and

profile likelihood based CIs. Besides, the Wald-type CIs did not appear to be systematically

wider or narrower compared to the bootstrap CIs.

To summarize, these simulations imply that the normal approximation Wald-type CIs used in

our study provide a reliable alternative to other more time-complex types of CIs.
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Appendix 2

DOI: https://doi.org/10.7554/eLife.28721.024

Selection of the predictive models

Single determinant models
To construct a multivariate predictive model for R0 we first focused on each single

determinant. More precisely, to find a best predictive model for a single factor we performed

both forward selection and backward elimination based on the AIC and BIC criteria (see

Appendix 2—table 1 for the case of establishment date). All terms which appeared in at least

one of the single determinant models were later used in the multivariate model.

Appendix 2—table 1. Establishment date models obtained with the AIC/BIC forward selection

and backward elimination and their respective AIC and BIC values as well as the p-values from

the likelihood ratio test compared to the null model without any covariates. Terms that were

part of the respective final model are marked by �.

AIC BIC

Forward Backward Forward Backward

Dateinfection � 1:1:1996

365 � 10
Dateinfection � 1:1:1996

365 � 10

� �2 � �

Dateinfection � 1:1:1996

365 � 10

� �3 � � � �

Dateinfection � 1:1:1996

365 � 10

� �4 � �

AIC 3364:3 3364:2 3364:3 3364:2

BIC 3382:4 3382:3 3382:4 3382:3

p-value from LR test <0:0001 <0:0001 <0:0001 <0:0001

DOI: https://doi.org/10.7554/eLife.28721.025

We chose the model obtained with the backward elimination procedure as the predictive

model based solely on the establishment date (Figure 2). It provided both the lowest BIC

and AIC value, therefore indicating the best goodness-of-fit (Appendix 2—table 1).

Multiple determinants model
Using the terms obtained in the single determinant predictive models (establishment date,

age at infection, earliest CD4 cell count, frequency of reporting sex with occasional partner

and time to diagnosis) and a viral subtype indicator, we constructed the final multiple

determinants model for the prediction as follows. Like before, we carried out both forward

and backward selection algorithms for both criteria. Among the resulting algorithms we

picked the one minimizing the BIC, since the BIC penalizes the model complexity stronger

than the AIC (Appendix 2—table 2).

Appendix 2—table 2. Multivariate models obtained with the AIC/BIC forward selection and

backward elimination algorithms. The terms listed in the table are the terms identified from the

single determinant model selections and the crosses indicate the terms entering the

multivariate models. The null model from the likelihood ratio test refers to the baseline model

without any covariates (not even the subtype).
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AIC BIC

Forward Backward Forward Backward

Subtype � � � �

Dateinfection � 1:1:1996

365 � 10

� �2

Dateinfection � 1:1:1996

365 � 10

� �3 � � � �

Dateinfection � 1:1:1996

365 � 10

� �4 � � �

Raterisk � � � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Raterisk

p � � �

1

10
log

Yearsdiagnosis

3

� �
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yearsdiagnosis

p
�

ffiffiffi
3

p
ffiffiffiffiffi
10

p � �

Yearsdiagnosis�3

10
� � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yearsdiagnosis

p
�
ffiffi
3

p
ffiffiffiffi
10

p
� �3 � �

ffiffiffiffiffiffiffiffiffiffi
CD4

p
�

ffiffiffiffiffiffiffiffi
350

p

10

Age�32

10

� �2

AIC 3254 3252 3254 3262

BIC 3314 3331 3314 3316

p-value from LR test <0:0001 <0:0001 <0:0001 <0:0001

DOI: https://doi.org/10.7554/eLife.28721.026
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Appendix 3

DOI: https://doi.org/10.7554/eLife.28721.027

Detailed derivation of the transmission chain size model
and statistical inference

Transmission chain size model
Transmission chains can naturally be modeled as branching processes. The index case

corresponds to the root of the process; each new infection represents a new offspring. The

generation of an individual in a transmission chain can therefore be interpreted as the

transmission degree relative to the index case - the first generation individuals got infected

directly from the index case, the second generation indirectly through one mediator, etc. In

other words, the transmission degree of a patient is the number of transmission events

needed to transfer the virus to this patient from the index case.

Towards probability generating function of the transmission chain size
Let Rk;n denote the number of secondary infections with transmission degree n produced by

the kth individual from the preceding generation, Sn the total number of new infections of

transmission degree n and QN the cumulative number of cases in the transmission chain with

the transmission degree at most N, that is,

Sn ¼
XSn�1

k¼1

Rk;n;

QN ¼
XN

n¼0

Sn ¼QN�1þ SN :

The index case establishes the transmission chain and corresponds to the generation 0,

therefore S0 ¼ Q0 ¼ 1.

Assuming that the numbers of secondary infections are independent and identically

distributed for all patients of the same transmission degree, let Rn denote the probability

generating function (PGF) of Rk;n, namely

Rn zð Þ :¼E zRk;n
� �

for each k 2 1; 2; . . . ; Sn�1f g. The expected number of secondary infections of degree n is

therefore given by

E Rk;n

� �
¼ d

dz
Rn zð Þ

����
z¼1

¼R 1ð Þ
n 1ð Þ:

Furthermore, assume that the numbers of secondary infections caused by different individuals

are independent between each other regardless of the transmission degree. The PGF QN of

QN is
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QN zð Þ :¼E zQN
� �

¼E zQN�1zSN
� �

¼ðaÞE E zQN�1zSN j Snf gN�1

n¼0

h ih i

¼ðbÞE zQN�1E zSN j Snf gN�1

n¼0

h ih i
¼E zQN�1E

YSN�1

k¼1

zRk;N j Snf gN�1

n¼0

" #" #

¼ðcÞE zQN�1

YSN�1

k¼1

E zRk;N j Snf gN�1

n¼0

h i" #

¼ðdÞE zQN�1

YSN�1

k¼1

E zRk;N
� �

" #
¼E zQN�1

YSN�1

k¼1

RN zð Þ
" #

¼E zQN�1RN zð ÞSN�1

h i
;

because (a) of the tower property of the conditional expectation, (b) QN�1 ¼
PN�1

k¼0
Sn is

Snf gN�1

n¼0
-measurable, (c) Rk;N

� 	SN�1

k¼1
are independent, and (d) Rk;N are independent from Snf gN�1

n¼0

for all k ¼ 1; 2; . . . ; SN�1. Repeating similar steps iteratively yields

QN zð Þ ¼E zQN�2zSN�1RN zð ÞSN�1

h i
¼E zQN�2E zRN zð Þð ÞSN�1 j Snf gN�2

n¼0

h ih i
(1)

¼E zQN�3zSN�2RN�1 zRN zð Þð ÞSN�2

h i
¼ . . .

¼E zQN�4 zRN�2 zRN�1 zRN zð Þð Þð Þð ÞSN�3

h i
¼ . . .

..

.

¼E zR1 zR2 . . . zRN zð Þ . . .ð Þð Þð Þð ÞS0
h i

¼ zR1 zR2 . . . zRN zð Þ . . .ð Þð Þð Þ:

The total size of the transmission chain is denoted by T and equals

T :¼ lim
N!¥

QN :

From the definition of T it follows that its PGF T equals

T zð Þ ¼ lim
N!¥

QN zð Þ (2)

for all z.

Probability generating function of a completely observed uniform transmission chain

Assume that the number of secondary infections follows the same distribution with PGF G for

all infected persons, namely

Rn �G

for every n (i.e., the transmission is uniform across different transmission degrees). The PGF

QN (Equation 1) then simplifies to

Q1 zð Þ ¼ zG zð Þ
Q2 zð Þ ¼ zG zG zð Þð Þ ¼ zG Q1 zð Þð Þ

..

.

QN zð Þ ¼ zG QN�1 zð Þð Þ:

Using Equation 2, the PGF T for each z solves the equation

T zð Þ ¼! zG T zð Þð Þ:

Probability generating function of a transmission chain with modified transmission

potential of the index case

From the perspective of the Swiss HIV heterosexual population the index case might have lost

some of its potential to transmit the virus prior to establishing the transmission chain in the
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population under consideration. The follow-up cases are infected while already in the

subpopulation and can therefore fully contribute to spreading. Sex workers and lonely

foreigners in Switzerland represent two examples of index cases with an enhanced

transmission potential. We assume that apart from the index case the numbers of secondary

infections are equally and independently distributed for all the other infected individuals. Let

�index denote the index case relative transmission potential (ICRTP). In terms of the model the

above assumptions can be summarized as

R1 zð Þ ¼ F zð Þ;
Rn zð Þ ¼ G zð Þ; for n>1;

where F and G denote the PGF of two distributions, such that

F 1ð Þ
1ð Þ ¼ �indexG 1ð Þ

1ð Þ;

namely E R1;1

� �
¼ �indexE Rk;n

� �
for all k 2 1; . . . ; Sn�1f g and n>1. In other words, the ICRTP is the

expected number of secondary infections of the index case relative to the expected number of

secondary infections of the rest of the transmission chain.

To compute the PGF of the transmission chain with modified transmissibility of the index case

we first introduce a skeleton function K, which controls the regular part/tail of the transmission

chain. Let K be the pointwise limit K zð Þ :¼ limN!¥KN zð Þ of the iteratively defined functions

K1 zð Þ :¼ z

KN zð Þ :¼ zG KN�1 zð Þð Þ:

The skeleton therefore solves the equation

K zð Þ ¼! zG K zð Þð Þ: (3)

Note that in the absence of the modified transmissibility of the index case, the skeleton

function K coincides with the PGF of the transmission chain size. Having introduced this

notation one can rewrite the PGF QN (Equation 1) as

Q1 zð Þ ¼ zF zð Þ ¼ zF K1 zð Þð Þ
Q2 zð Þ ¼ zF zG zð Þð Þ ¼ zF K2 zð Þð Þ
Q3 zð Þ ¼ zF zG zG zð Þð Þð Þ ¼ zF K3 zð Þð Þ

..

.

QN zð Þ ¼ zF KN zð Þð Þ:

As N ! ¥, this implies

T zð Þ ¼ zF K zð Þð Þ (4)

for all z.

Probability generating function of an incompletely observed transmission chain

Since not every HIV infected person is included in a cohort, linked to care or even diagnosed,

we only observe parts of the transmission chains. Suppose that each infection is detected with

probability p, independently of the others. Furthermore, assume that despite not all cases

being observed, the sampled patients belonging to the same true transmission chain could be

identified as members of this transmission cluster (and not as members of two or more

separate transmission clusters).

The true transmission chain can still be modeled with the branching process as above. Let tilde

(e) denote the observed cases. Since each case is detected at random with probability p the

following applies to the observed transmission chains.

. If Rk;n is defined as above then eRk;n denotes the number of secondary infections with transmis-

sion degree n caused by patient k which are actually observed. It follows
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eRk;njRk;n ~Bin Rk;n;p
� �

:

. Given the numbers of secondary infections with transmission degree n of all the patients the

observed number of infections of transmission degree n equals

eSn ¼
XSn�1

k¼1

eRk;n

and follows a binomial distribution, namely

eSnj Rk;n

� 	Sn�1

k¼1
~
XSn�1

k¼1

Bin Rk;n;p
� �

¼ Bin
XSn�1

k¼1

Rk;n;p

 !
¼ Bin Sn;pð Þ:

. The observed cumulative number of infected individuals with the transmission degree at

most N equals

eQN ¼
XN

n¼0

eSn ¼ eQN�1 þeSN ¼ eQN�1 þ
XSN�1

k¼1

eRk;N :

By conditioning on the cumulative number of infections of transmission degree up to N � 1 and on the

numbers of secondary infections of transmission degree N, eQN therefore follows a binomial

distribution, that is,

eQN jQN�1; Rk;N

� 	SN�1

k¼1
~Bin QN�1þ

XSN�1

k¼1

Rk;N ;p

 !
¼ Bin QN�1 þ SN ;pð Þ ¼ Bin QN ;pð Þ:

Since B zð Þ ¼ 1� pð Þ þ pzð Þn is the PGF of a Bin n; pð Þ-distributed random variable, the PGF of eQN can

be expressed as

eQN zð Þ ¼E z
eQN

� �
¼ðaÞE E z

eQN jQN

� �� �

¼ðbÞE E E z
eQN jQN�1; Rk;N

� 	SN�1

k¼1

� �
jQN

� �� �

¼ðcÞE E 1� pð Þþ pzð ÞQN�1þ
PSN�1

k¼1
Rk;N jQN

� �� �
¼E E 1� pð Þþ pzð ÞQN jQN

h ih i

¼ðaÞE 1� pð Þþ pzð ÞQN

h i

¼QN 1� pð Þþ pzð Þ

in terms of the PGF QN , because (a) of the tower property, (b) of the tower property for s-algebras

s QNð Þ � s QN�1; Rk;N

� 	SN�1

k¼1

� �
due to the relation QN ¼ QN�1 þ

PSN�1

k¼1
Rk;N , and (c) QN given QN�1 and

Rk;N

� 	SN�1

k¼1
is binomially distributed.

This allows us to obtain the PGF eT of the observed transmission chain length eT ¼ lim
N!¥

eQN ,

namely

eT zð Þ ¼ T 1� pð Þþ pzð Þ;

where T denotes the PGF of the true underlying transmission chain.

Finally, the PGF of the observed transmission chain size with modified transmissibility of the

index case equals

eT zð Þ ¼ T 1� pð Þþ pzð Þ ¼ 1� pð Þþ pzð ÞF K 1� pð Þþ pzð Þð Þ: (5)

Inferring the transmission parameters
Probability generating functions enable us to obtain the state probabilities, namely the

probability of observing a transmission chain of length j can be calculated as
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P eT ¼ j
� �

¼
eT jð Þ

0ð Þ
j!

;

where jð Þ denotes the jth derivative. The transmission chains with no observed cases are not

observable, therefore we are interested in the probability that an observed chain is of length j,

which equals

P eT ¼ jjeT>0
� �

¼ P eT ¼ j
� �

1�P eT ¼ 0
� �¼ 1

j!
�
eT jð Þ

0ð Þ
1� eT 0ð Þ

:

So far, we have not included the basic reproductive number or any other transmission-related

parameters in the PGF of transmission chain size eT . In the following paragraphs we extensively

present the statistical inference (following Held and Bové, 2013) of the transmission

parameters based on the transmission chain size model described above.

The likelihood function

Let v denote a vector of transmission parameters, for instance v ¼ R0 in case of a single

transmission parameter corresponding to the basic reproductive number. Assuming that the

transmission chain sizes are independent, the likelihood function of the sample of I observed

transmission chain sizes et :¼ eti
� 	I

i¼1
is defined by

Lv vjet
� �

:¼
YI

i¼1

1

eti!
�
eT eti
� �

0;vð Þ
1� eT 0;vð Þ

;

where eT z;vð Þ denotes the PGF of transmission chain size with transmission parameters v. The

corresponding log-likelihood function is

‘v vjet
� �

¼
XI

i¼1

log eT eti
� �

0;vð Þ
� �

� log eti!ð Þ� log 1� eT 0;vð Þ
� �� �

: (6)

Since the transmission parameters are often required to be positive the log-parameterization

is more appropriate. Let u denote the transmission parameters on the logarithmic scale,

namely u :¼ log vð Þ. The log-parameterized log-likelihood function is therefore

‘ ujet
� �

:¼ ‘v log vð Þjet
� �

. The Jacobian matrix corresponding to the log-parameterization equals

Jv uð Þ ¼ diag eu
� �

¼ diag vð Þ;

where diag xð Þ denotes a diagonal matrix with vector x representing its diagonal elements.

The score function and the Fisher information matrix

The maximum likelihood (ML) estimator bv maximizes the log-likelihood function and is a root

of the score function

uv vjet
� �

:¼ q

qv
‘v vjet
� �

¼
XI

i¼1

q

qv
eT eti
� �

0;vð Þ
eT eti
� �

0;vð Þ
þ

q

qv
eT 0;vð Þ

1� eT 0;vð Þ

0
@

1
A;

or equivalently, the ML estimator bu solves

u bujet
� �

¼ J
T
v uð Þuv e

bujet
� �

¼! 0;

where u denotes the score function corresponding to the log-parameterized log-likelihood ‘.

The Fisher information matrix Iv vjet
� �

:¼ � q
2

qv2 ‘v vjet
� �

is given by
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Iv vjet
� �

¼�
XI

i¼1

q
2

qv2
eT eti
� �

0;vð Þ
eT eti
� �

0;vð Þ
�

q

qv
eT eti
� �

0;vð Þ
eT eti
� �

0;vð Þ

0
@

1
A

2

þ
q
2

qv2
eT 0;vð Þ

1� eT 0;vð Þ
þ

q

qv
eT 0;vð Þ

1� eT 0;vð Þ

 !2
0
@

1
A

and equals

I ujet
� �

¼ J
T
v uð ÞIv eujet

� �
Jv uð Þ� diag uv eujet

� �� �
Jv uð Þ

under the log-parameterization due to the chain rule in higher dimensions and the special

form of the transformation corresponding to the log-parameterization. The PGF function eT
and its derivatives are thus crucial (and sufficient) for the statistical inference, since the log-

likelihood function ‘, the score function u and the Fisher information matrix I can be

expressed in terms of eT only.

Confidence intervals and hypothesis testing

Assuming that the regularity conditions are satisfied (Held and Bové, 2013) the ML estimator

is unbiased and asymptotically normally distributed with variance equal to the inverse

observed Fisher information matrix. Hence, for each parameter � 2 u we can construct the

Wald a%-confidence interval as

C�;a ¼ b�� z1þa
2

se b�
� �

; b�þ z1þa
2

se b�
� �� �

where z1þa
2

denotes the 1þa
2
-quantile of the standard normal distribution, and the standard error

se b�
� �

is defined as

se b�
� �

:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1 bujet

� �
��

r
;

and �� denotes the diagonal element of the inversed observed Fisher information matrix I ujet
� �

corresponding to parameter �. The approximate a%-confidence interval for the original

parameter ! is obtained by the reverse transformation

C!;a ¼ eC�;a :

Similarly, to test the hypothesis H0 : � ¼ �0 against the alternative HA, the Wald test statistic

t� �0ð Þ :¼
b�� �0

se b�
� �

can be used. Assuming the standard normal distribution of the test statistic under null

hypothesis, the p-value equals

. 2 � 1�F t� �0ð Þj jð Þð Þ for the alternative hypothesis HA : � 6¼ �0,

. F t� �0ð Þð Þ for the alternative HA : �<�0, and

. 1�F t� �0ð Þð Þ for the alternative HA : �>�0;

where F is the cumulative distribution function of the standard normal distribution.

Generalized transmission chain size model
Suppose that the variability of one of the parameters can be explained through a linear

combination of different covariates, namely

ui :¼ bT
xi;h

� �

are the transmission parameters of the ith chain with characteristics xi, where h denotes the

remaining parameters from u which are not modeled as a linear combination. Furthermore, it

is plausible to assume that while the transmission chains share all the transmission parameters

b;hð Þ, their transmission chain size distribution may differ due to different sampling densities
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or different offspring distribution of the index case (for instance, for the transmission chains

originating from other Swiss transmission groups the ICRTP is irrelevant/equals �index ¼ 1). Let

eT i be the PGF corresponding to the transmission chain i and let X :¼ xif gIi¼1
. The generalized

log-likelihood function is hence given by

‘ b;hjet;X
� �

¼
XI

i¼1

log eT eti
� �
i 0;vi b;hð Þð Þ

� �
� log eti!ð Þ� log 1� eT i 0;vi b;hð Þð Þ

� �� �
;

where

vi b;hð Þ :¼ eb
T
xi ;eh

� �
:

The corresponding Jacobian matrix equals

Jvi
b;hð Þ ¼ eb

T
xix

T
i 0

0 diag ehð Þ

� �
:

In the generalized model, the score function is

u b;hjet;X
� �

:¼ q

q b;hð Þ ‘ b;hjet;X
� �

¼
XI

i¼1

Jvi
b;hð ÞT

q

qv
eT eti
� �
i 0;vi b;hð Þð Þ

eT eti
� �
i 0;vi b;hð Þð Þ

þ
q

qv
eT i 0;vi b;hð Þð Þ

1� eT i 0;vi b;hð Þð Þ

0
B@

1
CA

and the Fisher information matrix as

I b;hjet;X
� �

:¼� q
2

q
2 b;hð Þ

‘ b;hjet;X
� �

¼�
XI

i¼1

Jvi
b;hð ÞT diag

q

qv
eT eti
� �
i 0;vi b;hð Þð Þ

eT eti
� �
i 0;vi b;hð Þð Þ

þ
q

qv
eT i 0;vi b;hð Þð Þ

1� eT i 0;vi b;hð Þð Þ

0
B@

1
CAJui b;hð Þ

0
B@

þ
q
2

qv2
eT eti
� �
i 0;vi b;hð Þð Þ
eT eti
� �
i 0;vð Þ

�
q

qv
eT eti
� �
i 0;vi b;hð Þð Þ

eT eti
� �
i 0;vi b;hð Þð Þ

0
B@

1
CA

20
B@

þ
q
2

qv2
eT i 0;vi b;hð Þð Þ

1� eT i 0;vi b;hð Þð Þ
þ

q

qv
eT i 0;vi b;hð Þð Þ

1� eT i 0;vi b;hð Þð Þ

 !2
1
AJvi

b;hð Þ

1
A

Prediction intervals

It is tempting to construct an approximate confidence interval for the parameter �i :¼ bT
xi.

Since the parameter �i is a prediction rather than an estimate, the element of interest is the

prediction interval, which takes into account both the characteristics xi and the uncertainty of

all parameter estimates bb.
Assuming that the ML estimator bb; bh

� �
is asymptotically normally distributed, it follows that

the linear combination bbT
xi is also asymptotically Gaussian, specifically

bbT
xi ~

a: N bT
xi;x

T
i Var

bb
� �

xi

� �
:

The variance Var bb
� �

can be approximated by the inverse of the observed Fisher information

matrix as

Var bb
� �

»I�1 bb;bhjet;X
� �

bb
:

Finally, an approximate a%-prediction interval for �i is constructed as
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P�i ;a ¼ bbT
xi � z1þa

2

se bbT
xi

� �
;bbT

xi þ z1þa
2

se bbT
xi

� �� �
;

with

se bbT
xi

� �
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
i Var

bb
� �

xi

r
:

Example: Poisson model
Suppose that the number of secondary infections follows the Poisson distribution with

parameter R0. Taking into account the modified transmissibility of the index case �index

(wherever applicable), the PGFs F and G for the index case and the tail, respectively, are

F z;R0ð Þ ¼ e�indexR0 z�1ð Þ;

G z;R0ð Þ ¼ eR0 z�1ð Þ:

The skeleton function K thus solves

K z;R0ð Þ ¼! zeR0 K z;R0ð Þ�1ð Þ; 8z: (7)

Consider an imperfectly sampled transmission chain with probability of detection p and with

ICRTP �index. The aim is to obtain the Taylor coefficients of eT around z ¼ 0 to be able to

estimate the transmission parameter R0 with the maximum likelihood approach since they are

needed to calculate the log-likelihood (Equation 6).

Let

w :¼ 1� pð Þþ pz

and

Y w;R0ð Þ :¼ eT w� 1� pð Þ
p

;R0

� �

such that Y 1� pð Þ þ pz;R0ð Þ ¼ eT z;R0ð Þ and that the Equation 5 of the PGF of observed

transmission chain size eT simplifies to

Y w;R0ð Þ ¼wF K w;R0ð Þð Þ:

Taking into account the PGF F of the index case implies

Y w;R0ð Þ ¼we�indexR0 K w;R0ð Þ�1ð Þ:

Solving for K w;R0ð Þ yields

K w;R0ð Þ ¼ 1

�indexR0

log
Y w;R0ð Þ

w

� �
þ 1:

Plugging this into Equation 7 gives

1

�indexR0

log
Y w;R0ð Þ

w

� �
þ 1¼we

1

�index
log

Y w;R0ð Þ
w

� �

1

�indexR0

log
Y w;R0ð Þ

w

� �
¼w

Y w;R0ð Þ
w

� � 1

�index�1:

With Z w;R0ð Þ :¼ Y w;R0ð Þ
w

� � 1

�index , the last equation is equivalent to
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1

R0

log Z w;R0ð Þð Þ ¼wZ w;R0ð Þ� 1

Z w;R0ð Þ ¼ eR0 wZ w;R0ð Þ�1ð Þ

Z w;R0ð Þe�R0wZ w;R0ð Þ ¼ e�R0

�R0wZ w;R0ð Þe�R0wZ w;R0ð Þ ¼�R0we
�R0 ;

which is an equation of the form f wð Þef wð Þ ¼ g wð Þ. The latter admits a solution f wð Þ ¼ W0 g wð Þð Þ,
where W0 is the principal branch of the Lambert W function (Corless et al., 1996). Thus

Z w;R0ð Þ ¼W0 �R0we
�R0ð Þ

�R0w
;

and finally,

Y w;R0ð Þ ¼wZ w;R0ð Þ�index¼w
W0 �R0we

�R0ð Þ
�R0w

� ��index

¼w e�R0
W0 �R0we

�R0ð Þ
�R0we�R0

� ��index

¼we��indexR0
W0 �R0we

�R0ð Þ
�R0we�R0

� ��index

:

Using the relation W0 �xð Þ
�x

¼ e�W0 �xð Þ (which follows from the definition of W0 �xð Þ), we have

Y w;R0ð Þ ¼we��indexR0e��indexW0 �R0we
�R0ð Þ:

From the Taylor expansion of e�gW0 �xð Þ ¼P¥

m¼0
g g þ mð Þm�1xm

m!
around x ¼ 0 (equality (2.36) in

Corless et al., 1996), we obtain

Y w;R0ð Þ ¼we��indexR0

X¥

m¼0

�index mþ �indexð Þm�1

m!
R0we

�R0

� �m

¼
X¥

m¼0

�index mþ �indexð Þm�1
Rm
0
e�R0 mþ�indexð Þ

m!
wmþ1

¼
X¥

m¼1

�index mþ �index � 1ð Þm�2
Rm�1

0
e�R0 mþ�index�1ð Þ

m� 1ð Þ! wm:

In terms of eT this yields

eT z;R0ð Þ ¼
X¥

m¼1

�index mþ �index � 1ð Þm�2
Rm�1

0
e�R0 mþ�index�1ð Þ

m� 1ð Þ! 1� pð Þþ pzð Þm: (8)

Unfortunately, we need Taylor expansion around z ¼ 0 to derive the state probabilities (and

consequently the log-likelihood function). By applying the binomial theorem, eT can be re-

written as

eT z;R0ð Þ ¼
X¥

m¼1

�index mþ �index � 1ð Þm�2
Rm�1

0
e�R0 mþ�index�1ð Þ

m� 1ð Þ!
Xm

k¼0

m

k

� �
1� pð Þm�k

pkzk

¼
X¥

k¼0

X¥

m¼k_1

�index mþ �index � 1ð Þm�2
Rm�1

0
e�R0 mþ�index�1ð Þ

m� 1ð Þ!
m

k

� �
1� pð Þm�k

pkzk

eT z;R0ð Þ ¼
X¥

k¼0

�index
p

1�p

� �k

k!

X¥

m¼k_1

m mþ �index � 1ð Þm�2
Rm�1

0
e�R0 mþ�index�1ð Þ

1� pð Þm
m� kð Þ!

 !
zk;

with m ¼ k _ 1 denoting m ¼ max k; 1f g.
Initial estimate for R0

Since the optimization problem of maximizing the likelihood does not admit a closed-form

solution, the ML estimator is obtained with numerical techniques for which a suited initial
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estimate for R0 is required. In the following paragraphs we present one possibility for

obtaining a useful starting value (which was also implemented and used in our analyses).

Let

� :¼ 1

I

XI

i¼1

eti

be the observed average chain size (based on a sample of I observed chains et like proposed in

Blumberg and Lloyd-Smith, 2013b). � represents a reasonable estimate for

�»E eTjeT>0
� �

¼ E eT
� �

1�P eT ¼ 0
� �¼

eT 1ð Þ
1;R0ð Þ

1� eT 0;R0ð Þ
:

The definition of the skeleton function K for transmission parameters v implies K 1;vð Þ ¼ 1.

Implicitly deriving Equation 3 with respect to z implies

K 1ð Þ
1;vð Þ ¼ 1

1�G 1ð Þ
1;vð Þ

;

since G 1;vð Þ ¼ 1 (just like for any PGF). Moreover, implicitly deriving Equation 5 with respect

to z yields

eT 1ð Þ
1;vð Þ ¼ p � F K 1;vð Þ;vð ÞþF 1ð Þ K 1;vð Þ;vð Þ �K 1ð Þ

1;vð Þ � p

¼ p � F 1;vð ÞþF 1ð Þ
1;vð Þ � 1

1�G 1ð Þ
1;vð Þ

� p

¼ p 1þ F 1ð Þ
1;vð Þ

1�G 1ð Þ
1;vð Þ

 !
:

Under the Poisson model, the latter equals to

eT 1ð Þ
1;R0ð Þ ¼ p 1þ �indexR0

1�R0

� �
:

Next, we can use the first Taylor coefficient of eT z;R0ð Þ from Equation 8, namely

eT 0;R0ð Þ» e��indexR0 1� pð Þ. In order to obtain a quadratic equation with respect to R0, we further

use the approximation e��indexR0 » 1� �indexR0, such that 1� eT 0;R0ð Þ» 1� 1� �indexR0ð Þ 1� pð Þ.
This yields the quadratic equation

�¼!
p 1þ �indexr0

1�r0

� �

pþ 1� pð Þ�indexr0

with the roots

r0 ¼
a�

ffiffiffi
b

p

c
;

where

a¼ �index � p� 1ð Þþ pð Þþ p �� 1ð Þ
b¼ 4�index �� 1ð Þ� 1� pð Þpþ �index�þ p� �index þ�þ �index�ð Þpð Þ2

c¼�2�index� 1� pð Þ:

Should none of the roots lie within 0; 1ð Þ, we could use the following feature. If the average

size of the observed chain equals �, the average size of the complete transmission chains

would be roughly �
p
(since the mean value of the binomial distribution Bin n; pð Þ is np). Hence,
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�

p
»E T½ � ¼ T 1ð Þ

1;vð Þ:

Equation 4 then implies

T 1ð Þ
1;!ð Þ ¼ F K 1;!ð Þ;!ð ÞþF 1ð Þ K 1;!ð Þ;!ð Þ �K 1ð Þ

1;!ð Þ

¼ 1þF 1ð Þ
1;!ð Þ � 1

1�G 1ð Þ
1;!ð Þ

:

In case of the Poisson model, the initial estimate for R0 can be therefore obtained by solving

the equation

�

p
¼! 1þ �indexr0

1� r0
;

which has the solution

r0 ¼
�� p

�indexpþ�� p
:

Generalized Poisson model

Let eT :¼ eti
� 	I

i¼1
be a sample of I observed transmission chains where each observed

transmission chain eti carries the following information

eti :¼ eti;xi;pi;�index;i
� �

;

namely the observed chain sizeeti, the chain characteristics xi, the probability pi at which each

infection in the chain is observed, and the index case relative transmission potential �index;i. In

the generalized Poisson transmission chain size distribution model we assume that the

heterogeneity of the basic reproductive number R0 can be explained by the variability of the

demographic characteristics of the transmission chains, namely

log R0;i

� �
:¼ bT

xi:

The vector b describes the effect of the chain characteristics on the basic reproductive number

R0 and it is the same for all transmission chains.

To obtain the maximum likelihood estimates for b, we need initial values of the estimates. One

possibility is to use the coefficients from the linear regression model, in which the response

values are the individual initial estimates for R0 for each transmission chain. More precisely,

imagine that each transmission chain eti is a sample of transmission chains itself and therefore

we can obtain the initial r0;i estimates as described above. In the next step, we fit the linear

regression model

log r0;i
� �

:¼ bT
0
xi þ "i; "i ~N 0;s2

� �
;

and use bb
0
as the initial values.

Example: Negative binomial model
Assume that the number of secondary infections caused by an individual is negative binomially

distributed with mean R0 and dispersion parameter �. Its PGF equals

G z;R0; �ð Þ ¼ 1þR0

�
1� zð Þ

� ���

:

For the simplicity assume that index case has the same transmission potential as the remaining

part of the transmission chain, namely F � G (which coincides with �index ¼ 1). The skeleton

function K z;R0; �ð Þ is therefore a solution of the equation
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K z;R0; �ð Þ ¼ z 1þR0

�
1�K z;R0; �ð Þð Þ

� ���

;

which does not admit a closed-form solution. However, as a consequence of the Lagrange

inversion theorem its Taylor coefficients around z ¼ 0 can be explicitly calculated

(Blumberg and Lloyd-Smith, 2013b) as

K kð Þ
0;R0; �ð Þ ¼ G �kþ k� 1ð Þ

G �kð Þ �
R0

�

� �k�1

1þ R0

�

� ��kþk�1
:

Since we assumed F � G, it follows T z;R0; �ð Þ ¼ K z;R0; �ð Þ for all z. For a transmission chain in

which each case is observed with probability p, the PGF of the observed transmission chain

size equals

eT z;R0; �ð Þ ¼ T 1� pð Þþ pz;R0; �ð Þ:

By applying the binomial theorem to the Taylor expansion around z ¼ 0 of K z;R0; �ð Þ the
higher-order derivatives

eT kð Þ
0;R0; �ð Þ ¼

X¥

m¼k

G �mþm� 1ð Þ
G �mð ÞG m� kþ 1ð Þ

R0

�

� �m�1

1þ R0

�

� ��mþm�1
pk 1� pð Þm�k

are obtained (which coincides with the result from Blumberg and Lloyd-Smith, 2013a).

In similar manner as in the case of Poisson model, the generalized negative binomial model

can be derived by introducing

log R0;i

� �
¼ bT

xi:

The sampling density p can vary between the transmission chains (or their characteristics, for

instance between the subtypes), while the dispersion parameter � is kept constant among all

the transmission chains.
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