Ion acoustic waves at comet 67P/Churyumov-Gerasimenko

Gunell, H.; Nilsson, H.; Hamrin, M.; Eriksson, A.; Odelstad, E.; Maggiolo, R.; Henri, P.; Vallieres, X.; Altwegg, Kathrin; Tzou, Chia-Yu; Rubin, Martin; Glassmeier, K.-H.; Stenberg Wieser, G.; Simon Wedlund, C.; De Keyser, J.; Dhooghe, F.; Cessateur, G.; Gibbons, A. (2017). Ion acoustic waves at comet 67P/Churyumov-Gerasimenko. Astronomy and astrophysics, 600(A3), A3. EDP Sciences 10.1051/0004-6361/201629801

[img] Text
aa29801-16.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB)

On 20 January 2015 the Rosetta spacecraft was at a heliocentric distance of 2.5AU, accompanying comet 67P/Churyumov-Gerasimenko on its journey toward the Sun. The Ion Composition Analyser (RPC-ICA), other instruments of the Rosetta Plasma Consortium, and the ROSINA instrument made observations relevant to the generation of plasma waves in the cometary environment.
Aims. Observations of plasma waves by the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) can be explained by dispersion relations calculated based on measurements of ions by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA), and this gives insight into the relationship between plasma phenomena and the neutral coma, which is observed by the Comet Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument (ROSINA-COPS).
Methods. We use the simple pole expansion technique to compute dispersion relations for waves on ion timescales based on the observed ion distribution functions. These dispersion relations are then compared to the waves that are observed. Data from the
instruments RPC-LAP, RPC-ICA and the mutual impedance probe (RPC-MIP) are compared to find the best estimate of the plasma density.
Results. We find that ion acoustic waves are present in the plasma at comet 67P/Churyumov-Gerasimenko, where the major ion species is H₂O⁺. The bulk of the ion distribution is cold, kBTi = 0:01 eV when the ion acoustic waves are observed. At times when the neutral density is high, ions are heated through acceleration by the solar wind electric field and scattered in collisions with the neutrals. This process heats the ions to about 1 eV, which leads to significant damping of the ion acoustic waves.
Conclusions. In conclusion, we show that ion acoustic waves appear in the H₂O⁺ plasmas at comet 67P/Churyumov-Gerasimenko and how the interaction between the neutral and ion populations affects the wave properties.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences

UniBE Contributor:

Altwegg, Kathrin, Tzou, Chia-Yu, Rubin, Martin

Subjects:

500 Science > 520 Astronomy
600 Technology > 620 Engineering

ISSN:

0004-6361

Publisher:

EDP Sciences

Language:

English

Submitter:

Dora Ursula Zimmerer

Date Deposited:

15 Nov 2017 10:15

Last Modified:

05 Dec 2022 15:07

Publisher DOI:

10.1051/0004-6361/201629801

BORIS DOI:

10.7892/boris.105772

URI:

https://boris.unibe.ch/id/eprint/105772

Actions (login required)

Edit item Edit item
Provide Feedback