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Abstract In this paper, we analyze the morphology of the

Andes of Peru and its evolution based on the geometry of

river channels, their bedrock profiles, stream gradient

indices and the relation between thrust faults and mor-

phology. The rivers of the Pacific Basin incised Mesozoic

sediments of the Marañon thrust belt, Cenozoic volcanics

and the granitic rocks of the Coastal Batholith. They are

mainly bedrock channels with convex upward shapes and

show signs of active ongoing incision. The changes in

lithology do not correlate with breaks in slope of the

channels (or knick points) such that the high gradient

indices (K) with values between 2,000–3,000 and higher

than 3,000 suggest that incision is controlled by tectonic

activity. Our analysis reveals that many of the ranges of the

Western Cordillera were uplifted to the actual elevations

where peaks reach to 6,000 m above sea level by thrusting

along steeply dipping faults. We correlate this uplift with

the Quechua Phase of Neogene age documented for the

Subandean thrust belt. The rivers of the Amazonas Basin

have steep slopes and high gradient indices of 2,000–3,000

and locally more than 3,000 in those segments where the

rivers flow over the crystalline basement of the Eastern

Cordillera affected by vertical faulting. Gradient indices

decrease to 1,000–2,000 within the east-vergent thrust belt

of the Subandean Zone. Here a correlation between breaks

in river channel slopes and location of thrust faults can be

established, suggesting that the young, Quechua Phase

thrust faults of the Subandean thrust belt, which involve

Neogene sediments, influenced the channel geometry. In

the eastern lowlands, these rivers become meandering and

flow parallel to anticlines that formed in the hanging wall

of Quechua Phase thrust faults, suggesting that the river

courses were actively displaced outward into the foreland.

Keywords Peruvian Andes � Morphology �
River profiles � Stream gradient indices � Uplift

Introduction

The Central Andes of Peru correspond to a continental

active margin related to the subduction system between the

oceanic plates of Nazca beneath the continental plate of

South America (Fig. 1). In this segment, the Nazca Plate

descends at approximately 30�, beneath the South Ameri-

can plate near to the trench and then it changes slope to

become subhorizontal at a depth of 100 km (Barazangi and

Isacks 1976; Lindo et al. 1992). The Peruvian Andes are

made up of three geomorphologic units. The Western

Cordillera consists of Jurassic sandstones and carbonates

and Early Cretaceous volcaniclastics (Morro Solar, Impe-

rial, and Casma groups) in the coastal region that were

intruded by the Coastal Batholith in the Early Cretaceous

(Cobbing 1985; Atherton and Webb 1989). To the east, the

Marañon thrust belt displays folding and east verging thrust

faulting of Mesozoic strata. Cenozoic magmatism pro-

duced granitic intrusions into this thrust belt, and Eocene

and Miocene volcanics (Calipuy group and equivalents)

were deposited unconformably on top of the deformed and

eroded Marañon thrust belt (Jaillard et al. 2000). Much of

the Western Cordillera exceeds 5,000 m in elevation, and

several peaks rise to more than 6,000 m.
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The Central Highland contains a folded and faulted

Paleozoic–Mesozoic sedimentary sequence overlain by

thick Quaternary deposits. It has a mean elevation of

4,000 m.

In the Eastern Cordillera, Precambrian Crystalline

basement outcrops in the core of the range, uplifted next to

Late Paleozoic sequences by steep faults. This basement is

overlain directly by folded and metamorphosed Devonian

sediments, which in turn are overlain by nonmetamorphic

Late Paleozoic clastics. Permian (locally Triassic) grani-

toids intruded these units. Cretaceous sediments follow

unconformably above Paleozoic sediments and crystalline

basement. An important escarpment forms the eastern rim

of this Eastern Cordillera. Farther east, an east verging

thrust belt referred to as Subandine thrust belt involves

crystalline basement, Paleozoic, Mesozoic, and Cenozoic

strata. It is characterized by low elevation and forms the

transition to the foreland of the Brazilian shield.

The evolution of the Peruvian Andes has been domi-

nated by compressional deformation events that in general

propagated from west to east. Early Cretaceous plutons of

the Coastal Batholith intruded already folded Jurassic to

Early Cretaceous strata, and it suggests an Early Creta-

ceous phase of shortening in the Pacific coastal area of the

Western Cordillera. This deformation is referred to as

Mochica Phase (Steinman 1929; Mégard 1984; Soler and

Bonhomme 1990; Jaillard and Soler 1996; Jaillard et al.

2000). In the Marañon thrust belt of the Western Cordil-

lera, a change from marine sandstones and limestones to

continental, fine-grained and mainly argillaceous sediments
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Fig. 1 Topographic map

showing the large-scale

geomorphic features of the

Peruvian Andes and the Peru–

Chile Trench. The Andes appear

as a broad band with elevations

above 4,000 m with an

escarpment to the SW toward

the Pacific and to the NE toward

the lowland of Amazonia. The

Western and Eastern Cordilleras

contain a series of peaks rising

to higher levels and straddling

these escarpments
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occurred in early Late Cretaceous times (Mégard 1978,

1984; Jaillard 1994, 1996). This change suggesting uplift

has been designated as Peruvian Phase, and Mégard (1978,

1984) even suspected that this uplift was caused by a phase

of compression. The Incaic Phase of mid to late Eocene

age is commonly considered as the main Andean phase of

shortening in the Peruvian Andes and is related to the

development of the tight upright folds of the Marañon fold-

and-thrust belt in the Western Cordillera (Mégard 1984).

The overlying volcanics are slightly younger (middle

Eocene) and unconformably overly these tight folds, pro-

ducing a major unconformity. The volcanics in turn are

affected by a still younger deformation phase, the Quechua

Phase, producing gentle open folds within these deposits

(Mégard 1984; Jaillard and Soler 1996; Jaillard et al.

2000). The Quechua Phase in fact is a series of local

deformation episodes that left their traces in all parts of the

entire orogen. In the east, the formation of the Subandean

thrust belt is attributed to the Quechua Phase (Mégard

1984). In the Western Cordillera, Quechua Phase thrusting

put Cretaceous strata onto Eocene–Oligocene volcanics

and vertical motions between the Cordillera Blanca and the

Cordillera Negra juxtaposed a Late Miocene-Pliocene

batholith next to Late Miocene volcanics. In the latter case,

faulting even affected Holocene gravels shed from the

Cordillera Blanca. In the Central Highlands, Pleistocene

gravels were tilted and locally even folded by the Quechua

Phase deformation. Thus, the various episodes within the

Quechua Phase do not seem to show a spatial progradation

with time, rather it seems that the entire orogen was

deformed in a spotty pattern over the last 20 million years.

The aim of this paper is to analyze the geomorphic

features like drainage networks, local relief and elevation

and stream gradients of rivers in order to understand how

these features are reflecting bedrock lithology and struc-

tures related to mountain building processes.

The morphology of a mountain range is controlled by

tectonic uplift at large scale, which affects the entire oro-

gen, and at smaller scale by faulting. This uplift is coun-

terbalanced by erosion that shapes the surface at even

smaller scale. Although glacial erosion and mass move-

ments are important, the primary features shaping the lar-

ger-scale morphology are river valleys. A useful tool to

describe the state of a river valley is to determine the river

channel gradient. A river channel is considered to be in

equilibrium if the stream’s power is equally distributed

along its course, and the product of slope and discharge is

equal in all the reaches (Leopold et al. 1953). Such rivers

are also designated by the term ‘‘graded streams’’. Longi-

tudinal profiles of graded streams are often considered to

be smooth, convex upward curves, that is, curves that

decrease systematically in slope in down valley direction

(Mackin 1948).

Hack (1973) developed a quantitative geomorphic

parameter, the stream gradient index (SL), which describes

the relative steepness of an actual river profile at a point.

Variations in the stream gradient index along a river

channel profile reflect abrupt changes in slope and there-

fore disequilibria in the bedrock channel profile, which

may be caused by lithological variation (Hack 1973;

McKeown et al. 1988), local deformation (Burnett and

Schumm 1983; Keller and Rockwell 1984; McKeown et al.

1988; Ramı́rez-Herrera 1998), or surface uplift (Reed

1981; Seeber and Gornitz 1983; Nott et al. 1996; Goldrick

and Bishop 1995; Seidl et al. 1996; Weissel and Seidl

1998; Bishop et al. 2005). High values of SL are indicative

of highly tilted slopes along the river profiles.

Geological setting

Owing to the excellent outcrop conditions provided by the

deep incision of rivers, the Central Andes of Peru are

particularly well suited to get insight into the internal

structure of this morphologically majestic orogen. The

Peruvian Andes display three outstanding geomorphic

features (Fig. 1). Two major mountain ranges, the Eastern

and Western Cordillera, run parallel to the coast and are

separated by the Central Highlands, which correspond to a

high plateau with a mean elevation of 4,000 m and low

local relief. To the SE, the Central Highlands broaden into

the Altiplano of Bolivia, whereas to the NW, they taper out

near Cerro de Pasco well above 4,000 m a.s.l.

The Western Cordillera comprises a chain of peaks

reaching altitudes of 5,000–7,000 m. Local relief is very

high owing to dissection by numerous streams, most of

which flow perpendicular to the chain. In contrast to the

Northern and Southern Andes of Ecuador and Chile, where

the highest peaks are volcanoes, sedimentary and igneous

rocks uplifted to high altitudes are the backbone of the

Western Cordillera in the Central Andes of Peru.

In the Eastern Cordillera, many of the higher peaks are

built of crystalline basement uplifted along steeply dipping

strike slip faults with reverse component. These high peaks

are located in the west of this cordillera. Consequently,

local relief is high in the west and diminishes eastward in

the Subandean Zone. Nevertheless, certain reaches of riv-

ers in the Eastern Cordillera are also deeply incised. The

general courses of these rivers contain segments parallel to

the chain.

The structures of the Peruvian Andes have a general

NW–SE trend (Fig. 2). They are of compressional style but

include strike slip components. The Jurassic and Early

Cretaceous strata of the coastal area of the Western Cor-

dillera are gently folded and faulted, folds being open with

axes trending nearly north–south (Atherton and Webb
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1989). The granodiorites and tonalites of the Coastal

Batholith that intruded these folded strata lack any internal

deformation. The Marañon thrust belt in the central and

eastern part of this cordillera contains tightly folded Cre-

taceous strata in the west. The axial surfaces are vertical

and fold axes trend NNW-SSE, parallel to the major thrust

faults (Fig. 2; see also Wilson 1963; Mégard 1978, 1984).

Toward the east, the Central Highlands, the folds become

more open and are verging to the NE. The fold style

reflects the thick Jurassic carbonates that appear at the

surface. The Marañon thrust belt has been intruded by

Cenozoic granitoids. Many of the plutons are located in the

core of anticlines. The Cenozoic volcanics overlying the

thrust belt are subhorizontal. Local mild deformation is

indicated by tilted lava flows. Toward the Pacific coast,

these volcanics are dipping to the WSW. This dip is caused

by later deformation (Quechua Phase) in some instances,

but may be a primary volcanic structure in other cases.

The Central Highland is a plateau where Paleozoic and

Mesozoic strata display folds and steep faults. The folds

within the Mesozoic strata are open and represent a con-

tinuation of the Marañon thrust belt. Steep faults juxtapose

locally Paleozoic strata to these folds (Fig. 2). The Paleo-

zoic, Devonian to Permian strata are also openly folded

with steep faults cutting the folds. These faults are likely to

have a strike slip component as well. Axial surfaces of

folds and faults generally strike NNW-SSE (Fig. 2).

The Eastern Cordillera contains Neoproterozoic crys-

talline basement within its core, which is overlain by

Paleozoic sediments. In the very central part of the Peru-

vian Andes, Late Paleozoic strata directly overly the

crystalline basement, while to the SE, in the Cusco area,
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Ordovician to Devonian strata are present as well. The

folded Paleozoic strata are intruded by Permotriassic

granitoids. Subvertical faults put the crystalline basement in

contact with Late Paleozoic sediments. These steeply dip-

ping reverse faults also contain a strike slip component and

strike in a NNW–SSE direction parallel to the cordillera.

The Subandean thrust belt in the eastern part of the Eastern

Cordillera is a fold-and-thrust belt involving Cenozoic

sediments as young as Pliocene in age. The overall archi-

tecture is characterized by east directed imbricate thrusting.

The major thrust faults are subparallel to the orogen with

local splaying and rejoining bends giving a more curved

nature compared to the steep faults in the interior of the

Andes (Fig. 2).

Drainage pattern of the Peruvian Andes

The analysis of fluvial networks allows getting information

regarding how drainage patterns and bedrock channel pro-

files relate to tectonics, rock-uplift, climate, and surfaces

processes. In this study, the observation of the drainage

pattern and river profiles concentrates on the comparison

with the geological structure of the Peruvian Andes. Two

important drainage basins exist: the Pacific Basin in the

Western Cordillera and the Amazonas Basin in the Central

Highlands and the Eastern Cordillera (Fig. 1). The water

divide between the basins that follows the crest of the

Western Cordillera. The Amazonas Basin consists of three

sub-basins, the Mantaro, Urubamba and Huallaga drainage

basins. Rio Huallaga and Rio Mantaro have their sources in

the vicinity of Laguna de Junin, at the NW termination of the

Central Highlands near Cerro de Pasco. The Pacific Basin

consists of a large number of sub-basins similar in size and

arranged in a regular fashion along the Pacific coast.

The length of the main rivers of the Pacific Basin

draining the western escarpment of the Andes varies

between 150 and 350 km; rivers have relatively straight

courses across the Western Cordillera and flow on barren

bedrock (Fig. 3). The bed-channel slopes are steep and lack

indications of sediment accumulation along their courses.

The rivers thus display active erosion and incision and may

be classified as bedrock-channeled rivers (Keller and Pinter

1996; Whipley 2004). The transported bed load is depos-

ited in the lowlands close to the Pacific coast. These rivers

flow over the Cretaceous strata of the Marañon thrust belt

and Cenozoic volcanics in their upper reaches, whereas

in their lower reaches, they are incised into the Coastal

Batholith and Cretaceous volcaniclastics (Fig. 2). As an

exception Rio Santa, located in NW Peru, flows parallel to

the coast in its upper reach following a major fault zone

between the Cordillera Blanca and Cordillera Negra.

Rivers draining the eastern escarpment of the Andes are

200–800 km long upward of the confluence with Rio

Amazonas. These rivers differ from those described earlier

by flowing parallel to the orogen over considerable distances

in both a SE and a NW direction. The major tributaries of

these rivers have their sources in the Western Cordillera or in

the Central Highlands. The segments where the main rivers

flow across the range are characterized by deep incision (see

Figs. 4, 5). At the eastern margin of the Eastern Cordillera,

these rivers become meandering and can be classified as

alluvial rivers, in which agradation is high. Figure 6 shows

the confluence of Rio Ene and Perene into Rio Tambo. Rio

Tambo flows to the southeast parallel to the Tambo fault

system at the foot of the Otishi Cordillera. This cordillera

was uplifted in the hanging wall of the Tambo thrust faults

and displaced the river to the northeast. Similar observations

hold for other river segments of the Subandean thrust belt,

which had their courses constrained by the tilted strata in the

hanging wall of thrust faults (Fig. 2).

Longitudinal river profiles

Patterns and slopes of river channels are susceptible to

changes in bedrock resistance and tectonic events.

Fig. 3 Valley with steep slopes

and active bedrock incision in

the Pacific Basin. a Rio Santa

cutting into tilted Early

Cretaceous sandstones. b Rio

Cañete cutting into an Early

Cretaceous sandstone-shale

sequence
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Numerous studies underline the usefulness of bedrock

longitudinal profiles of rivers as tool for the analysis of

landscapes (Goldrick and Bishop 2007 and references

therein). Leopold and Maddok (1953) proposed the concept

of the equilibrium bedrock channel profile or the graded

river, which postulates that for a graded river, the slope and

channel characteristics are delicately adjusted to provide,

with available discharge, just the velocity required for the

transportation of the bed load supplied from the drainage

basin. The longitudinal profile shape of these channels is a

smooth convex upward curve (see Fig. 7a) that decreases

systematically in slope in down valley direction (Mackin

1948). Response of the rivers to tectonic disturbances that

change the channel slope and create a disequilibrium state

is to re-establish the equilibrium shape. In this paper, we

are interested in the relationship between shape of the

bedrock channels of the Peruvian rivers on one hand and

the bedrock lithology and tectonic movements on the other

hand. The longitudinal river profiles were constructed

using 1:500,000 topographic maps.

Longitudinal channel-river profiles in the Pacific Basin

are shown in Fig. 7b. Generally speaking a convex upward

shape prevails in the lower reaches, but Rio Santa has a

more linear profile, and Rio Colca and to some degree Rio

Cañete and Catahuasi are concave upward in their upper

reaches. In the coastal area, rivers flowing across a broad

belt of Pleistocene deposits, show low gradients (Rio

Chiclayo and Rio Grande in Fig. 7), whereas higher gra-

dients are typical where bedrock is exposed close to the

Pacific shore (Rio Pativilca in Fig. 8).

All the major rivers of the Pacific Basin flow over the

folded Mesozoic limestones and sandstones of the Marañon

fold-and-thrust belt and the overlying Cenozoic volcanics

of the Western Cordillera. Downstream, the rivers cut

through the undeformed Coastal Batholith and the slightly

deformed Mesozoic strata of the Coastal Area (Fig. 2). As

can be seen in the river profiles in Fig. 8, breaks in slope

(or knick points) of the river channels do not correlate with

abrupt changes in bedrock lithology. This is in contrast to

the finding of Abbühl et al. (in press) who report a corre-

lation of knick zones to the contact to a ‘‘cap rock’’ made

of Cenozoic volcanics for Rio Piura (located north of our

study area), Rio Pisco (within our study area) and Rio Lluta

(south of our study area). The volcanic rocks in our study

area outcrop in various parts of the rivers, and their nature

and orientation are not in concert with the notion of a ‘‘cap

rock’’.

Fig. 4 Valley with steep slopes and active bedrock incision in the

Amazonas Basin. Rio Perene is cutting into crystalline basement

rocks

Fig. 5 Canyon incised by Rio Mantaro into Jurassic sediments of the

Central Highlands

NE SW

Otishi Cordillera

Rio Ene

Rio Perene

Rio Tambo

Fig. 6 Confluence of Rio Ene and Rio Perene into Rio Tambo. The

Otishi Cordillera to the right and the background is uplifted by the

thrust faults of the Tambo fault system of the Subandean thrust belt.

Rio Tambo flows to the south-east through the gap in the center of the

photograph and then parallel to the foot of the Otishi Cordillera in the

background
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East of the continental divide, the Rio Marañon and the

Rio Huallaga Basins are draining into Rio Amazonas. Rio

Marañon has its source in the vicinity of Cerro de Pasco in

the NW termination of the Central Highlands (Fig. 2). It

first flows to the NNW in a deep valley between the Central

and Western Cordillera and follows more or less the con-

tact between crystalline basement of the Eastern Cordillera

(the so-called Marañon massif) and the Mesozoic of the

Marañon fold-and-thrust belt. This contact is marked by

major faults uplifting the crystalline basement rocks and

seemingly controlled the drainage pattern. The river profile

(Fig. 9a) exhibits a steep slope in this orogen-parallel

segment but attains a shallower dip just before the river

changes direction to an easterly flow across the Eastern

Cordillera and the Subandean thrust belt. The river finally

becomes very flat downstream in this thrust belt.

The Rio Huallaga longitudinal river profile (Fig. 9b) is

similar, with a steep slope at the source and across the

Marañon massif. Near Huanuco, the river turns to the east

cutting these structures and maintaining the steep gradient.

The river then turns to the NNW and parallel to the orogen

once again. The gradient becomes shallower and remains

so even after the river turns to the NE cutting across the

structures of the Subandean thrust belt. The lowermost

reach, located outside this thrust belt, is characterized by a

very low gradient.

Rio Mantaro in central Peru (Fig. 9c) flows parallel to

the orogen but changes its course twice by nearly 180�. In

the upper reach, the rivers flow toward the SSE within the

Central Highland. An abrupt increase in the channel gra-

dient occurs near Huancayo within the Late Paleozoic

sediments. The high gradient persists around the 180� turn

the river makes to flow toward the NNW. Another abrupt

increase in slope occurs after the second bend of the river.

But where Rio Mantaro crosses an important thrust fault

putting Paleozoic sediments and Triassic granitoids of the

Eastern Cordillera onto Cenozoic sediments of the Su-

bandean thrust belt, the gradient decreases and remains low

down to the confluence with Rio Apurimac.

Rio Apurimac (see Fig. 9d) has a relatively steep gra-

dient in the upper reach. However, a steep gradient is

observed just upstream of a major thrust fault within the

Paleozoic sediments. A low gradient persists downstream

of this thrust fault and the confluence with Rio Mantaro,

where the river changes name from Apurimac to Ene.

Rio Perene and its tributaries incised the Neoproterozoic

metamorphic crystalline basement and the Triassic intru-

sions of the Eastern Cordillera (Fig. 9e). In the upper reach,

the channel gradient is extremely steep and decreases

downstream where it cuts an important thrust fault putting

Triassic intrusives onto Cretaceous sediments. The gradient

remains moderate across a series of less important thrust

faults all the way to the confluence with Rio Ene. From this

confluence on the river carries the name Rio Tambo. The

gradient diminishes once Rio Tambo reaches Rio Ucayali.

Rio Urubamba displays a concave upward longitudinal

profile in the headwaters (see Fig. 9f), where it flows over

Early Paleozoic metamorphosed sediments and Late

Paleozoic volcanics. Within the Early Paleozoic rocks,

which are affected by thrust faulting and vertical faulting,

the river profile shows an extremely steep gradient

(Fig. 9f). Further downstream, the gradient diminishes and

is low at the confluence with Rio Tambo, from where on

this river carries the name of Rio Ucayali. Rio Ucayali is an

alluvial river with a very low gradient and flows parallel to

the fold and thrust structures within the Neogene sediments

of the Subandean thrust belt. From the confluence with Rio

Marañon on, the river becomes the Rio Amazonas.

In contrast to the rivers of the Pacific Basin, the rivers

that drain the Amazonas Basin show abrupt gradient

changes where the river crosses important thrust faults (i.e.,

thrust faults with a large displacement). The high gradients

upstream of these thrust faults seem to indicate a close

relationship between channel gradient and thrust tectonics.

To pursue this question in more detail, we expanded the

analysis to cover the entire Andean chain and to produce a
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map of a suitable parameter including channel gradients.

Our choice fell on stream gradient indices, which will be

discussed in the following section.

Stream gradient indices

The concept of stream gradient index introduced by Hack

(1973) combines the channel gradient at a point and the

length of the river channel, which correlates with water

discharge. The stream gradient index may thus be seen as a

proxy for stream power or competence. The stream gra-

dient index has been widely used in later works to deter-

mine the relation of the measured data to the lithological

variation of the bed rock channel (Hack 1973; McKeown

et al. 1988), to local deformation (Burnett and Schumm

1983; Keller and Rockwell 1984; McKeown et al. 1988;

Ramı́rez-Herrera 1998), or to surface uplift (Reed 1981;

Seeber and Gornitz 1983; Nott et al. 1996; Goldrick and

Bishop 1995; Seidl et al. 1996; Weissel and Seidl 1998;

Bishop et al. 2005). A summary of these works can be

found in the study by Goldrick and Bishop (2007).

The stream gradient index was defined from the profile

equation (Hack 1973) of a graded river with logarithmic

horizontal scale (see Fig. 10):

H ¼ k ln Lþ c ð1Þ

Here H is the altitude at a point on the profile, L is stream

length measured from the drainage divide along the

channel to the same point on the principal stream, and C

and k are constants. The derivative of Eq. 1 with respect to

L yields

dH=dL ¼ dðk lnðLÞÞ=dL ¼ k=L ð2Þ

In Eq. 2, dh/dL corresponds to the river channel slope S at a

point and k defines the steepness of the channel on a semi-

logarithmic plot (Fig. 10). k itself is the definition of

stream gradient index and can be expressed as:

k ¼ LðDH=DLÞ or k ¼ LðHj � Hi=Lj � LiÞ ð3Þ

In Eq. 3, L is the stream length measured from the source

on the drainage divide to the point of interest along the

longest channel in the drainage basin. DH is the difference

in elevation and DL the length between the ends of the

segment considered. In this work, the calculations of the

stream gradient indices in the Peruvian rivers were carried

out as is shown in Fig. 11, using 1:500,000 topographic

maps. The base level of the profiles in the Pacific Basin is

sea level (Pacific Ocean) and for the Amazonas Basin the

altitude of the confluence of Rio Marañon and Ucayali, the

starting point of the Rio Amazonas. The stream gradient

index was calculated for all of the main rivers and tribu-

taries in the two basins. From the individual data points,

contour lines were determined.
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The result is shown in the stream gradient contour

map in Fig. 12. As might be expected, low index values

(\1,000) are encountered throughout the source area of the

various rivers. The values then increase in downstream

direction toward the Pacific Ocean and Rio Amazonas. A

marked zone of very high values ([2,000, locally[3,000)

obtained from the rivers flowing west into the Pacific forms

a band parallel to the Pacific coast the intermediate parts

of these rivers. A comparison between the geological map
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and the stream gradient index map reveals that this band of

very high index values neither coincides with changes in

lithology nor with structural features within the western

escarpment of the Western Cordillera.

The rivers draining into Rio Amazonas possess the

highest stream gradient index values where they flow

across an important thrust fault that is located at the base of

the eastern escarpment of the Eastern Cordillera. This

thrust fault marks the boundary between the Eastern Cor-

dillera and the Subandean thrust belt and puts Paleozoic

rocks onto Cenozoic sediments. The large age difference

between the footwall and hanging wall rocks suggests an

important amount of displacement along this fault. This

displacement is most likely much higher than the ones

associated with individual thrusts faults within the Suban-

dean thrust belt located farther east.

In some instances, high index values occur where the

rivers change their course from orogen-parallel to crossing

the Eastern Cordillera. The lowest stream gradient index

values are observed in the lowlands of the Subandean

thrust belt where the rivers flow mainly parallel to the folds

and thrust faults of this zone. But even where they flow

across thrust faults, no significant change in gradient or

index value could be observed.

Large-scale morphology of the Central Andes

The three principal geomorphic features of the Peruvian

Andes, Western Cordillera, Central Highland and Eastern

Cordillera are each characterized by a particular mor-

phology. The Central Highland located between the two
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cordilleras is about 50 km wide and extends from Lago de

Junin to the SE over a distance of more than 300 km. In the

SE, it widens into the Altiplano of Bolivia. The Central

Highland is made of Paleozoic and Mesozoic sediments

that are folded and faulted. However, these structures did

seemingly not have any significant impact on the local

relief. There are no prominent peaks within this plateau,

and local relief at the 10 km scale is typically not larger

than 1,500 m. The Central Highland with a mean altitude

of about 4.000 m above sea level is locally dissected by the

headwaters of the rivers of the Amazonas Basin (Rios

Huallaga, Mantaro and Apurimac to name the most

important ones).

In contrast to the Central Highland, there is a row of

peaks reaching more than 6,000 m in altitude marking the

backbone of the Western Cordillera and defining the water

divide between the Pacific and the Amazonas Basins. In the

north, near the city of Huaraz, the peaks of the Cordillera

Blanca are made of Jurassic and Early Cretaceous sedi-

ments of the Marañon Thrust Belt that were intruded by the

Cordillera Blanca batholith. The summits in the Cordillera

Blanca reach higher than 6,000 m (6,768 m for the highest,

Huascaran) and local relief at the 10 km scale exceeds

3,000 m. The photograph in Fig. 13a gives an impression

of the rugged relief of this range. The Cordillera Blanca

batholith intruded in Miocene times (8.2 Ma according to

McNulty et al. 1998). Cooling of the batholith from 500� to

300�C occurred in the time window of 5–3 Ma (Petford

and Atherton 1992). Some of the uplift is associated with a

W dipping shear zone outcropping in the W of the batholith

(Rousse et al. 2003) that has been interpreted as a low

angle detachment fault by McNulty and Farber (2002) and

named ‘‘Cordillera Blanca detachment fault’’. Our own

observations suggest that the Cordillera Blanca was uplif-

ted relative to the neighboring Cordillera Negra to the west

along a subvertical fault running parallel to the range and

beautifully exposed at Lago Querococha (E of Recuay)

where subvertical slickensides indicate the shear sense (see

Fig. 13b). This fault is still active as is indicated by fault

scarps in Quaternary fluvial cones (Fig. 13c). We suspect

that the ‘‘Cordillera Blanca detachment fault’’ is related to

the emplacement of the pluton and comparable to struc-

tures such as know, e.g., in the Alps (‘‘Pedra Rossa shear

zone’’ of Berger et al. 1996 in the roof of the Bergell

pluton). The cross-section shown in Fig. 13d shows the

structural relation between the Cordillera Blanca and Negra

and underlines the importance of reverse faulting on the

development of the youthful landform of the Cordillera

Blanca. A number of high ranges characterize the Western

Cordillera of Central Peru. These ranges are part of the

Marañon thrust belt, a fold-and-thrust belt made of Jurassic

and Cretaceous sediments that formed by east verging

thrusting in Paleocene to Eocene times (Incaic Phase). In

the Huayhuash and Raura ranges located just south of the

Cordillera Blanca, the highest summits reach 6,634 and

4,766 m a.s.l., respectively, and local relief at the 10 km

scale is typically of the order of 2,000–3,000 m. In this part

of the Peruvian Andes, the Western and Eastern Cordilleras
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Fig. 13 Young uplift of the

Cordillera Blanca (northern
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uneven fault plane with sub-

vertical slickensides indicating
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showing the geometry of

reverse faulting responsible for
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are juxtaposed, separated by the Rio Huallaga valley.

Farther south, in the central part of the Western Cordillera,

the Yauyos range is built essentially of Late Cretaceous

sediments. Here, thrusting uplifted the Cretaceous strata

by about 1,350 m relative to the Central Highland. The

highest peaks of this range reach 5,817 m and the local

relief at the 10 km scale exceeds 3,000 m owing to the

deep incision by the rivers of the Pacific Basin. In case of

the Abra la Viuda, located on the water divide west of Lago

de Junin, a range consisting of Early Cretaceous strata

forms local summits as high as 5,500 m that tower the

Central Highland, which is at an altitude of 4,000–4,500 m

(see Fig. 14a). This local topographic relief is the result of

Quechua Phase thrusting putting Early Cretaceous strata

onto Oligocene volcanics in Miocene times. As is evident

from the cross-section of Fig. 14b, Quechua thrusting

raised the Cretaceous strata by about 1,500 m, an amount

comparable to the local relief at the 10-km scale. In SE

Peru in the Chilca and Ampato ranges near Arequipa, most

of the rock types encountered in the Western Cordillera are

volcanics. The highest peaks are active volcanoes and

reach an altitude of more than 6,000 m.

Summarizing, the highest peaks in much of the Western

Cordillera are formed by sedimentary strata uplifted by

thrusting in Cenozoic times. With the exception of the

Arequipa region, active volcanoes are missing, unlike the

situation in the neighboring Northern Andes of Ecuador

and the Southern Andes of Bolivia-Chile. The lack of

recent volcanism in the Central Andes is explained by the

shallow dip of the subduction zone beneath Peru (e.g.,

Jaillard et al. 2000), a point that will be further discussed

by Gonzalez (2011) and Gonzalez and Pfiffner (in prep).

Within the Eastern Cordillera, the highest peaks reach

around 6,000 m, and they are built of crystalline basement

rocks or Paleozoic metamorphic sediments. These rocks

have been affected by thrusting and reverse slip faulting

along subvertical faults. In the central part of the Eastern

Cordillera, near Huancayo, the Nevado Huaytapallana,

made of crystalline basement, reaches an altitude of

5,780 m. The uplift occurred along a vertical fault putting

crystalline basement next to nonmetamorphic Permian

strata. The age of this fault is hitherto unknown. Local

relief at the 10-km scale in this chain amounts to 3,000 m

and more. In the southern part of the Eastern Cordillera,

near Cuzco, snow peaks within the Vilcabama and Vilca-

nota ranges made of folded and faulted Early Paleozoic

strata are higher than 6,000 m, and local relief at the 10-km

scale is in many instances larger than 3,000 m.

The eastern escarpment of the Eastern Cordillera grades

into the Subandean thrust belt, an east verging thrust belt

that involves Paleozoic to Cenozoic sediments and which

recorded the latest, Neogene events of deformation.

Uplifted foothills reach 2,000 m in altitude and are quite

clearly related to thrusting, for example, the Shira Moun-

tains are bordered by a thrust fault in the east (the Tambo

thrust) and thrusting obviously influenced the course of Rio

Ucayali, which was shifted eastward in the process of

thrust related uplift. The youngest deformation front is

located in the lowlands of the Amazonas Basin, Here,

despite thrusting and gentle folding affecting both, the

crystalline basement and the Cenozoic sedimentary cover,

no prominent morphologic features are discernible.

Discussion

The presence of mountain ranges with high summits and

rugged morphology has inspired a number of geologists to

think about mountain building processes. The growth and

decay of local relief combined with the increase and

decrease of altitudes of summits and main valley floors

were explained by various models of tectonic forcing (rock

uplift) and the ensuing response of surface processes

(erosion). A summary discussion of this subject is given by

Summerfield (1991) and Burbank and Anderson (2001). In

the case of the Andes of Peru, a mountain range of high

elevation formed in response to the convergence of an

oceanic and a continental plate that was characterized by

changing convergence direction, convergence rate and

absolute plate motions (Pardo-Casas and Molnar 1987,

1 km
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Fig. 14 Morphologic expression of Neogene thrusting (Quechua

Phase) in the Central Highlands and Western Cordillera (near Abra la

Viuda). a Photograph showing upthrusted Early Cretaceous strata

forming a questa pertaining to the Western Cordillera. The Late

Cretaceous red beds (Capas rojas) to the left show a syncline caped by

Oligocene volcanics (Calipuy group) within the Central Highlands.

b Schematic cross section showing the geometry of thrusting

responsible for the uplift of the Early Cretaceous strata
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Silver et al. 1998; Jaillard et al. 2000, Steinberger and

Torsvik 2008). The uplift history of the Central and Northern

Andes as determined from paleobotanical and landscape

development has been reviewed by Gregory-Wodzicki

(2000). According to this review, the Altiplano-Puna

region (and consequently the Central Highland in Peru)

experienced a surface uplift of 2,300–3,400 m during the

past 10.7 million years (since the Late Miocene). This time

span includes Quechua Phase thrusting as recorded in the

Subandean thrust belt and, as shown in this paper for the

first time, in the Western Cordillera.

The Western and the Eastern Cordillera reach much

higher elevation as compared to the Central Highlands. In

some of the ranges within the cordilleras, the summits reach

to more than 5,000 and 6,000 m a.s.l. well above the average

elevation of the Central Highlands. One might thus suspect

that the two cordilleras owe their high elevations to varia-

tions in erodibility of the associated bedrock. Kühni and

Pfiffner (2001) could show a correlation between lithology

and topography for the Swiss Alps. There, higher mean

elevations correspond to steep mean slopes which in turn

correspond to bedrock with low erodibility (typically

gneisses), and areas with high peaks correlate with bedrock

with very low erodibility (typically granites). In the case of

the Peruvian Andes, similar bedrock types (e.g., carbonates

and sandstones) are spread throughout the Central Highland

and at the same time form high summits within the Western

Cordillera. Moreover, granitic rocks such as encountered in

the Coast Batholith in the Western Cordillera and areas

within the Eastern Cordillera do not correlate with high

peaks. Even in the case of the Cordillera Blanca, many of the

highest peaks are formed of sediments, the Cordillera Blanca

batholith not being fully exposed at the surface. The high

elevation of the Western and Eastern Cordillera must thus be

explained by processes other than differences in erodibility.

As will be discussed in the next paragraph, we think that the

two cordilleras were uplifted by Quechua Phase faulting

since about Mid-Miocene times.

Any young orogenic activity should leave an imprint on

the morphology of the mountain chain. Diagnostic features

to unravel tectonic forcing of morphology include the

shape of river channels. Our analysis of river channels in

the western escarpment of the Peruvian Andes yields that

channel gradients are steep in the middle reaches of the

rivers. The lack of any correlation between channel slope

and bedrock lithology suggests that incision is controlled

by external parameters, namely run off (climate) and/or

tectonic activity. The extreme V-shape of the valleys and

the absence of ongoing aggradation in the middle reaches

of the rivers point to active incision. Here it has to be

mentioned though that older gravel deposits are found on

the flanks of some of the valleys. They include terraces and

fans, which in turn were incised by the rivers. The most

prominent terraces are found in the lower reaches of Rio

Santa in northern Peru. Steffen et al. (2009a, b) dated

terraces and fans in the lower reaches of Rio Pisco in

central Peru and Rio Colca-Majes-Camaná in southern

Peru. The age of these deposits is Pleistocene (younger

than 60 kyr for Rio Pisco, younger than 110 kyr for Rio

Colca-Majes-Camaná). Steffen et al. (2009a, b) relate the

succession of terraces and their subsequent incision to

climatic variations on the Altiplano and autocyclic feed-

backs. The young age of the terraces underlines the rapid

incision occurring along these valleys. Abbühl et al.

(in press) determined high denudation rates of 10–250

mm ky-1 based on 10Be data; these high incision rates

correlate positively to precipitation rates and interpreted to

be climate driven. Thouret et al. (2007) suspect that for Rio

Colca-Majes-Camaná downcutting to the present valley

floor was more or less completed between 9 and 3.8 Ma,

but was followed by a refill owing to pyroclastic flows until

1.36 Ma and finally a re-incision. All in all, the western

escarpment has had a young, Pleistocene history of incision

and backfilling controlled by climatic influences, whereas

the older history of valley formation with the steep gradi-

ents and river gradient indices formed in response to tec-

tonic forcing.

The eastern escarpment is also characterized by steep

river channel gradients. However, on this eastern escarp-

ment, a spatial correlation between gradient changes and

thrust faults can be observed. Steep gradients are located

upstream of east-vergent thrust faults. Some of these thrust

faults are Neogene in age (Quechua Phase) and put older

rocks onto Miocene and Pliocene sediments. In this case

young (and maybe still active), thrust faults and associated

rock uplift in their hanging wall are interpreted to be directly

responsible for the steep gradients. The high local relief and

extreme V-shape of the valleys in segments where the rivers

flow across the orogen suggest active river incision. In the

lower reaches of these rivers, i.e., within the Subandean

thrust belt, rivers flowing parallel to the orogen follow thrust

faults in some instances. Examples include Rio Ene, Tambo

and Ucayali. The position of these river segments just east of

major thrust faults suggests that uplift of the hanging wall of

the thrust faults created a ridge and displaced the river

courses consistently outward into the foreland.

Our interpretation of young tectonic activity shaping river

channels and river courses as gained from individual rivers

is sustained by a regional analysis: Mapping stream gradient

indices obtained from a multitude of rivers and their tribu-

taries clearly reveals a belt of high values (2,000–3,000 and

more) that follow the eastern and western escarpments.

Along the western escarpment, this belt crosses lithologic

units such as the Coast Batholith at low angles and again no

correlation is discernible between the this belt and the out-

crop pattern of the bed rock lithology. The high values
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themselves indicate pronounced tectonic activity. Similarly,

the belt of high index values follows the major thrust faults

along the eastern escarpment, a fact that also points to

ongoing tectonic activity. This, together with the presence of

high local relief, along both escarpments suggests that the

Central Highland is a landform that was passively uplifted in

the hanging wall of east-vergent thrust faults. As already

pointed out, the age of these Quechua Phase thrust faults

(Miocene) corresponds to the uplift age derived from paleo-

botanical considerations (2,300–3,400 m of uplift since the

Late Miocene after Gregory-Wodzicki 2000). Schildgen

et al. (2007) determined the onset of this uplift at ca. 9 Ma

based on (U-Th)/He data, while Thouret et al. (2007) suggest

that the onset of this uplift was earlier (at 13 Ma) and that

incision of the western escarpment started at 9 Ma.

Our study demonstrates that Quechua Phase faulting

was responsible for the uplift of the Western Cordillera in

case of the Cordillera Blanca since Pliocene times (5–3 Ma

after Petford and Atherton 1992; still ongoing) and around

Abra la Viuda in the central area after Early Miocene

times. But also in the central and southern parts of the

Western Cordillera, faults uplifting Mesozoic sediments

next to Cenozoic volcanics underline enhanced uplift of the

Western Cordillera relative to the Central Highland.

Vertical faults also mark the boundary between the

Eastern Cordillera and the Central Highland. However, the

age of the activity of these faults has not been determined

yet. In case of the Huaytapallana fault located NE of

Huancayo, Suárez et al. (1990) determined ongoing reverse

faulting with a left-lateral strike slip component based on

focal mechanisms of earthquakes. Although recent earth-

quakes produced fault scarps indicating uplift of the East-

ern Cordillera relative to the Central Highland, earlier

ductile deformation features in the gneisses and marbles

adjacent to the fault clearly indicate major strike slip

motion. Thus, it seems that the Eastern Cordillera, too,

owes its high elevation and high peaks to focused rock and

surface uplift as consequence of tectonic forcing.

In summary, thrust-controlled morphology is present

throughout the Peruvian Andes and some of the surface

uplift is of young age and presently still ongoing.
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