Accepted Manuscript

Title: Deciphering the complete deletion of the mgrp locus in an unusual colistin-resistant klebsiella pneumoniae colonizing the gut of a traveler returning from india

Author: Odette J. Bernasconi, Valentina Donà, João Pires, Esther Kuenzli, Christoph Hatz, Francesco Luzzaro, Vincent Perreten, Andrea Endimiani

PII: S0924-8579(17)30362-X
DOI: https://doi.org/doi:10.1016/j.ijantimicag.2017.09.014
Reference: ANTAGE 5271

To appear in: International Journal of Antimicrobial Agents

Received date: 12-6-2017
Accepted date: 28-9-2017

Please cite this article as: Odette J. Bernasconi, Valentina Donà, João Pires, Esther Kuenzli, Christoph Hatz, Francesco Luzzaro, Vincent Perreten, Andrea Endimiani, Deciphering the complete deletion of the mgrp locus in an unusual colistin-resistant klebsiella pneumoniae colonizing the gut of a traveler returning from india, International Journal of Antimicrobial Agents (2017), https://doi.org/doi:10.1016/j.ijantimicag.2017.09.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Deciphering the Complete Deletion of the MgrB Locus in an Unusual Colistin-Resistant Klebsiella pneumoniae Colonizing the Gut of a Traveler Returning from India

Odette J. Bernasconi,1,2§ Valentina Donà,1,3,¥ João Pires,1,2 Esther Kuenzli,3,4 Christoph Hatz,3,4 Francesco Luzzaro,5 Vincent Perreten,6 and Andrea Endimiani 1*

1 Institute for Infectious Diseases, University of Bern, Bern, Switzerland; 2 Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; 3 Swiss Tropical and Public Health Institute, Basel, Switzerland; 4 Division of Communicable Diseases, Institute for Social and Preventive Medicine, University of Zurich, Zurich, Switzerland; 5 Laboratory of Microbiology, A. Manzoni Hospital, Lecco, Italy; 6 Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland

§ Contributed equally

¥ Present address: Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland

*Corresponding Author:
Prof. Andrea Endimiani MD, PhD
Institute for Infectious Diseases, University of Bern
Friedbühlstrasse 51, CH-3001, Bern, Switzerland
Phone: +41-31-632 8 632; Fax: +41-31-632 8 766
Emails: andrea.endimiani@ifik.unibe.ch; aendimiani@gmail.com
Sir,

most colistin-resistant (Col-R) *Klebsiella pneumoniae* strains possess alterations of the two-component systems PhoP/Q and PmrA/B. These systems respond to environmental stimuli increasing the expression of the operon *pmrHFIJKLM* whose products are responsible for lipid A modifications leading to decreased affinity for polymyxins. This process is regulated by a negative feedback of the *mgrB* gene that encodes for a small protein repressing the PhoP/Q system. Thus, inactivation of *mgrB* leads to polymyxin resistance. The most common *mgrB* alteration is the insertional inactivation, but nonsense point mutations leading to premature stop codon, as well as partial or complete deletion (Δ) of the *mgrB* locus are also described [1]. In the latter case, no PCR amplification of the locus is obtained and the Δ site remains unknown [2-4].

During an ongoing survey [5], a Col-R *K. pneumoniae* (96R-Kp) was found in the stools of a 46-year old Swiss healthy woman collected after a 35-day trip to India in August 2015. Screening for Col-R strains was specifically achieved by plating overnight enrichments of the stools (Luria-Bertani broth without and with 2 μg/mL colistin) on selective agar plates (CHROMagar Orientation plus 4 μg/mL of colistin and 8 μg/mL of vancomycin without or with 2 μg/mL of cefotaxime). Colonies were then identified using MALDI-TOF MS (Bruker), while MICs were obtained using microdilution GNX2F panels (Trek Diagnostics) [5]. Notably, the pre-trip stools did not contain any Col-R strains and the follow up screening of the stools at 3, 6, 12 months resulted negative. Moreover, 96R-Kp was the only Col-R *K. pneumoniae* strain identified after screening the pre- and post-trip stools of 47 travelers to South-Asian countries.

96R-Kp showed to be resistant to polymyxins (both colistin and polymyxin B MICs >4 μg/mL; Etest MIC for colistin of 32 μg/mL), but not to other antibiotics (e.g., cefotaxime, ciprofloxacin, gentamicin, and trimethoprim-sulfamethoxazole MICs of ≤1, ≤0.25, ≤1, ≤0.5
μg/mL, respectively) using the EUCAST criteria (version 7.0, 2017). The plasmid-mediated
colistin resistance mcr-1 gene was not detected by PCR amplifications [5]. PCR mapping of
the mgrB locus was also attempted with three previously described primers (flanking the
gene: 1F/R and 2F/R and internal: 3F/R;) [3], but no amplifications were obtained. As
anticipated, this phenomenon was already observed, but not further explored with whole
genome sequencing (WGS) [2-4]. Using primers 1F/R, only Cannatelli et al. could detect a
ΔmgrB locus of 1’142 bp (from nucleotides -400 to 599 respectively to the mgrB) in a unique
K. pneumoniae isolate [3].

To decipher the underlying molecular mechanism of colistin resistance, 96R-Kp underwent
WGS with Illumina MiSeq and de novo assembly was performed with SPAdes v3.9.0
(GenBank: NIJI00000000). The strain was of ST2261 and capsular type K18 based on the wzi
allele. Reads were mapped with the Geneious software v10.0.3 (Biomatters) against the
reference genome of K. pneumoniae RJF999 (GenBank: CP014010) indicating that 96R-Kp
lacked a large region of 5.4-kb containing 10 genes including mgrB (Figure 1).

A BLAST search was performed with a ~16-kb region (nucleotides from 3’334’049 to
3’350’144; Fig. 1) containing the mgrB locus of K. pneumoniae RJF999. The comparison
recognized over a hundred deposited sequences sharing >99% identity with the query,
suggesting a highly conserved location of mgrB on the chromosome of K. pneumoniae strains
(Supplementary Fig. S1). More importantly, a BLAST search of the ~10.6-kb homologous
region found in 96R-Kp did not identify other deposited K. pneumoniae genomes with the
same 5.4-kb ΔmgrB locus (Supplementary Fig. S2).

To rapidly characterize Col-R strains possessing large ΔmgrB not amplified with primers
1F/R [3], we designed primers mgrpΔ-FW (5’-ACCCTGGATAGCGGAGAAGT-3’) and
mgrpΔ-RII (5’-CCGTCCCTTTACCGAAGGTC-3’) and performed long PCRs implementing
iProof High Fidelity Taq (Bio-Rad). For 96R-Kp, the PCR gave a product of 561 bp and its
DNA sequence (GenBank: MF287165) confirmed the 5.4-kb Δ of the mgrB-containing region corresponding to nucleotides 3’339’825 to 3’345’246 of the K. pneumoniae reference genome (Fig. 1). As a proof of concept, we also tested 9 Col-R K. pneumoniae strains and 2 that were fully-susceptible to polymyxins. As expected, the two groups of K. pneumoniae isolates yielded PCR products of ~6-kb (Supplementary Fig. S3), and DNA sequencing using primers mgrBΔ-FW and mgrBΔ-RII confirmed that the regions flanking the 5.4-kb ΔmgrB locus were identical to both 96R-Kp and K. pneumoniae RJF999.

This is the first study reporting the WGS of a not previously reported and unusual Col-R K. pneumoniae lacking a large region within the mgrB locus, thus providing detailed knowledge on the chromosomal location and genetic environment of the excised site. We are unable to define either the mechanism responsible for the deletion and the benefit for K. pneumoniae of having such an important deletion in a highly conserved chromosomal locus. However, the implementation of our new primers will allow determining whether more Col-R isolates contain the same or similar mechanisms of colistin resistance.

DECLARATIONS

Funding: This work was supported by Swiss National Science Foundation (SNF grant No. 153377 to AE). Odette J. Bernasconi is a PhD student (2015-2018) supported by Hans Sigrist Foundation (Bern, Switzerland). JP was a PhD student (2014–2017) supported by the SNF. The study was approved by the Ethikkommission Nordwest- und Zentralschweiz (EKNZ 239/12).

Competing Interests: None

Ethical Approval: The study was approved by the Ethikkommission Nordwest- und Zentralschweiz (EKNZ 239/12)
REFERENCES

Figure 1. Linear comparison of 16-kb containing the mgrB locus of *K. pneumoniae* RJF999 and the ΔmgrB locus of *K. pneumoniae* 96R-Kp using the EasyFig software. Arrows indicate the open reading frames, while their direction indicate the gene orientation. Green arrows represent the gap content, the red one the mgrB gene. Protein names are indicated above each gene and the number of the first nucleotide is shown below. Beginning and end of the gap, as well as position and direction of the primers used, are indicated on the top and bottom of the figure. The size of the arrows and position of primers is not in scale. The grey areas indicated that sequences share >99% identity.

Supplementary Figure S1. BLAST search performed with the 16-kb region (nucleotides from 3’334’049 to 3’350’144; Fig. 1) containing the mgrB locus of *K. pneumoniae* RJF999. The comparison recognized over a hundred deposited sequences sharing >99% identity with the query, suggesting a highly conserved location of mgrB on the chromosome of *K. pneumoniae* strains.

Supplementary Figure S2. BLAST search performed with the ~10.6-kb sequence found in 96R-Kp. Other deposited *K. pneumoniae* genomes with the same ~5.4-kb ΔmgrB were not found.

Supplementary Figure S3. Agarose gel showing amplicons of the partial mgrB environment for colistin-resistant (Col-R) or colistin-susceptible (Col-S) *K. pneumoniae* strains. DNA was amplified using iProof High Fidelity Taq (Bio-Rad) and primers mgrBΔ-FW/-RVII. A 2-log DNA ladder was used to determine the fragment sizes. Neg, negative control.