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53 Highlights

54 - We defined a new regional stratigraphy of the SPLD in Promethei Lingula;  

55 - The stratigraphic units are defined on the basis of defined discontinuities;

56 - The discontinuities have been mapped both in images and radargrams;

57 - The regional stratigraphy suggests climate and orbital changes on Mars in the past.
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59 Abstract

60 The Mars South Polar Layered Deposits (SPLD) are the result of depositional and erosional 

61 events, which are marked by different stratigraphic sequences and erosional surfaces. To 

62 unambiguously define the stratigraphic units at regional scale, we mapped the SPLD on the basis of 

63 observed discontinuities (i.e., unconformities, correlative discontinuities and conformities), as 

64 commonly done in terrestrial modern stratigraphy. This methodology is defined as “Discontinuity-

65 Bounded Units” or allostratigraphy, and is complemented by geomorphological mapping.

66 Our study focuses on Promethei Lingula (PL) and uses both high-resolution images (CTX, 

67 HiRISE) and radargrams (SHARAD) to combine surface and sub-surface observations and obtain a 

68 3D geological reconstruction of the SPLD. One regional discontinuity (named AUR1) was defined 

69 within the studied stratigraphic succession and is exposed in several non-contiguous outcrops 

70 around PL as well as observed at depth within the ice sheet. This is the primary contact between 

71 two major depositional sequences, showing a different texture at CTX resolution. The lower 

72 sequence is characterized mainly by a “ridge and trough” morphology (Ridge and Trough 

73 Sequence; RTS) and the upper sequence shows mainly by a “stair-stepped” morphology (Stair-

74 Stepped Sequence; SSS). On the basis of the observations, we defined two regional “discontinuity-

75 bounded” units in PL, respectively coinciding with RTS and SSS sequences. Our stratigraphic 

76 reconstruction provides new hints on the major scale events that shaped this region. Oscillations in 

77 Martian axial obliquity could have controlled local climate conditions in the past, affecting the PL 

78 geological record. 

79

80

81

82

83

84
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91 1. Introduction

92 The Amazonian South Polar Layered Deposits (SPLD) [e.g., Herkenhoff and Plaut, 2000; 

93 Koutnik et al. 2002] cover most of Planum Australe [Tanaka and Scott, 1987] and consist of a up to 

94 ~3.7 kilometer-thick stratified sequence (Apl Unit; Tanaka and Kolb [2001]; Kolb and Tanaka 

95 [2001]). Their inferred composition of water ice with minor impurities [e.g., Cutts, 1973; Kieffer et 

96 al., 1976; Thomas et al., 1992; Mellon, 1996; Clifford et al., 2000] has been indirectly verified by 

97 Martian subsurface radar sounders [Nunes and Phillips, 2006; Plaut et al., 2007] and by density 

98 considerations derived from analysis of gravity anomalies associated with Planum Australe [Zuber 

99 et al., 2007; Wieczorek, 2008; Li et al., 2012]. Both sets of studies estimate upper limits of the 

100 volume fraction of sediments of 10%-15%. Subsurface deposit of CO2 ice [Phillips et al., 2011] and 

101 possibly of CO2 clathrate hydrates (e.g., Kolb and Tanaka [2000], Kargel and Tanaka [2002], 

102 Wieczorek [2008]) was hypothesized in the SPLD. Compositional variations have been also 

103 suggested by the structural and rheological analysis of deformational systems observed within the 

104 SPLD in the PL region, which is again consistent with potentially interbedded layers of CO2 or CO2 

105 clathrate hydrates [Guallini et al., 2012]. 

106 The inner, thickest portion of the SPLD reaches ~3-4 km in thickness [Plaut et al., 2007; Byrne, 

107 2009]. The layered deposits decrease in elevation and thickness toward the ice-dome margins, 

108 where lower-relief plateaus are located (i.e., lingulae or lobes). These plateaus (i.e., Australe 

109 Lingula (AL), Promethei Lingula (PL) and Ultima Lingula (UL)) are dissected and separated by the 

110 recent development of reentrant canyons (e.g. Promethei Chasma (PC), Ultima Chasma (UC) and 

111 Chasma Australe (CA); [Byrne and Ivanov, 2004]), which are hypothesized to have been formed by 

112 katabatic wind scouring and ablation [e.g., Kolb and Tanaka, 2001; Tanaka et al., 2008; Warner 

113 and Farmer, 2008] or by catastrophic outflow of meltwater (jökulhlaup-like discharges; e.g., 

114 Clifford [1987]; Anguita et al. [2000]).

115 Several authors have used images and radargrams to study the regional SPLD stratigraphy and 

116 have described major stratigraphic successions that define distinct units [e.g., Byrne and Ivanov, 
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117 2004; Kolb and Tanaka, 2001, 2006; Milkovich and Plaut, 2008]. As concluded in previous studies, 

118 the overall depositional history of the SPLD, especially along their margins, has been irregular in 

119 time and space. In particular, like in the North Polar Layered Deposits (NPLD), stratigraphic 

120 unconformities between the SPLD sequences are locally exposed (i.e. irregularly distributed), 

121 suggesting a discontinuous depositional record over time [Malin and Edgett, 2001; Kolb and 

122 Tanaka, 2006; Seu et al., 2007; Milkovich and Plaut, 2008; Milkovich et al., 2009; Guallini et al., 

123 2010]. The unconformities, together with the variable ice and dust contents of different layers, are 

124 considered to represent past climatic variations [e.g., Toon et al., 1980], occurred in response to 

125 significant quasi-periodic changes in the Martian orbital parameters [Cutts and Lewis, 1982; 

126 Thomas et al., 1992], similar to terrestrial Milanković cycles. In particular, spectral analyses of the 

127 PLD with depth (mainly of the NPLD; e.g., Milkovich and Head [2005]) are based on Laskar et al. 

128 [2002] and agrees with the glacial and interglacial ages reconstructed by Head et al. [2003]. 

129 However, this methodology is still debated because necessitate major assumptions and hypotheses 

130 [e.g., Perron and Huybers, 2009], especially regarding the SPLD. 

131 This work focuses on a new definition of the regional stratigraphy of PL (Fig. 1a-c; latitude 

132 ~70°-80° S; longitude ~90°-160° E). The study site has been chosen because 1) it consists of well 

133 exposed and laterally continuous SPLD sequences; 2) there is a good dataset coverage. According 

134 to MARSIS radar data analyzed by Plaut et al. [2007], the present-day thickness of the SPLD 

135 sequence in PL (which overlaps the Noachian and Hesperian bedrock units [Kolb and Tanaka, 

136 2006]) is comprised between ~500 and ~2500 m (± 200 m of vertical uncertainty). 

137

138 1.2 Background

139 1.2.1 Definition of the stratigraphic units 

140 The limits of remote sensing analysis, the absence (or undiscovered presence) of fossils on 

141 Mars, the icy bulk composition of the SPLD (i.e., they are not rocks in the strict sense) and the poor 

142 constraints of their physical and chemical properties prevent the use of most of the usual terrestrial 
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143 stratigraphic methodologies (e.g., lithostratigraphy, biostratigraphy, etc.) to understand the 

144 stratigraphy of the SPLD. On the other hand, stratigraphic reconstructions based on observable 

145 surface texture, erosional style and brightness of the sequences have been previously attempted 

146 [e.g., Byrne and Ivanov, 2004; Milkovich and Plaut, 2008]. However, this approach can be affected 

147 by incorrect interpretations or uncertainties due to potential similarities between different layers in 

148 different sequences, to variations in local topography (surface slope and orientation), to diverse 

149 illumination conditions, to the presence of dust mantling or seasonal frost, to the use of visible 

150 images with different resolution, to the scale of observation, and to the considered layers properties 

151 [e.g., Herkenhoff and Murray, 1990; Herkenhoff et al., 2007; Fishbaugh et al., 2008; Fishbaugh et 

152 al., 2010]. All these elements, in general, have a significant influence on the appearance of the 

153 layers in terms of brightness and texture [Milkovich and Plaut, 2008] and hide their real bulk 

154 properties, often precluding the possibility of correlation among different sections. 

155 In addition to optical images, subsurface radar instruments have been previously used as 

156 complement to outcrop-based studies. In particular, radargrams have been analyzed to identify 

157 interfaces (i.e. the internal stratigraphy) within the SPLD [e.g., Milkovich and Plaut, 2008], 

158 overcoming the limitations of visible exposures. However, radar reflectors may not be always 

159 mapped or associated with real subsurface layering. In fact, bad correlations can be due to 

160 subsurface off-nadir reflections (i.e., clutter) or multiple reflections [e.g., Nunes and Phillips, 2006; 

161 Plaut et al., 2007; Christian et al., 2013], to conductivity/density variations at depth [e.g., Reeh et 

162 al., 1991; Dowdeswell and Evans, 2004] and to the different resolution of the dataset [Nunes and 

163 Phillips, 2006; Fishbaugh et al., 2008; Christian et al., 2013]. Furthermore, and on the contrary 

164 than on the Earth, where it is possible to interpolate other kinds of measurements from ice cores 

165 [Eisen et al., 2003], correlation between radar and visible layering on Mars it is complicated: 1) By 

166 the absence of unambiguous constraints about the SPLD stratigraphy, chemistry and dust 

167 distribution [Milkovich et al., 2009]; 2) Because it is currently unknown what causes reflectors 

168 exactly [e.g., Lalich and Holt, 2016]. Finally, in several cases, SPLD radargrams are also 
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169 characterized by wide no-signal zones defined as “Reflection Free Zones” [Phillips et al., 2011], 

170 which may be caused by successions of layers with low dielectric contrast [Grima et al., 2011].

171

172 1.2.2. Study aims 

173 To try to avoid all the problematics related to the previous considerations, the present study 

174 relates to the “discontinuity-bounded” classification or “allostratigraphy” [Chang, 1975; Salvador, 

175 1987] principles. Units are defined making use of surfaces (instead of strata) interrupting the 

176 continuity of the sequences of layers and recording events that interrupted the deposition. In fact, 

177 according to the conventional stratigraphy on Earth [Salvador, 1987]:

178 1) Discontinuities mark a stratigraphic contact [e.g., Bates and Jackson, 1987] and can be used 

179 to designate a stratigraphic unit (i.e., a mappable body of rock) [Sloss et al., 1949; Catuneanu, 

180 2006];

181 2) Discontinuities divide the geologic record into genetically related packages of strata (units) 

182 and can be used for stratigraphic correlation [e.g., Sloss, 1963; Wheeler, 1964; Catuneanu, 2006]. 

183 These discontinuities are mappable lithological contacts with or without a stratigraphic hiatus or 

184 erosion [Catuneanu, 2006], thus including both unconformities and conformities [Mitchum, 1977]. 

185 The definition of the discontinuity-bounded sequences is irrespective of their eventual 

186 morphological or lithological lateral changes in the depositional environment [Catuneanu, 2006].

187 Based on above mentioned principles, the use of discontinuities can minimize most of the 

188 ambiguities derived from the lonely use of the morphologic aspect of the SPLD sequences and of 

189 marker layers [e.g., Byrne and Ivanov, 2004; Milkovich and Plaut, 2008]. In particular, we used 

190 observed or inferred stratigraphic discontinuities (both along the marginal scarps and in the 

191 subsurface of PL) to define the regional stratigraphy of the SPLD. In fact, it is well known that the 

192 SPLD are characterized by discontinuities: Kolb and Tanaka [2006] first reported angular 

193 unconformities in PL using Thermal Emission Imaging System (THEMIS) visible images 

194 [Christensen et al., 2004]. At the same time, buried unconformities have been observed in 
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195 radargrams [Seu et al., 2007; Milkovich et al. 2009]. 

196 Unconformities are important markers of the deposition/erosion of the Polar Layered Deposits 

197 in both hemispheres, in turn related to global or regional climate changes [Fishbaugh et al., 2008]. 

198 Such climate changes are thought to have been induced by variations in Mars orbital parameters, 

199 especially its spin axis obliquity [Levrard et al., 2007; Greve et al., 2010; Forget et al., 2017 in 

200 press]. Even if we can only speculate about the variations of the mean obliquity at the time of the 

201 formation of the SPLD [Laskar et al., 2004], studying the unique SPLD stratigraphy using 

202 discontinuities might enable us to constrain the obliquity history of Mars and to refine the 

203 understating of climate changes during the Late Amazonian.

204

205 1.2.3. Used terminology and definitions

206   The “discontinuity-bounded” classification assumes that:

207 1) A "conformity" is a true discontinuity that marks no interruption in the sequence of beds;

208 2) An “unconformity” is a true discontinuity that marks interruption in the sequence of beds.

209 3) Within the same sedimentary environment, each unconformity can be correlated in 

210 continuity (or not) with the laterally equivalent correlative conformity [Mitchum, 1977; 

211 Posamentier et al., 1988; Van Wagoner, 1995]. This technique is commonly used on Earth: through 

212 these surfaces, the sequence boundaries can be extended from the observed unconformities across 

213 an entire sedimentary environment, allowing the construction of cross sections and thus of the 

214 regional stratigraphy of a sedimentary body [Catuneanu, 2006]. 

215 On the basis of the above-mentioned principles, in the present paper we refer to:

216 1) An “angular unconformity” (AU) when there is an observable unconformity (commonly an 

217 erosional surface showing abrupt layers truncation) between two rock sequences whose bedding 

218 planes are not parallel [Bates and Jackson, 1987]. We follow the established practice in planetary 

219 remote mapping of using the definition of angular unconformity independently of the geological 

220 factors causing the inclination of the SPLD layers;
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221 2) A “correlative discontinuity” (CD) when it is possible to correlate one or more observed 

222 angular unconformities bounding the same sequence(s) across a broad region (i.e. same depositional 

223 basin) [Mitchum, 1977]. It is assumed that a) the correlative discontinuity is located in the same 

224 elevation range of the observed angular unconformities, b) the correlative discontinuity and the 

225 angular unconformities formed under the same controlling factors [Mitchum, 1977; Catuneanu, 

226 2006]. Thus, the correlative discontinuity is mapped in lateral continuity with the local angular 

227 unconformities, following the inferred stratigraphic position of the angular unconformity.  

228 3) A “correlative conformity” (CC) when it is possible to correlate one or more observed 

229 angular unconformities bounding the same sequence(s) across a broad region (i.e. same depositional 

230 basin) [Mitchum, 1977] but not in lateral continuity with the angular unconformities. It is assumed 

231 that the correlative conformity a) can be affected or not by erosion or a depositional hiatus (the use 

232 of correlative continuities is irrespective of the nature of the surface itself [e.g., Catuneanu, 2006]), 

233 b) is in the same elevation range of the mapped angular unconformities. In other words, the angular 

234 unconformities and correlative conformities with the same elevation range and separating the same 

235 sequences can be correlated [Catuneanu, 2006].

236 4) A “discontinuity” (Dis) when we generically speak of a stratigraphic contact between two 

237 sequences. 

238 For simplicity and clarity, independent of their nature, all bounding surfaces that can be 

239 regionally correlated (through conformities and discontinuities) with exposed angular 

240 unconformities (AU) and inferred to have been formed under the same controlling factors are 

241 named “AURn”, where “R” stands for regional and “n” is a chronological number that is a function 

242 of the stratigraphic position of the regional discontinuity. 

243

244 1.2.4. Dataset

245 The region has been analyzed using high-resolution images derived from the Context camera 

246 (CTX, 6.0 m/pix; Malin et al. [2007]) and the High Resolution Imaging Science Experiment camera 
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247 (HiRISE, 0.25-0.32 m/pix; McEwen et al. [2007]), both onboard the NASA Mars Reconnaissance 

248 Orbiter (MRO). Although the studied images (approximately one hundred) do not completely cover 

249 the PL area, the spatial resolution of the dataset is sufficient to resolve the structures in detail. In 

250 particular, the high resolution of the CTX and HiRISE images allow us to better exclude false 

251 angular unconformities due to optical effects (i.e., apparent angles) [Fishbaugh et al., 2008] or 

252 created by complex topography (e.g., slope breaks within the sequence, scarps crosscutting layers, 

253 etc.). In some cases, when CTX and HiRISE data were not available, Mars Express High 

254 Resolution Stereo Camera (HRSC) Level-3 (nd3) images (nadir channel, 12.5, 25.0 and 50 m/pix of 

255 spatial resolution) were used [Neukum et al., 2004; Gwinner et al., 2010].

256 The topographic base map was obtained from the Mars Orbiter Laser Altimeter (MOLA) Digital 

257 Elevation Model (DEM) sampled on a 512 pix/degree grid, equivalent to a spatial resolution of 

258 ~115 m at polar latitudes [Smith et al., 2001]. 

259 The optical and topographic dataset was processed using the USGS Integrated Software for 

260 Imager and Spectrometers (ISIS 3) and analyzed using ESRI ArcGIS. Raster images were draped 

261 onto MOLA Digital Terrain Model using ESRI ArcScene to obtain three-dimensional views. 

262 Images were processed in a polar stereographic projection. For each image, coordinates are given in 

263 decimal degrees (longitude domain -180°/180°, positive east). When possible, only images acquired 

264 during Ls ~230°-260° (southern late spring), Ls ~270°-350° (southern summer) and Ls ~0°-30° 

265 (southern early autumn) were selected because of the absence or reduction of CO2 ice, which 

266 condenses on the surface of the layers during the cold seasons. 

267 The interior of the SPLD has been analyzed using Italian RDR SHARAD data [Seu et al., 

268 2007], converted to raster format and manually mapping reflectors/bounding surfaces using 

269 graphical programs. In total, about 600 radargrams have been analyzed. The sounding radar 

270 operates at a central frequency of 20 MHz (10 MHz of bandwidth) and has a theoretical vertical 

271 resolution of ~15 m in free space [Seu et al., 2007; Plaut et al., 2007] (~10 to 20 m in PLD [e.g. 

272 Nunes, 2006; Nunes, 2011; Lalich and Holt, 2016), an along-track resolution of approximately 0.3 - 
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273 1.0 km and a cross-track resolution of approximately 3 - 6 km. 

274 We selected representative profiles for the analysis (Fig. 1a). In the radargrams, the vertical axis 

275 represents the two-way travel time in microseconds and is converted to depth using a dielectric 

276 constant of 3.4, which is consistent with a mixture of 90% water ice and 10% basaltic impurities 

277 [e.g. Heggy et al., 2007; Plaut et al., 2007; Seu et al., 2007]. This value is used only below the 

278 reflection corresponding to the SPLD surface. 

279 As previously cited, the interpretation of the reflectors in the SPLD are often uncertain because 

280 of strong surface/subsurface clutter. Thus, used radar tracks were simulated using algorithms 

281 developed by the Italian SHARAD team to identify the most important clutter [e.g., Russo et al., 

282 2008]. 

283

284 2. Results 

285 2.1. Description of the discontinuities in images

286 On the basis of the areal coverage of the images dataset, several stratigraphic sections (or logs; 

287 L1-L21 in Fig. 1a and Table 1) of interest have been identified along the walls of marginal 

288 erosional scarps of PL and of the chasmata, troughs and reentrants.

289 Some exposures clearly show sequences interrupted by angular unconformities (see Fig. 1a for 

290 location), which can in turn be correlated with correlative discontinuities or conformities. The 

291 angular unconformities (cf. Figs. 2-4 and A1-A3) are located in the SPLD sequence between a 

292 minimum of ~1400 m and a maximum of ~2500 m (average of ~1800-1900 m) in MOLA height. In 

293 most of the cases, these bounding surfaces confine sequences having similar appearance. In general, 

294 the elevations and the lengths of the angular unconformities (which are in some cases traceable over 

295 tens of kilometers; Fig. 1a) are comparable to those observed for angular unconformities in other 

296 locations of the Planum Australe ice dome [e.g., Kolb and Tanaka, 2006; Milkovich and Plaut, 

297 2008]. 

298 By applying the geologic V-rule [Simpson, 1968; Meentemeyer and Moody, 2000] and studying 
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299 the geometric relationships in plan view between the topographic surface (marked by the elevation 

300 contours) and the locally exposed contour planes of the discontinuities (deduced by their mapped 

301 plan-view traces), we noticed that these contour planes are generally curved lineaments 

302 conformable with topographic contours (i.e., they have the same bending polarity). This geometric 

303 arrangement entails planes dipping in the same direction as the slope (i.e., toward the SPLD 

304 margins), but with a shallower dip angle (in general, < 1°).

305 Most representative cases are located in three regions:

306 1) In the first location (Figs. 1a and 2; L7b in Tab. 1) the stratigraphic exposure shows an 

307 angular unconformity located along the PL margin at an average elevation of about 1800 m. The 

308 AU can be followed with quasi-continuity for about 120 km and correlated with correlative 

309 discontinuity/conformity (L7a, c in Tab. 1). The AU separates two distinct morphologic sequences.

310 2) The second angular unconformity (Fig. 3) is exposed along Ultimum Chasma scarps (L18; cf. 

311 Tab. 1) at an average elevation of about 1850 m. The AU can be correlated with a correlative 

312 discontinuity and mapped for about 90 km. It divides two morphologic sequences similar to those 

313 observed in L7.

314 3) Another stratigraphic outcrop showing an angular unconformity is exposed in Promethei 

315 Chasma scarps (L20; Fig. 4 and  Tab. 1). The AU is located at an average elevation of about 2150 

316 m and can be correlated with correlative discontinuity for about 60 km. It bounds two morphologic 

317 sequences again similar to those observed in L7 and L18. 

318

319 2.2. Description of the discontinuities in radargrams

320 Angular unconformities can also be identified in some radargrams (tracks from 1 to 27 in Fig. 

321 1a), where the observed reflectors seem to be locally inclined and truncated. In particular, at 

322 different levels of confidence, we observed potential radar unconformities in 28 locations (cf. Table 

323 2). The unconformable surfaces are sub-horizontal, laterally extend up to approximately 100 km on 

324 average and are primarily focused in one broad area of PL (cf. white dotted inset in Fig. 1a), plus 
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325 other minor and more uncertain regions.

326 The main area characterized by the presence of radar angular unconformities is located in the 

327 middle of the PL, equatorward of the Australi Sulci and poleward of the visible sections L7, L9 and 

328 L10 (where angular unconformities are exposed; 80°S-85°S latitude; 110°E-130°E longitude; Fig. 

329 1a; (1) in Table 2). With respect to the maximum length of the PL ice sheet, several longitudinal 

330 radar profiles (Figs. 5, 6, A4 and A5) display two packs of reflectors with a different dip-angle. In 

331 particular, some of the reflectors (usually the bottom ones) seem to be truncated against others 

332 (usually the top ones) that are continuous, sub-parallel and with a dip toward the PLD margins. The 

333 angle between the two sets of reflectors suggests an unconformable contact between two radar 

334 sequences. This observation is consistent with Seu et al. [2007] and Milkovich et al. [2009]. The 

335 observed angular unconformities are located at average elevations of ~1900 m. The same structural 

336 configuration – even if subtler – can be detected in data from transverse orbits (e.g., Figs. 7 and A6) 

337 that crosscut the longitudinal orbits. This evidence supports the idea that the observed angular 

338 unconformities are real geologic structures, as previously suggested by some authors (e.g., Seu et 

339 al. [2007]). The high number of crosscutting radar tracks covering the study area allows us to 

340 interpolate the minimum, intermediate and maximum points of elevation (in terms of latitude, 

341 longitude and depth below the topographic surface) of the angular unconformities observed in each 

342 2D single orbit to obtain a three-dimensional view of the buried unconformable surface (Fig. 8). 

343 The interpolation of sample elevation points has been automatically calculated by using ArcGIS, 

344 adopting Kriging method. This kind of interpolation is a geostatistical technique often used on soils 

345 science and geology, that on the contrary of other tools minimizes the mean square error [e.g., 

346 Burrough, 1986; Oliver, 1990]. In this location, the reconstructed buried 3D angular unconformity 

347 is a continuous rough surface with an approximate area of 10,000 km2 and a slight dip toward the 

348 SE (~0.04°-0.6° dip angle). Its average elevation and dipping direction makes the observed angular 

349 unconformity consistent with the unconformities defined in the visible images.

350 The second location is in the same latitude range as the previous one (80°S-85°S) but between 
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351 the longitudes of 100°E and 110°E (17, 25, 28 in Fig. 1a; cf. Fig. 9 and location (2) in Table 2). 

352 Two sets of intersecting radargrams show again two groups of (less bright) reflectors that have 

353 different dip angles and appear to be truncated, thus suggesting the presence of an angular 

354 unconformity between them. This latter surface dips toward the PL margins (i.e., to the east) at a 

355 low angle (~0.1-0.2°). If the angular unconformity plane were to extend to the PL margin, it would 

356 intersect the topographic surface corresponding to the L7 section at an elevation of approximately 

357 2000 m. This value is again consistent with the local elevation of the angular unconformities 

358 observed in the images. 

359

360 2.3. Description of the stratigraphic sequences in the visible images

361 As aforesaid, the observed discontinuities divide two main stratigraphic sequences within the 

362 SPLD. These sequences, which most important distinguishing features are highlighted in Figures 

363 10-12, differ in average layer thickness, in morphology, in brightness and in erosional behavior of 

364 the bedding planes. The transition between the two sequences is, in some cases, marked by a slight 

365 break in topographic slope (cf. Fig. 13 as an example) that corresponds to the topographic contour 

366 of the discontinuities. In particular, the basal sequence is characterized by a higher dip angle of the 

367 scarp (~5° to 20°) than the top sequence (~1° to 10°).

368

369 2.3.1. Ridge and Trough sequence (RTS)

370 The basal sequence resting below the discontinuities is mainly characterized by a “ridge and 

371 trough" morphology, firstly defined by Malin and Edgett [2001] (Figs. 10, 11). On average, the 

372 package of layers is approximately 650-700 m thick. The RTS shows lateral variations in thickness 

373 and textures that may be due to different erosion or deposition rates (cf. Fig. A3a and layer S15 in 

374 Fig. A7). 

375 The sequence is mostly characterized by irregularly alternating dark and bright layers that are 

376 generally thin (up to some meters in thickness; Fig. 11a). From their appearance, these layers can be 
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377 grouped into stratigraphic packs that are clearly distinguishable from adjacent ones (cf. Figs. A7-

378 A9). In some cases, a further minor-order layering of sub-meter thickness appears at a closer scale 

379 (HiRISE resolution; cf. Fig. 11b). 

380 By considering the direction of illumination of the scarp in the images and from HiRISE DTM 

381 (cf. Fig. 14 in Guallini et al. [2012]), we observed that dark bedding planes generally show a 

382 typical concave-upward profile (“trough-shaped” morphology; Tr in Fig. 11b) while bright layers 

383 have a convex-upward profile (“ridge-shaped” morphology; Rg in Fig. 11b) [Malin and Edgett, 

384 2001]. Thus, the brightness might vary consistently with the morphology and texture of the layers 

385 and could be influenced by the dust content of their bulk composition [e.g., Squyres, 1979; Jakosky 

386 et al., 1995; Malin and Edgett, 2001; Richardson and Wilson, 2002; Haberle et al., 2003; Mischna 

387 et al., 2003; Milkovich and Head, 2005]. In this case, the higher absorption of the solar radiation in 

388 the dark layers, causing their high rate of sublimation (i.e., the relative velocity at which the icy 

389 matrix sublimates), could explain their “trough-shaped” morphology. Vice-versa, the opposite 

390 reasoning can be made for bright layers. On the other hand, another (in our advice) less possible 

391 hypothesis is that “trough-shaped” layers appear darker than the “ridge-shaped” ones because dust 

392 deposited more easily on their hollowed surface. In this last case, the variation of brightness of the 

393 layers would be only apparent and not representative of their bulk composition. 

394 At CTX resolution, the surfaces of the bedding planes appear uneven and locally pitted (Fig. 

395 11b, c). This erosional texture varies in intensity from layer to layer and whereas, again, it was 

396 indicative of the real bulk composition of the bedding planes, could change as a function of the 

397 varying mechanical strengths to erosion and the varying rates of sublimation of the layers. In 

398 addition, jagged layer edges (Ne in Fig. 11a) are not uncommonly observed in plan view. They 

399 have an almost regular pattern that may indicate a pristine structural control (preferential pathways 

400 of fracturing) on their erosion [Guallini et al., 2012].

401 The vertical variation of layer thickness along the RTS sequence appears to be irregular (as 

402 observed by Limaye et al. [2012] at other SPLD sites). Thus, a specific thickening gradation is not 
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403 clearly identifiable. 

404 The RTS sequence is occasionally interrupted by single or limited groups of “bench-like” 

405 bedding planes, typically of sub-decameter thickness (Bn in Fig. 11). These layers, which are 

406 prevalent in the upper sequence, are characterized by an irregular erosional pattern on their surfaces 

407 and by notched edges, which are sometimes clearly marked. They are locally more common in 

408 topographically higher observed outcrops. 

409

410 2.3.2. Stair-Stepped sequence (SSS)

411 The sequence resting upon the discontinuities is characterized by a “stair-stepped" morphology 

412 [Malin and Edgett, 2001], marked by a regular and clear bench-like morphology (Figs. 10, 12). The 

413 sequence has a maximum thickness of ~700 m, but this may be an underestimate because the 

414 elevation of its basal surface is uncertain in some places. 

415 In general, the layers and layer packs are up to decametric in thickness and lack significant 

416 brightness variations. They mostly appear medium-dark toned, possibly because of dust mantling. 

417 The surfaces of the layers generally show an uneven and pitted erosional pattern (see layer surfaces 

418 in Fig. 12). However, it is not clear if this texture is linked to an inner property of the bulk 

419 composition of the bedding planes or to the overlying dust deposit. The edges of these strata are 

420 often notched (Ne in Fig. 12). 

421 In addition to the dominant “stair-stepped” characteristic of the sequence, several variations in 

422 stratigraphy are present. For example, some SSS outcrops show a “ridge and trough” morphology in 

423 some layer packs in Chasma Australe, which is more similar to the RTS (see L18-L20 in Figs. 3-4 

424 and Fig. 14). The “ridge and trough” sub-sequences are mainly exposed toward the base of the SSS 

425 sequence, close to the discontinuity surfaces, which may suggest a local progressive transition from 

426 the RTS. 

427

428 2.3.3. Minor-order morphostratigraphic sequences 
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429 Within the major-order stratigraphic sequences (i.e., RTS and SSS), it is possible to observe 

430 several minor-order “morpho-sequences” in layer blocks showing similar morphologies and 

431 possible vertical repetition along the exposure (cfr. Fig. A10 and Tables A1-A3). The differences 

432 between these possible minor-order sequences are in terms of number of layers, stratigraphic 

433 location and texture. In addition, in most cases, sub-sequences present in one exposure are 

434 completely absent in others: they lack regional continuity, as occasional exposure of lateral pinch-

435 out terminations of the layers also suggests (cf. S15 and Fig. A7). It follows that, within the RTS 

436 and SSS sequences, each analyzed outcrop shows minor-order packs of layers that can be correlated 

437 across the PL only with difficulty, which may outline local independent events superimposed on 

438 regional ones. However, according to the stated stratigraphic approach, although the presence of 

439 minor-order sequences certainly implies greater complexity in the SPLD stratigraphy, we chose to 

440 limit our analysis to the regional events.

441

442 2.4. Brief description of the stratigraphic sequences in radargrams

443 Based on observation of the unconformities in the radargrams, two SPLD radar sequences that 

444 occasionally intersect the PL topographic surface can be defined. The transition between the two 

445 sequences is in some cases marked by low intensity reflections zones ~100 m thick that rests upon 

446 the unconformities when present (letter A in Figs. 5, 6 for location). 

447 Although the appearance of the two bounded sequences is generally very similar when 

448 examined at radar wavelengths, at the PL margins it is possible to observe some variations: 1) the 

449 upper sequence is thinner than the bottom one; 2) the reflectors of the two radar sequences both dip 

450 slightly toward the PL margins but have different (apparent, due to view geometry) dip angles 

451 (~1.5° upper sequence vs. ~0.1° bottom sequence; cf. Fig. 6 for example); and 3) reflectors are 

452 lower in number or locally absent in the top portion of the upper sequence. All these elements agree 

453 with the observations in the visible images and the two radar sequences seem to represent the same 

454 stratigraphy of the RTS and SSS.
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455  

456 3. Discussion 

457 3.1. Definition of the regional discontinuity “AUR1” 

458 The observed unconformable surfaces are not continuously exposed across the PL margins. This 

459 implies some uncertainties in their stratigraphic positions and thus their correlation. On the other 

460 hand, their exposure in various places suggests their presence at regional scale in PL. Also, despite 

461 the elevation of the exposed unconformities is not constant from section to section (it generally 

462 decreases toward the PL margins), at the regional scale several do not show significant variations in 

463 topographic heights (comprised between ~1900  100 m in average; Fig. 15 and Tab.1). 

464 All these angular unconformities divide the RTS and SSS sequences. Around the PL margins 

465 and also along the scarps of PC, UC and CA, these unconformities can be correlated through 

466 correlative discontinuities and conformities (the most significant examples are reported in Figs. 2, 

467 4, 5). We speculate that these unconformities originated under the same erosional or non-

468 depositional event. As a result, we assume that all these local discontinuities (unconformable and 

469 conformable) can be related to one regional discontinuity surface, appointed as AUR1 (Figs. 2-5 

470 and Tab. 1). 

471 The local differences in elevation of the unconformities can be explained as following: 

472 1) They are a unique and continuous surface but the erosion rate could have varied spatially in 

473 PL as a function of the existing local factors (i.e., narrow-scale topography, layer consistency, etc.) 

474 and resulted in both unconformable and conformable surfaces. As instance, it is possible that, in 

475 some locations, depositional lag formed in place of the angular unconformities [e.g., Fishbaugh et 

476 al., 2008; Byrne, 2009].

477 2) They are a unique and almost continuous regional surface that is topographically irregular. 

478 Assuming this case, it is possible to calculate that the regional surface plane has a gentle slope of 

479 ~0.05° along the NS sections and ~0.1° along the EW sections (cf. Fig. 1a), dipping toward the PL 

480 margins. This attitude is consistent with that derived from the radargrams (cf. Section 2.2). It is also 
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481 consistent with Byrne and Ivanov [2004], calculating a slight dip angle of the SPLD toward the 

482 periphery of the ice dome, progressively flattening toward its margins. In this sense, the gentle dip 

483 of the regional discontinuity supports the hypotheses that the deposition rate of the RTS may have 

484 been slightly greater near the center of PL and/or that the erosional rate of the same sequence was 

485 slightly greater near the margins of PL. 

486 At the same time, angular unconformities seem to be present also in the buried portion of the 

487 SPLD in PL (cf. Figs. 5-9). This suggests that a large area around the PL and beyond the marginal 

488 scarps of the region has undergone erosion or non-deposition. The radar unconformities have an 

489 elevation range (about 1900-2000 m) consistent with the elevation of the similar structures exposed 

490 on the PL margins. Thus, we infer that also the buried angular unconformities are consistent with 

491 the AUR1. 

492 Based on the analysis of Kolb and Tanaka [2006], the AUR1 should be older than a higher 

493 regional discontinuity located at the base of a third most recent SPLD sequence (i.e., Aa2 unit). 

494 This discontinuity can be inferred in some peripheral outcrops of PL [Kolb and Tanaka, 2006], 

495 close to the poleward borders of Promethei Chasma and Chasma Australe (in L2, L5, L17, L18, 

496 L20 logs; Fig. A11), where there is a local increase in the thickness of the SPLD (Fig. 1a, c). 

497 Nevertheless, this bounding surface, located at a presumed elevation >2300 m, has not clearly been 

498 observed in the analyzed region. One possible exception is in one marginal outcrop (e.g., L2; cf. 

499 Table 1) in which it cannot be distinguished with confidence due to limitations (in terms of 

500 quality/resolution and areal coverage) of the dataset. On the contrary, this structure has not been 

501 observed in radargrams because the rough topography of the likely region in which it is supposed to 

502 be would prevent SHARAD to see eventual reflectors. We appointed this uncertain discontinuity as 

503 AUR2. 

504 The local observed unconformities at lower (~1400 m; AUL1; cf. Table 1 and Fig. A1) and 

505 higher (~2300 m; AUL2; cf. Table 1 and Fig. A1) elevations than the AUR1 are apparently 

506 unrelated to this latter and the AUR2 regional surfaces. These unconformities (for the most 
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507 uncertain) seem to bound sequences of minor-order rank without lateral continuity at regional scale. 

508 Although they should imply a further complexity of the SPLD stratigraphy, given their uncertainty 

509 and absence of lateral continuity, they do not allow the definition of minor-order discontinuity-

510 bounded sequences [e.g., Chang, 1975]. Thus, they were not considered in the definition of the 

511 regional stratigraphy of PL. 

512

513 3.2. Definition of the “AUR1-bounded” units and regional stratigraphy of PL.

514 Based on the previous observations and assumptions we can define two formal regional 

515 “discontinuity-bounded” units or Synthems in the SPLD in PL (Fig. 15). These units are separated 

516 by the AUR1 discontinuity and are named, respectively:

517 1) Promethei Lingula 1 unit (PL1), coinciding with the RTS morphologic sequence;

518 2) Promethei Lingula 2 unit (PL2), coinciding with the SSS morphologic sequence.

519 Based on the available dataset and the good exposure of the layers, the stratigraphic sequence 

520 L7b (Figs. 1a, 10-12) is assumed to be representative of the regional PL stratigraphy and was thus 

521 chosen as a type section. This section best preserves the layered stack and acts as reference point for 

522 analyzing the regional stratigraphy and for comparing and correlating the exposed sections across 

523 the region. It is located in the northeastern margins of PL (latitude 79.31°S, longitude 102.23°E; cf. 

524 Figs. 1a and Table 1). 

525 The regional stratigraphy of PL is obtained correlating across the PL region the L7b with the 

526 other sections through the defined AUR1 discontinuities. The lower, older PL1 unit (Fig. 15) is 

527 exposed only along the PL scarps. It is confined at its bottom by an inferable non-conformity 

528 surface with the Late Noachian and Hesperian bedrock [Tanaka et al. 2014] and at its top by the 

529 AUR1 discontinuity. The PL1 is characterized by a maximum thickness of ~800-1000 m and is 

530 located in the vicinity of Promethei Chasma (L20, Fig. 15) in the inland PL and along some sectors 

531 of the PL margins, primarily corresponding to the L7 section (Fig. 15). Following the AUR1 

532 elevation trend, the PL1 thickness significantly decreases toward the margins of the ice sheet, where 
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533 erosion was focused, to a minimum of 250 m measured in the L6 section. This unit is consistent 

534 with the Aa1a member of Kolb and Tanaka [2006], observed by them only in Promethei and 

535 Ultimum Chasmata. 

536 The PL2 (Fig. 15) is confined at its bottom by the AUR1 discontinuity and at its top by the 

537 topographic surface or, possibly, by the AUR2 discontinuity. The PL2 is consistent with the locally 

538 observed Aa1b member of Kolb and Tanaka [2006]. The possible different attitudes of the bedding 

539 planes of the two units in both visible and radar images demonstrate that the PL2 was deposited 

540 atop the irregular upper surface of the PL1. The unit PL2 may reach a maximum thickness of ~900-

541 1000 m (L17). Unlike for the PL1, the logs indicate that thicker sequences are primarily located 

542 near the PL margins (i.e., L5, L9, L10, L17, L18). Again, this may be because after the PL2 

543 deposition and during the formation of Australi Sulci by wind ablation [Kolb and Tanaka, 2006], 

544 erosion was primarily focused on the central parts of the PL and removed part of the PL2 after its 

545 deposition. It is also possible that the PL2 deposition was not homogeneous over PL and was 

546 instead focused, for some unknown reason, on its margins. This last interpretation could be 

547 suggested by radargrams, in which more net accumulation (sum of net deposition and erosion) 

548 seems to have occurred on the sides of PL (e.g. ESE side in Fig. 9).

549 According to Kolb and Tanaka [2006], a further unit (Aa2) could unconformably overlie the 

550 PL2 in the Promethei and Ultimum Chasmata region (logs L17, L18, L20), near the Australi Sulci 

551 and on the poleward side of the Chasma Australe (log L5), separated by the AUR2. Thus, PL region 

552 has been only marginally interested by youngest depositional events. Alternatively, the absence of 

553 the Aa2 in the strict PL lobe suggests its complete removal by erosion or non-deposition. Moving 

554 from the PL inland (A-A' profile) toward the PL margins (B-B' profile) in Fig. 15, the average 

555 thickness of the SPLD sequence decreases from approximately 1700 m to approximately 1200 m. 

556 This can be explained through some combination of the following: 

557 1) The ice-dome physiography, which is usually characterized by a depositional rate higher at 

558 its center (“accumulation-like zone”) than at its margins (“ablation-like zone”). This would explain 
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559 the slight dip angle at the regional scale of the SPLD toward the periphery of the ice dome, as stated 

560 by Byrne and Ivanov [2004] and suggested by the radargrams; 

561 2) The presence, toward the central ice dome, of the overlying unit Aa2, according to mapping 

562 done by Kolb and Tanaka [2006]; 

563 3) The heterogeneous erosion of the SPLD unit, primarily focused along the PL margins. This 

564 trend is reversed in the Australe Sulci region (EW profile), where the average thickness of the 

565 SPLD sequence is lower than in the PL margins. This is consistent with a high rate of erosion in the 

566 region due to katabatic winds, as suggested by Koutnik et al. [2005] and Kolb and Tanaka [2006].

567

568 3.3. Some possible climatic implications

569 As introduced in Section 1, unconformities are important markers of the growth and retreat of 

570 the Polar Layered Deposits in both hemispheres. They indicate that global or regional climate 

571 changes affected Mars at various times in its recent history [Fishbaugh et al., 2008], likely induced 

572 by variations in Mars orbital parameters, in particular its spin axis obliquity [Levrard et al., 2007; 

573 Greve et al., 2010; Forget et al., in press, 2017]. Mars's obliquity indeed varies by about ±10° with 

574 a 105 year cycle, around a mean value (currently 25°) which is thought to have changed by several 

575 tens of degree in the past [Laskar and Robutel, 1993; Touma and Wisdom, 1993; Laskar et al., 

576 2004]. The resulting climate changes were studied by Toon et al. [1980] and Jakosky and Carr 

577 [1985] on the basis of energy balance calculations, and explored in more details by numerical 

578 global climate models able to simulate Mars water cycle [Mischna et al., 2003; Levrard et al., 2004; 

579 Montmessin et al., 2005; Forget et al., 2006; Levrard et al., 2007; Madeleine et al., 2014]. These 

580 studies demonstrated that, while surface water ice is only stable in the polar regions on present-day 

581 Mars, large amount of water ice could have accumulated at lower latitudes at the expense of the 

582 polar reservoirs when the obliquity was higher, forming all sorts of glaciers-related landforms and 

583 ice mantles, which remnants can still be observed today. To first order, the ice-rich strata of the 

584 Polar Layered Deposits result from the accumulation of ice in the polar regions when the climate 
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585 conditions (low mean obliquity) favored ice accumulation in the polar regions, while 

586 unconformities corresponds to periods of net ice sublimation at the poles, resulting in the formation 

587 of irregular erosion.   

588 In the Northern hemisphere, several studies have linked the stratigraphy observed in surface 

589 images [e.g. Laskar et al., 2002; Levrard et al., 2007; Hvidberg et al., 2012] and radargrams [e.g. 

590 Putzig et al., 2009] with the variations of Mars' obliquity and orbital parameters calculated for the 

591 past 5 million year. Before ~5 Ma, the mean obliquity was higher than today and its values 

592 oscillated between 25° and 45° [e.g. Laskar et al., 2002; 2004]. In such conditions, climate models 

593 predict that the ice-rich NPLD could not persist stably at the surface and that they slowly 

594 accumulated after 4 million years ago [Levrard et al., 2007; Greve et al., 2010] when the mean 

595 obliquity decreased. While the details of the stratigraphy are not yet fully understood, Levrard et al. 

596 [2007]'s model was recently found to successfully predict the upper 300 m of the NPLD cap (and 

597 the major discontinuity below), thought to have accumulated since ~370,000 years ago [Smith et al., 

598 2016]. 

599 Compared to the NPLD, the Southern Polar Layered Deposits are more difficult to understand 

600 for two reasons: 

601 1) According to the cratering record, the age of the SPLD surface ranges between ~30 to 100 

602 Myr [Plaut et. al., 1988; Herkenhoff and Plaut, 2000; Koutnik et al., 2002]. Thus, they accumulated 

603 during periods for which no orbital and obliquity data are available, because of the inherent chaotic 

604 nature of the evolution of the Martian obliquity [e.g., Laskar et al., 2004]. Chaos prevent the 

605 extrapolation of the Martian spin/orbit history before ~10-20 My ago [Laskar and Robute, 1993; 

606 Touma and Wisdom, 1993]. Thus, we can only speculate about the variations of the mean obliquity 

607 at the time of the formation of the SPLD, guided by the statistical studies performed by Laskar et 

608 al. [2004]. In fact, studying the stratigraphy of the SPLD might ultimately enable us to 

609 observationally constrain the obliquity history.

610 2) According to models, the Mars climate system tends to favor the accumulation of water ice in 
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611 the Northern Polar Regions rather than in the South, because of the topographic asymmetry 

612 between the Southern and Northern hemisphere. The global north-south elevation difference favors 

613 a dominant southern summer Hadley circulation (responsible for the inter-hemispheric transport of 

614 water) [Richardson and Wilson, 2002b] and may also prevent the formation of a Northern “dusty 

615 season” and the related atmospheric warming when the perihelion was opposite of today (i.e. during 

616 Northern winter; Montmessin et al. [2005]). Admittedly, Montmessin et al. [2005] showed that 

617 every 50 000 years there are periods when Mars eccentricity permit the accumulation of ice in the 

618 Southern Polar regions at the expense of the NPLD. This is when Mars perihelion occurs during 

619 Northern summer (the opposite of today's conditions), resulting in a more intense sublimation of the 

620 NPLD due to increased insolation. However, the amount of ice then accumulated in the southern 

621 polar region should only reach a few meters at most [Montmessin et al., 2005]. On average, the 

622 present-day Mars climate system seems to only allow the formation of thick Polar Layered deposits 

623 in the North. This explains why the NPLD are much more recent than the SPLD, but raises a 

624 question: in which conditions did ice accumulate at the South Pole to form the 3 km-thick SPLD?

625 A first possibility could be that, when the SPLD formed, the atmospheric pressure was 

626 significantly higher than today. With a thick enough atmosphere, atmospheric adiabatic cooling can 

627 influence the surface and near-surface temperature and favor ice accumulation in the high altitude 

628 south polar region rather the northern plain, just like on Earth today. This process was invoked to 

629 explain the origin of the Dorsa Argentea Formation, a Hesperian southern polar ice cap now buried 

630 by sediments [Wordsworth et al., 2013]. On present-day Mars, the atmosphere is too thin to affect 

631 the surface temperature and the local topography has no significant effect on surface temperature 

632 Forget et al. [2013]. The transition between a ‘‘present-day Mars regime’’ and an ‘‘Earth-like 

633 regime’’ was investigated by Forget et al. [2013], who showed that at least 100 mbar is needed to 

634 affect surface temperatures and thus ice stability. This is probably unlikely for Mars in the past 200 

635 Millions years [Forget et al., 2017 in press].  

636 A more likely possibility is that the Southern Polar Layered Deposits formed during periods 
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637 when the water cycle was so important that ice accumulated in both the northern and southern polar 

638 regions. For instance, this could have occurred when large amounts of tropical or mid-latitude water 

639 ice were available to sublime and the obliquity low enough to favor net condensation of water ice at 

640 the poles [Levrard et al., 2004; Madeleine et al., 2009]. From that point of view it is interesting to 

641 note that the largest non-polar glacier related landforms observed on Mars do not date from the past 

642 10 millions of year, but rather seems to have evolved to their present-day aspect 30 to 100 millions 

643 years ago, the approximate age of the SPLD [e.g., Herkenhoff and Plaut, 2000; Koutnik et al. 

644 2002]. This includes the Mid-Latitude Lobate Debris Aprons and Lineated Valley Fills, the Mid-

645 High Latitude Concentric Crater Fill, or the Tropical Mountain Glaciers (see Head and Marchant 

646 [2009]; Forget et al. [2017], and reference therein). Another key type of landforms are the mid-

647 latitudes "pedestal craters" which are impact craters perched on a decameters thick pedestal 

648 interpreted to be the remnant of ice-rich deposit locally armored from erosion by the cratering 

649 event. The presence of thousands of pedestal craters poleward of 30° latitude suggest the presence 

650 of very extensive, decameters thick, water ice deposits covering the mid to high latitudes in the past 

651 [Kadish and Head, 2010]. Kadish and Head [2014] calculated a wide range of crater size-frequency 

652 distribution ages for the formation of the pedestal crater but showed that 70% of the pedestal ages 

653 are less than 250 Myr old. During the 150 Myr period between 25 Ma and 175 Ma, they found at 

654 least one pedestal age every 15Ma. 

655 Likely, the SPLD formed on a very ice-rich planet Mars possibly covered by decameters thick 

656 ice deposits overall the mid-latitudes and extensive glaciers in the tropics. They recorded climatic 

657 events from a very different period than the ones archived in the NPLD, although it is not possible 

658 to exclude at all that climate during the formation of the SPLD (about 100 Ma) was similar to 

659 climate 5-0 Ma. In any case, another point of evidence for a very different evolution of the SPLD 

660 compare to the NPLD is the presence of massive deposits of CO2 ice in the Planum Australe, but 

661 not in the Planum Boreum [Phillips et al., 2011].  

662 While it is premature to attribute an absolute age to the recorded events and to quantitatively 
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663 constrain the obliquity history of Mars, analyzing the stratigraphy of Promethei Lingula allows to 

664 investigate major depositional and erosional events. Moreover, the SPLD are likely much older than 

665 the NPLD and they may represent a unique record not found elsewhere. Thus, as introduced, their 

666 stratigraphy contributes to a more refined understanding of climate change during the Late 

667 Amazonian on Mars. For instance, we can note that the discontinuity AUR1 represents a clear 

668 change in the environmental conditions of PL, interrupting the local continuity in the SPLD 

669 deposition. AUR1 can be related to a primary erosional or non-depositional event (by sublimation, 

670 melting, wind abrasion, and/or the absence or reduction of solid precipitation/condensation) taking 

671 place between two main depositional stages by solid precipitation/condensation and wind 

672 accumulation of the SPLD. Fig. 16 illustrates the overall evolution of the PL region and the 

673 different climatic phases, as described below:

674 Time 0 (Fig. 16a). During a first climatic period, the unit PL1 was deposited and the PL ice-

675 sheet reached its maximum advance, probably as a result of the instability of large tropical and mid-

676 latitude ice reservoir at relatively low obliquity.  

677 Time 1 (Fig. 16b). During another insolation period (from lower to higher obliquity (E1), a 

678 climatic change began that warmed the polar regions on average. This would have determined an 

679 extensive erosional stage of the PL1 sequence, forming the AUR1. For simplicity, assuming that the 

680 gentle regional dip angle of the AUR1 (0.05°-0.1°) is only due to the inhomogeneous erosion rate 

681 removing the PL1 (and thus also assuming a homogeneous thickness of the PL1 before the AUR1 

682 formation), it is possible to estimate that the possible maximum thickness of material removed 

683 across the length of PL (approximately 350-400 km) was ~300-600m. The warm temperatures at 

684 this time [Constard et al., 2002] may have induced local melting and broad deformation of the 

685 SPLD (wet conditions), which in turn affected the attitude of the layers and possibly triggered or 

686 accelerated an inhomogeneous outward movement of the PL ice sheet [e.g. Guallini et al., 2012; 

687 2014].  

688 Time 2 (Fig. 16c). From high to low average obliquity. A new, gradual decrease of the 



29

689 rotational axis to lower angles (D2) brings about a new drop in mean surface temperature at polar 

690 latitudes and, assuming that ice is still available at lower latitudes, the beginning of the deposition 

691 of the unit PL2 upon the PL1. The accumulation of the PL2 followed the existing topography of the 

692 AUR1, resting upon it both with conformable and unconformable contacts. 

693 Time 3 (Fig. 16d). From low to high average obliquity. This episode was followed by a period 

694 of erosion of the PL2 (from low to high obliquity; E2), which was likely combined with a reduction 

695 in or absence of precipitation, causing a negative mass balance of the PL ice sheet. Particularly at 

696 the inland PL, close to the high surface topography of the ice dome, katabatic winds removed 

697 material from the SPLD [Koutnik et al.; 2005], forming the Australe Sulci [Kolb and Tanaka; 2006] 

698 and removing significant volumes of the PL2. Based on evaluations of the Australe Sulci region 

699 done by Kolb and Tanaka [2006] and the stratigraphic correlation of outcrops along NS and EW 

700 profiles (cf. Fig. 15), up to 300-500 m of the PL2 was possibly removed.  

701 Time 4 (Fig. 16e). From high to low average obliquity. During the transition from high 

702 obliquity to the present-day low obliquity, a new depositional stage formed the Aa2 unit [Kolb and 

703 Tanaka; 2006], perhaps mostly outside of PL and divided from the PL2 by the inferred regional 

704 unconformity AUR2. The deposition of the unit occurred at latitudes higher (i.e., ~80° latitude) than 

705 the PL region, which may only have been marginally buried by the Aa2, and was quickly followed 

706 by renewed widespread erosion of the SPLD (E3). According to Koutnik et al. [2005] and 

707 Milkovich and Plaut [2008], this latter erosional phase, which is primarily characterized by dry 

708 conditions and dust accumulation, occurred in a climate similar to that of the present day (i.e., 

709 warmer temperatures are not required). As suggested by the medium-high dip angles of the SPLD 

710 scarps [Milkovich and Plaut; 2008], erosional processes are still ongoing by wind ablation and 

711 sublimation. According to Byrne [2009] and given the uncertainties, we assume that the 

712 preservation of the SPLD through periods of high obliquity could be explained if the sublimation 

713 and melting of water ice is a self-limiting process. In particular, surface dust lag caused by the 

714 removal of the volatile water ice may retard sublimation of the underlying ice when the dust is thick 
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715 enough. 

716  As previously described, the complexity of the stratigraphy suggests that minor-order periods 

717 of erosion and deposition also characterized the evolution/growth of the SPLD, possibly driven by 

718 other factors, however barely definable using the available dataset. These minor-order episodes 

719 resulted in the development of local angular unconformities, to which the AUL1 and AUL2 likely 

720 belong, affecting some sections of the PL. As instance, we can suppose that topography might have 

721 locally influenced the deposition and erosion of the SPLD [e.g. Smith et al., 2013] secondary to the 

722 PL1, PL2 and AUR1-AUR2(?) formation. In fact, when SPLD dome accumulated, topographic 

723 relief increased, increasing the likelihood of katabatic wind flow, driven by gravity. These latter are 

724 capable to erode material from the slopes and redeposit it elsewhere. Nevertheless, eventual minor-

725 order factors of erosion and deposition of PL might suggest that, from place to place, the quantity of 

726 growth/retreat of the SPLD changed in function of local scale factors, however lying within the 

727 same regional context, driven by global factors.

728 4. Conclusions 

729 We performed a stratigraphic analysis of the SPLD in Promethei Lingula based on the 

730 identification of unconformities, the use of correlative discontinuities and conformities and the 

731 morphologic description of the sequences both in visible images and radargrams. Using techniques 

732 commonly used in Earth-based studies, this approach constrains the stratigraphy of the region and 

733 tries to reduce the amount of possible ambiguous interpretations that are exclusively based on 

734 “morpho-stratigraphy”. In this regard, our approach is an attempt to bypass the problems related to 

735 the morphologic and radiometric appearance of the layers. Thus, it does not exclude diverse 

736 classifications but complements them, whereas other stratigraphic analyses are doubtful, awkward 

737 or impossible to define. 

738 We identify two main depositional events that formed two stratigraphic units, named PL1 and 

739 PL2; these are interrupted by one main erosional or non-depositional phase marked by the 

740 discontinuity AUR1. Subsequently, less extensive events partially eroded the PL2, possibly forming 
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741 the AUR2 discontinuity, and then formed the Aa2 unit [Kolb and Tanaka, 2006], which is almost 

742 entirely located outside the PL ice sheet. Both radar datasets and visible images are consistent with 

743 this interpretation, which supports and extends to the entire PL region the stratigraphy proposed by 

744 Kolb and Tanaka [2006] for the areas of Australi Sulci and Promethei and Ultimum Chasmata. 

745 Thus, the PL1 and PL2 sequences have the rank of major-order units (i.e., Synthems) because the 

746 AUR1 makes them mappable at regional scale. Secondary members within major-order units 

747 cannot be defined through allostratigraphic criteria. 

748 In optical images, the lower PL1 is characterized by a prevalent “ridge and trough” (RTS) 

749 [Malin and Edgett, 2001] morphology, given by a succession of thin layers having diverse erosional 

750 strengths and brightness. The upper PL2 is characterized primarily by a “stair-stepped” morphology 

751 (SSS) [Malin and Edgett, 2001] and is outlined by thicker layers than in the PL1, with no evident 

752 variations in brightness or erosional textures. However, at the regional scale, the PL2 has a slight 

753 lateral variability in morphology, showing minor-order “ridge and trough” sequences in some 

754 locations (e.g., Chasma Australe).

755  The AUR1 is also inferable in several radargrams at SHARAD wavelengths. Both PL1 and 

756 PL2 sequences show bright reflectors and horizontal non-reflective zones. 

757 The PL stratigraphy supports the hypothesis of time-varying climatic conditions at polar 

758 latitudes that controlled the SPLD geologic history. These climatic conditions are marked by 

759 alternating depositional and erosional/not depositional stages and possibly also by changes in the 

760 depositional pattern and erosional style of the PL1 and PL2 units. The quasi-cyclical variation of 

761 some orbital parameters (such as the variation of the obliquity of the Martian rotational axis) may 

762 have determined climate changes. In particular, the AUR1 formed during high angle orbital axis 

763 [e.g., Costard et al. [2002], causing a high insolation of the SPLD surface. In this regard: 1) The 

764 main-order stratigraphy of each PL unit (PL1 and PL2) originated under one long-period insolation 

765 period, forced by one broad variation in Martian obliquity. From high to low obliquity, the erosion 

766 progressed to deposition. From low to high obliquity, deposition progressed to erosion. It is 
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767 possible that this long-period insolation period was affected by a positive feedback interaction with 

768 other shorter-period orbital variations. 2) During the occurrence of the first episode, the AUR1 

769 erosional surface formed under increasing obliquity [Jarosky et al., 1995; Milkovich and Head, 

770 2005] and causing regional-scale erosion of the PL1. 3) During the main-order insolation periods, 

771 minor-order orbital variations affected the deposition of the PL1 and PL2, resulting in multiple sub-

772 sequences [e.g., Milkovich and Head, 2005] and possibly local-scale unconformities (e.g., the 

773 AUL1/AUL2) or depositional lags. 4) A third insolation half-cycle (from high to low obliquity) 

774 deposited the Aa2 unit and brought the planet to present-day conditions (low-obliquity period). 

775 In conclusion, the present study proposes a simple model of SPLD formation at the PL regional 

776 scale due to alternating depositional and erosional stages and driven by climate changes due to 

777 orbital variation. In this way, main-order sequences, in turn related to geologic controlling factors, 

778 are defined. Given the complexity of the SPLD stratigraphy, several minor-order distinct periods of 

779 accumulation and erosion can be (and have been) defined using different approaches, also in other 

780 regions of the southern ice dome [e.g., Milkovich and Plaut, 2008; Limaye et al., 2012], completing 

781 the overall description of the SPLD stratigraphy in the Planum Australe.

782
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1089 Figure 1. (a) Location and type of the mapped discontinuities in optical images and radargrams. 

1090 Analyzed stratigraphic exposures are labeled from L1 to L21; red crosses are outcrops affected by 

1091 angular unconformities; white crosses are outcrops showing uncertain angular unconformities. 

1092 Solid red and white lines (1-27) represent the approximated plan-view projection of subsurface 

1093 angular unconformities observed in SHARAD radargrams (TO are transversal orbits). Dotted 

1094 orange inset highlights the type section location (L7). Dotted white inset enclose the main area 

1095 affected by radar angular unconformities (cf. Section 2). Topographic sections NS(w), NS(e) and 

1096 EW (white T symbols) are referred to Fig. 15. (b) MOLA gridded topography of PL region. (c) a-a’ 

1097 topographic section of PL (figure b for location). The region has a maximum thickness of about 

1098 1000-1500 m (uncertainties are due to the buried bedrock elevation). 

1099 Credits: MOLA 512 pix/degree and shaded relieves. 

1100

1101 Figure 2. a) Observed angular unconformity and mapped correlative discontinuity/conformity 

1102 (AUR1; cf. Section 3.1) in section L7 (cf. Tab. 1); b, c) Narrow-scale view, not-mapped (b) and 

1103 mapped (c) of the exposed angular unconformity. The white arrow indicates the dip direction of the 

1104 scarp (i.e., the direction toward which the topographic elevation decreases). The torch in the upper 

1105 right of images indicates the direction of illumination of the image. 

1106 Credits: a) HRSC nd3 H2169_0000; b, c) CTX P13_006290_1017, P11_005222_1021 (in (b) the 

1107 image is contrast-enhanced; in (c) the image has inverted brightness.

1108

1109 Figure 3. a) Broad-scale location of observed angular unconformity and mapped correlative 

1110 discontinuity (AUR1; cf. Section 3.1) exposed along Ultimum Chasma scarps (L18; cfr. Tab. 1). b, 

1111 c) Narrow-scale view, not-mapped (b) and mapped (c) of the angular unconformity exposed in the 

1112 L18 log. 

1113 Credits: CTX P12_00563_1006. Image (c) is contrast-enhanced.

1114
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1115 Figure 4. a) Broad-scale location of observed angular unconformity and mapped correlative 

1116 discontinuity (AUR1; cf. Section 3.1) exposed along Promethei Chasma scarps (L20; cfr. Tab. 1). b, 

1117 c) Narrow-scale view, not-mapped (b) and mapped (c) of the angular unconformity exposed in the 

1118 L20a log. 

1119 Credits: CTX B08_012710_0966. Image (b) is contrast-enhanced.

1120

1121 Figure 5. Subsurface angular unconformity AUR1 dividing two sets of radar bright reflectors 

1122 characterized by different dipping angle, consistent with the exposed RTS and SSS sequences. 

1123 Some of them are clearly truncated by the unconformable surface. The transition between the two 

1124 sequences is in some cases marked by low intensity reflections zones ~100 m thick that rests upon 

1125 the unconformities when present (letter A in figure).  The topographic surface is located around the 

1126 average MOLA elevation of ~2300 m (black and blue dashed line). 

1127 Credits: SHARAD along-track radargram, orbit rdr0938801 (cf. red line 24 in Fig. 1a and Tab. 2). 

1128 Vertical depth is calculated assuming permittivity (ε) equal to 3.4 (~ice mean and dust particles).

1129

1130 Figure 6. a, b) Subsurface angular unconformity AUR1 dividing two set of radar reflectors 

1131 characterized by different dipping, consistent with the exposed RTS and SSS sequences (a, not-

1132 mapped; b, mapped). Some of them are clearly truncated by the unconformable surface. The 

1133 transition between the two sequences is in some cases marked by low intensity reflections zones 

1134 ~100 m thick that rests upon the unconformities when present (letter A in figure); c) MOLA 

1135 topographic cross section of the AB segment. As reference, the average elevation of the surface is 

1136 around 2300 m. 

1137 Credits: SHARAD along-track radargram, orbit rdr0220201 (cf. red line 1 in Fig. 1a and Tab. 2). 

1138 (b) radargram is radiometrically inverted. Vertical depth is calculated assuming permittivity (ε) 

1139 equal to 3.4 (~ice mean and dust particles).

1140
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1141 Figure 7. a, b) Subsurface angular unconformity AUR1 on radargram crosscutting orbits in figures 

1142 5 and 6 and dividing two set of radar reflectors, consistent with the exposed RTS and SSS 

1143 sequences. Also in this case some radar reflectors are (with some uncertainty) characterized by 

1144 different dipping angle (a, not-mapped; b, mapped); c) MOLA topographic cross section of the AB 

1145 segment. As reference, the average elevation of the surface is around 2300 m. 

1146 Credits: SHARAD along-track radargram, orbit rdr0673001 (cf. white TO line 19 in Fig. 1a and 

1147 Tab. 2). (b) radargram is radiometrically inverted. Vertical depth is calculated assuming 

1148 permittivity (ε) equal to 3.4 (~ice mean and dust particles).

1149

1150 Figure 8. 3D-view of the subsurface radar AUR1 plane (cf. Fig. 1a for location and Section 2.2). 

1151 The DEM shows an irregular and continuous discontinuity surface, roughly decreasing in elevation 

1152 (i.e., dipping) toward SE. The DEM has been obtained from the interpolation of sample elevation 

1153 points (representing the minimum, the intermediate and the maximum elevation of each radar-

1154 observed unconformity in each radargram), using Kriging method. Each point is, thus, defined by 

1155 latitude, a longitude and an elevation, this latter obtained subtracting, in each radar orbit, the 

1156 average elevation of the surface from the respective measured depth from the surface of the point. 

1157

1158 Figure 9. a, b) Subsurface angular unconformity AUR1 (a, not-mapped; b, mapped) dividing two 

1159 set of radar reflectors characterized by different dipping angle, consistent with the visible RTS and 

1160 SSS sequences. It is located in correspondence of the type section L7b, where the AUR1 is 

1161 exposed. The top sequence appears to have reflectors interrupted by the inferred unconformity; c) 

1162 MOLA topographic cross section of the AB segment. As reference, the average elevation of the 

1163 surface is around 2400 m.

1164 Credits: SHARAD along-track radargram, orbit rdr0656701 (line 17 in Fig. 1a and Tab. 2). (b)  

1165 radargram is radiometrically inverted. Vertical depth is calculated assuming permittivity (ε) equal to 

1166 3.4 (~ice mean and dust particles).
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1167

1168 Figure 10. Topographic profile from MOLA gridded data of the type section (L7b) and dip-angle 

1169 of the scarp. The stratigraphic boundary between the RTS and SSS sequences, coinciding with the 

1170 discontinuity plane AUR1, is in some cases marked by a slight change in the topographic gradient 

1171 of the profile. On the right is reported the stratigraphic section of the sequence.

1172

1173 Figure 11. Stratigraphic type section (L7b), not mapped (a) and mapped (b). The dashed white 

1174 inbox indicates the location of Figs. 10-12. Cf. Section 2 for a detailed description of the 

1175 stratigraphy. 

1176 Credits: CTX P10_005103_0995. Image (a) is contrast-enhanced.

1177

1178 Figure 12. Focus on type section stratigraphy (L7b). a) The discontinuity AUR1 spaces out a 

1179 layered “stair-stepped” top sequence (SSS; left on the image) from a thin layered “ridge and 

1180 trough” bottom sequence (RTS; right on the image). The contact between the two sequences is 

1181 marked by the presence of benched layers (Bn) within the RTS; b) Detailed view of the RTS 

1182 layering (Rg: ridge shaped layers, bright and convex-upward in section view; Tr: trough shaped 

1183 layers, dark and concave-upward in section view; Ly is to indicate an example location of sub-

1184 metric layering, only visible at HiRISE resolution); c) Detailed view on a benched layer, showing 

1185 notched edges (Ne in figure (a) as example). 

1186 Credits: HiRISE PSP_004655_1005.

1187

1188 Figure 13. Focus on type section stratigraphy (L7b). Detailed view of the SSS layering, mostly 

1189 characterized by benched layer (Bn), in some cases showing notched edges (Ne as example). 

1190 Credits: CTX P10_005103_0995.

1191

1192 Figure 14. Correlation of the L7b type section (a; PL margins) with two stratigraphic exposures of 
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1193 example, located in Chasma Australe (b; L5) and Ultimum Chasma (c; L18; cf. Fig. 1a for 

1194 location), through the regional discontinuity AUR1, spacing out the PL1 and PL2 units. The PL1 

1195 maintains the RTS morphology in all the outcrops, but it can differ from the type section mainly in 

1196 terms of thickness (several pinch-out closure of sub-sequences are inferable across the region). The 

1197 PL2 is mostly characterized by benched layers (SSS morphology), but it can include also thinner 

1198 “ridge and trough” layering, especially in exposures located at the borders with Ultima Lingula and 

1199 Australe Lingula regions (see section c as an example). This is consistent with conventional 

1200 stratigraphy on Earth (Salvador, 1987; Catuneanu, 2006), in which discontinuities are used to 

1201 correlate and define discontinuity-bounded sequences irrespectively of their eventual morphological 

1202 or lithological lateral changes in the depositional environment.

1203

1204 Figure 15. Regional stratigraphy of the SPLD sequence in PL, represented, in each figure, through 

1205 logs correlation using the regional discontinuities and along three topographic profiles (from top to 

1206 bottom respectively NS(w), NSe, EW; cf. Fig. 1a for logs location and Section 3 for detailed 

1207 analysis). With gray-borders are represented logs obtained from radargrams. Logs with dashed 

1208 borders are not located along the topographic profile but projected from locations close to it. To 

1209 note the slight dip (i.e., decrease of the mean elevation) toward PL margins of the discontinuity 

1210 AUR1. The elevation of the buried bedrock (i.e., the SPLD base) is not measured, but it has been 

1211 obtained through interpolation from exposed outcrops around the ice-sheet. The elevation of the 

1212 buried bedrock is consistent with the elevation calculated through MARSIS and SHARAD [Plaut et 

1213 al., 2007]. Cf. Tab. 1 and 2 for stratigraphic logs details. PL = Promethei Lingula; UL = Ultima 

1214 Lingula; AL = Australe Lingula; UC = Ultimum Chasma; PC = Promethei Chasma; CA = Chasma 

1215 Australe. 

1216

1217 Figure 16. Proposed geologic scenario and chronology of the main events characterizing the SPLD 

1218 in PL (the topographic profile is referred to the type section L7b). According to our analysis, the PL 
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1219 region has been affected by two main depositional stages (D1 and D2 in the scheme), setting the 

1220 PL1 and PL2 units, and one main erosional/not depositional stage (E1) of regional scale, removing 

1221 part of the PL1 unit and modeling the unconformity AUR1. A further erosional/not depositional 

1222 phase (E2) partially removed the PL2 (AUR2). Erosion likely took place mainly through wind 

1223 abrasion and sublimation. During time 1 and 2, local melting of the PL ice-sheet cannot be 

1224 excluded, as possibly suggested by broad “soft-sediment” deformational systems observed in some 

1225 locations [Guallini et al., 2012]. These events were likely forced by periodic climatic changes that 

1226 in turn were driven by variations in the obliquity of the planet. Later depositional phases (D3) 

1227 would have deposited the Aa2 unit, unconformable resting upon the PL2 through the AUR2 

1228 discontinuity, but involving only marginally the PL region. The attitude of the drawn layering 

1229 (white or black lines) is not real and just aimed to show the possible angular unconformity between 

1230 the PL1 and PL2 sequences.

1231  
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Table 1. Discontinuities mapped in visible images

Log
Id

Lat
(South

)

Lon
(East)

Elevatio
n

(km)a

Lengt
h

(km)b

Imager
y

Typec

Imagery
Idc

Disc
Type

d

Disc
Id

Bounded
Sequences

e

Location
f Cf. Fig.

L1* 82.53 91.26 1.4 n.d. HRSC h2169 AU? n.d. n.d. CA -

L2 85.45 97.56 2.4-2.5 5 HiRISE PSP_004933_094
5

AU? AUR2
?

Aa2/SSS CA -

L3* 85.20 98.16 1.5 n.d. CTX P10_005082_085
1

AU? n.d. n.d. CA -

L4* 85.19 98.30 1.8 n.d. CTX P10_005082_085
1

AU? n.d. n.d. CA -

L5a 84.57 99.42 1.7-2 CTX P10_005082_085
1

CC AUR1 SSS/RTS CA -

L5b 84.36 101.3
0

1.7-2
75

CTX P10_005082_085
1

CC AUR1 SSS/RTS CA -

L6 80.32 94.25 1.45 30 CTX
HRSC

B06_011828_099
6
h2069

AUn
CC

AUR1
?
AUR1
?

SSS?/RTS
? PL A1a,b

L7a 79.49 100.5
3

1.7-2 CTX P09_004708_099
8

AU AUR1 SSS/RTS PL -

L7b
g 79.31 102.2

3 1.7-1.8 CTX

P13_006290_101
7
P11_005222_102
1

CC AUR1 SSS/RTS PL 2,11,12,1
3

L7c 80.32 100.1
0

1.9-2.2

122

CTX B05_011762_099
7

CD AUR1 SSS/RTS PL -

L8* 79.11 105.4
9

1.4 n.d. HiRISE PSP_004374_100
5

Au? AUL1
?

n.d. PL -

L9a 79.14 107.4
7

1.6-2 CTX P05_003078_078
6

CC AUR1 SSS/RTS PL -

L9b 79.31 108.1
9 1.5-1.7

53
CTX P05_003078_078

6
AUn
CD

AUR1 SSS/RTS PL A1b,c

L10
a 80.50 112.3

3 1.6-2.0 25 CTX
HRSC

B12_014280_098
9
h2440

AU AUR1 SSS/RTS PL A2a,b

L10
b

80.78 117.0
4

2.1-2.2 n.d CTX P10_005103_099
5

CD AUR1 SSS/RTS PL -

L11* 80.00 112.4
2 1.5 n.d. CTX

HRSC

P10_004826_101
3
h2440

AU? AUL1
? n.d. PL -

L12* 79.14 111.6
0

2.3 n.d. CTX B11_013779_100
6

AU? AUL2
?

Aa2?/SSS PL -

L13 78.30 117.2
0 1.85-2.1 27 CTX P12_005617_101

1
AUn
CD

AUR1 SSS/RTS PL A2b,c

L14* 79.15 124.4
5

2.2 n.d. CTX B09_013251_100
2

AU? AUL2
?

n.d. PL -

L15
a 79.36 132.1

3 1.6-1.7 CTX
HRSC

B08_012842_102
3
h2330

AU
CD

AUR1 SSS/RTS UC A3a,b

L15
b 79.20 130.4

8 1.6-1.7

70
CTX
HRSC

P10_004799_099
8
h2330

AU
CD

AUR1 SSS/RTS UC A3a,b

L16* 81.30 144.0 1.4 n.d. CTX B07_012367_099 AU? n.d. n.d. UC -
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0 4

L17 81.11 147.1
0 1.3-2.2 33 CTX B08_012802_098

3
AU
CD

AUR1 SSS/RTS UC A3c,d

L18 80.56 150.5
4 1.6-2.1 92 CTX

HRSC

P12_005603_100
6
h2348

AU
CD

AUR1 SSS/RTS
UC

3

L19* 82.16 163.1
8

1.9 n.d. HiRISE PSP_006288_097
5

AU? AUR1
?

SSS?/RTS
?

UC -

L20
a

82.28 142.5
0

2.1-2.2 CTX B08_012710_096
6

AU AUR1 SSS/RTS PC 4

L20
b

81.52 141.8
0

2.1-2.2
59

CTX B08_012710_096
6

CD AUR1 SSS/RTS PC 4

L21* 84.00 149.2
5

1.6 n.d. CTX B08_012710_096
6

AU? n.d. n.d. PC -

* Uncertain discontinuity
a Approximate elevation range (min-max)
b Approximate mapped length (n.d. = not determinable)
c Reference type image(s) and number
d AU = Angular Unconformity; CD = Correlative Discontinuity; CC = Correlative Conformity; n.d. = not determinable
e “Discontinuity-Bounded” Sequences (cf. Section 2)
f Geographic location of the discontinuities (PL = Promethei Lingula; CA = Chasma Australe; UC = Ultima Chasma; PC= Promethei 
Chasma
g Type Section
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Table 2. Angular unconformities mapped in radargrams
Log
Ida

Lat S
(Init)b

Lat S
(End)b

Lon E
(Init)b

Lon E
(End)b

Length
(km)c

Elevation
(m)d

Disc
Typee

Disc
Id

Bounded
Sequencesf

SHARAD
Orbit Idg

Cf. 
Fig.

1(1) 82.85S 118.80E 81.16S 114.26E 150 1700 AU AUR1 SSS/RTS rdr0220201 6
2(1) 82.38S 116.82E 81.16S 114.26E 80 1900-2100 AU AUR1 SSS/RTS rdr0241301 A10
3(1) 82.66S 117.09E 81.25S 113.37E 90 1900-2000 AU AUR1 SSS/RTS rdr0262401 -
4(1) 82.77S 116.81E 81.22S 112.67E 98 1900-2100 AU AUR1 SSS/RTS rdr0283501 -
5(1) 82.99S 116.78E 81.17S 111.75E 100 1900-2100 AU AUR1 SSS/RTS rdr0325701 -
6(1) 82.32S 111.95E 81.48S 114.09E 54 1800? AU AUR1 SSS/RTS rdr0331501 -
7(1) 84.77S 106.81E 83.16S 114.51E 109 2300? AU AUR2? Aa2/SSS? rdr0332801 -
8(1) 83.26S 117.43E 81.16S 111.41E 120 1800-2000 AU AUR1 SSS/RTS rdr0346801 -
9(1) 82.98S 115.84E 81.16S 110.82E 115 1850-2100 AU AUR1 SSS/RTS rdr0367901 A11
10(1) 82.95S 114.71E 81.55S 110.68E 91 1800-2000 AU AUR1 SSS/RTS rdr0410101 -
11(1) 83.00S 119.84E 82.02S 122.74E 64 1800? AU AUR1 SSS/RTS rdr0411901 -
12(1) 82.76S 113.70E 81.35S 117.42E 93 1950-2150 AU AUR1 SSS/RTS rdr0417201 -
13(3) 80.46S 151.95E 78.87S 149.46E 99 2100? AU AUR1 SSS/RTS rdr0428401 -
14(1) 84.27S 128.19E 81.66S 118.71E 170 1600-1900 AU AUR1 SSS/RTS rdr0440401 -
15(1) 83.17S 115.05E 81.77S 119.17E 92 2000-2100 AU AUR1 SSS/RTS rdr0446201 A12
16(1) 83.05S 111.82E 81.51S 116.16E 72 1950-2150 AU AUR1 SSS/RTS rdr0459401 -
17(2) 81.63S 104.81E 79.92S 101.32E 107 1700-2250 AUn AUR1 SSS/RTS rdr0656701 12
18(1) 82.88S 113.80E 81.61S 117.31E 81 2000 AU AUR1 SSS/RTS rdr0658501 -
19(1) 83.00S 114.32E 81.60S 118.28E 91 2000-2100 AU AUR1 SSS/RTS rdr0673001 7
20(1) 82.61S 112.39E 81.35S 115.69E 81 1800-2000 AU AUR1 SSS/RTS rdr0700701 -
21(1) 82.49S 110.67E 80.94S 114.48E 98 1800? AU AUR1 SSS/RTS rdr0707301 -
22(1) 83.26S 122.00E 81.74S 117.27E 98 1700 AU AUR1 SSS/RTS rdr0896601 -
23(1) 82.43S 119.67E 81.16S 116.42E 130 1750 AU AUR1 SSS/RTS rdr0932201 -
24(1) 82.42S 117.86E 81.46S 115.17E 100 1800-1900 AU AUR1 SSS/RTS rdr0938801 5
25(2) 81.56S 104.04E 79.99S 100.82E 98 1700-2250 AU AUR1 SSS/RTS rdr1056201 -
26(1) 82.96S 114.90E 81.70S 118.44E 115 2000-2100 AU AUR1 SSS/RTS rdr1610501 -
27(1) 83.85S 125.57E 81.77S 118.62E 180 1600-2100 AU AUR1 SSS/RTS rdr1640301 -
28(2) 83.01S 102.35E 81.18S 107.27E 81 1800-1900 AU AUR1 SSS/RTS rdr1614501 -
Bold rows are transversal orbits crossing longitudinal orbits.
a Numbers identify single observed unconformities. In parenthesis are reported the identification numbers of orbits displaying the angular 
unconformity in the same location.
b Approximate beginning and end of the unconformities, projected on surface in plan-view (cf. Fig. 1a)
c Approximate mapped length 
d Approximate elevation range (min-max)
e AU = Angular Unconformity
f “Discontinuity-Bounded” Sequences (cf. Section 2)
g  SHARAD reference orbit
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