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Teriflunomide and monomethylfumarate
target HIV-induced neuroinflammation and
neurotoxicity
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Bastian Grewe6 and Andrew Chan3*

Abstract

HIV-associated neurocognitive disorders (HAND) affect about 50% of infected patients despite combined
antiretroviral therapy (cART). Ongoing compartmentalized inflammation mediated by microglia which are activated
by HIV-infected monocytes has been postulated to contribute to neurotoxicity independent from viral replication.
Here, we investigated effects of teriflunomide and monomethylfumarate on monocyte/microglial activation and
neurotoxicity. Human monocytoid cells (U937) transduced with a minimal HIV-Vector were co-cultured with human
microglial cells (HMC3). Secretion of pro-inflammatory/neurotoxic cytokines (CXCL10, CCL5, and CCL2: p < 0.001; IL-
6: p < 0.01) by co-cultures was strongly increased compared to microglia in contact with HIV-particles alone. Upon
treatment with teriflunomide, cytokine secretion was decreased (CXCL10, 3-fold; CCL2, 2.5-fold; IL-6, 2.2-fold; p < 0.
001) and monomethylfumarate treatment led to 2.9-fold lower CXCL10 secretion (p < 0.001). Reduced toxicity of
co-culture conditioned media on human fetal neurons by teriflunomide (29%, p < 0.01) and monomethylfumarate
(27%, p < 0.05) indicated functional relevance. Modulation of innate immune functions by teriflunomide and
monomethylfumarate may target neurotoxic inflammation in the context of HAND.

Keywords: HIV-associated neurocognitive disorder, HAND, Glial activation, Microglia, Neuroinflammation,
Leflunomide, Dimethyl fumarate

Introduction
Human immunodeficiency virus (HIV)-infected patients
suffer serious complications, of which the pathogenesis
of HIV-associated neurocognitive disorders (HAND) is
one of the least understood. Since the introduction of
combined antiretroviral therapy (cART) in the early
1990s, higher prevalence of the less severe phenotypes of
HAND were reported [1, 2]. One key hypothesis to
explain the occurrence of HAND despite inhibition of
viral replication is the “bystander hypothesis”. It postu-
lates that microglia become activated by HIV-infected
monocytes and T cells, which have entered the brain

early during infection [3, 4]. As a consequence, microglia
release pro-inflammatory and neurotoxic factors that
induce neurotoxicity [5]. Several studies demonstrated
that immune activation of monocytes and microglia con-
tribute to neurodegeneration in the context of HAND
[4, 6–9]. Earlier results of our group stressed the import-
ance of monocyte involvement for full microglial activa-
tion. HIV-transduced monocytes act as amplifier of
microglial activation and neurotoxicity [4]. We also
demonstrated that a panel of microglia-derived cytokines
was differentially regulated in vitro (CXCL10, CCL5, and
IL-6). These cytokines were associated with markers of
early neurodegeneration in cerebrospinal fluid (CSF) of
HIV-infected, yet neurocognitively not symptomatic
patients [4]. Thus, therapeutic modulation of innate
immune cell activation may hypothetically also affect
neurodegeneration in the context of HAND.
Different agents have been demonstrated to affect

microglial and monocyte activation in the context of
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autoimmune neuroinflammation. Teriflunomide (Teri)
mainly inhibits de novo pyrimidine synthesis in mito-
chondria by acting on dihydroorotate dehydrogenase
(DHODH), which leads to inhibition of T and B cell pro-
liferation [10]. In addition, DHODH-independent effects
with decreased release of pro-inflammatory cytokines
from monocytes are described [11]. Fumaric acid esters
lead to the intranuclear translocation of nuclear factor 2
(Nrf2). They enhance the expression of anti-oxidative
enzymes and decrease pro-inflammatory cytokine secre-
tion by microglia during experimental autoimmune
neuroinflammation [12, 13]. In HIV-infected macro-
phages in vitro, monomethylfumarate (MMF) decreases
pro-inflammatory cytokine release and induces an anti-
oxidant response [14, 15]. However, the effect of either
Teri or MMF on monocyte/microglia interaction in the
context of HAND remains elusive. Here, we set out to
investigate the role of Teri and MMF in the context of
microglial activation and neurotoxicity triggered by
HIV-infected monocytes.

Methods
Cell culture
Human microglial cell line 3 (HMC3, Dr. J. Pocock,
University College London) was produced by transfect-
ing human embryonic brain-derived macrophages with
the large T antigen of the simian virus 40. The cell line
expresses microglial and macrophage surface markers
[16]. Similar to primary microglia, these cells show a
distinct response of cytokines and chemokines in contact
to pathogens [17] and were already described in the
context of HIV [18]. Cells were cultured in Minimum
Essential Media (MEM) (Thermo Fisher Scientific,
Darmstadt, Germany), supplemented with 10% fetal calf
serum (FCS) (Sigma-Aldrich, Taufkirchen, Germany)
and 100 units/ml (U/ml) penicillin/streptomycin (Pen/
Strep, Invitrogen, Darmstadt, Germany) in T-75 flasks
(PRIMARIA™ Tissue Culture Flask, Becton Dickinson,
Heidelberg, Germany). Cells were passaged at a conflu-
ence of 90%. For experiments, cells were plated in 96-well
plates (10,000 cells/well) (Sarstedt, Nümbrecht, Germany)
24 h before co-culture experiments or treatment with
pharmacological substances.
Primary human microglia were isolated from patients

with intractable epilepsy, as previously described [19].
Cells were plated at the same density as HMC3 cells.
U937 cells (further referred to as monocytoid cells,

Sigma Aldrich, München, Germany) were derived from a
patient with generalized histiocytic lymphoma [20]. Cells
were cultured in RPMI-1640 (Thermo Fisher Scientific),
supplemented with 10% FCS and 100 U/ml Pen/Strep. For
transduction, 50,000 monocytoid cells were seeded in 24-
well plates (Sarstedt, Nümbrecht, Germany) and incubated
with HIV particles as previously described [4].

Human fetal neurons (HFN) were isolated from
18–20-week-old brains that were obtained from thera-
peutically aborted fetuses as previously described [21]. Cells
were plated in MEM supplemented with 10% fetal bovine
serum, 1 μM sodium pyruvate, 10 μM glutamine, ×1 non-
essential amino acids, 0.1% dextrose and 1% penicillin/
streptomycin (HFN-complete medium; Invitrogen, Burling-
ton, Canada). Cells were plated in poly-L-ornithine coated
(10 μg/ml) T75 flasks (5 × 107 cells in 25 ml media) and
treated with three cycles of 25 μM cytosine arabinoside
(Sigma-Aldrich, St. Louis, MO) to kill dividing astrocytes.
For experiments, HFN were plated in coated 96-well plates
(100,000 cells/well in 100 μl medium). After 48 h media
was changed to MEM media supplemented with 1%
Pen/Strep for 5 h. At this point, the media was removed
and cells were treated with conditioned media of
HMC3 cells or HMC3/monocytoid cells co-cultures.
After 48 h, cells were stained with propidium iodide
(PI, 1 μg/ml; Sigma-Aldrich), fixed with 4% PFA, and
stored in PBS at 4 °C.

Preparation of viral particles and transduction of target cells
All necessary transduction controls for the investigation
of the role of monocytoid cells in contact with viral par-
ticles were investigated in detail by our group previously
[4]. Different viral particles which were either not able
to fuse with monocytoid cells (“HIV-fusion-deficient”),
did not contain viral RNA (“HIV empty”), or were deficient
of viral enzymes (“HIV-pol-deficient”) were employed to
delineate the essential steps of microglial/monocyte activa-
tion. In particular, viral particles which consisted of gag but
which did not contain viral RNA were used to exclude that
the process of transduction is responsible for activation
and neurotoxicity (“HIV empty”) [4].
Preparation of viral particles after transfection of

HEK293T cells as well as characteristics of the HIV
vector have been described previously [4]. Transfec-
tions were conducted with the calcium-phosphate co-
precipitation method [22]. As an additional control
for HIV vector particles, supernatants of HEK293T
cells treated with transfection reagent were used.
Viral particles were produced as self-inactivating HIV
particles [23] and contain HIV RNA with enzymatic
equipment for reverse transcription and integration
into the genome of monocytoid cells [4]. For this,
HIV CS-CG was co-transfected with HGPsyn, pcRev,
pcTat, and pseudotyped with pHIT-G (further referred
to as HIV vector). HIV CS-CG encodes for a minimal
HIV genome, which is packed into the viral particles
and contains a GFP-sequence [4].
Due to the time needed for viral gene expression in

host cells [24], transduction efficiency was analyzed by
flow-cytometry 48 h after transduction based on the num-
ber of GFP-positive cells. Transduction of monocytoid cells
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with the HIV vector led to consistent transduction
rates of 4–6% (4.3 ± 0.21 (mean ± SEM, n = 3)) similar
to the rate of HIV-infected monocytes in the CNS of
infected patients [25].
Viability of monocytoid cells was determined via FACS

using 7AAD (eBioscience, Frankfurt a. M., Germany,
0.5 μl/50,000 cells). Viability of HMC3 was determined
using 4 μg/ml bisBenzimide H 33342 (Sigma-Aldrich,
Taufkirchen, Germany) for 2 h, followed by 7AAD (0.5 μl/
well). Mean fluorescence intensity (IX51, Olympus,
Hamburg, Germany) was analyzed using ImageJ (NIH,
Bethesda, USA).

Co-culture and pharmacological treatment
HIV vector-transduced monocytoid cells were treated
with Teri (10 and 30 μM) or MMF (10, 30, and
100 μM) dissolved in dimethlysulfoxide (DMSO) imme-
diately before the application to microglia in a 1:2 ratio.
This experimental design was chosen to ensure that the
integrity of the microglial cell layer was not influenced
by additional pipetting steps which may alter activation
status. The cells were co-cultured with either Teri or
MMF for 24 h. Supernatants were collected, centrifuged
(4000 rpm, 5 min) and stored at −80 °C for further
analysis. Supernatants of untreated co-cultures served
as controls. To investigate an effect of pharmacological
agents exclusively on microglia, microglia in the presence
of viral particles were treated with Teri or MMF.

Cytokine Bead Array
Cytokine secretion by the monocytoid cell/microglial co-
culture was analyzed using the FACS-based Cytokine
Bead Array (CBA) (Becton Dickinson, Franklin Lakes,
USA; FACS Canto II). Selection of cytokines followed
our previous study where CXCL10, CCL5, CCL2, and
IL-6 were differentially regulated upon co-culture of
HIV vector-transduced monocytoid cells with microglia.
Furthermore, CXCL10, CCL5, and IL-6 correlated with
neurofilament heavy chain in the CSF of HIV+ patients
[4]. In addition, we also analyzed IFN-γ, IL-1β, IL-4, and
IL-10 (500 events per cytokine). Further analysis was
performed using the software FCAP Array v.3.

Immunocytochemistry and microscopy of HFN
After PI staining and PFA fixation, immunofluores-
cence staining was performed using blocking buffer
for 1 h. Incubation with anti-microtubuli associated
protein-2 (MAP-2) primary antibody (dilution 1:1000;
Sigma, Oakville, Canada) overnight (4 °C), followed
by Alexa Fluor 488 (dilution 1:250, Invitrogen, Burlington,
Canada), and staining of nuclei with Hoechst S769121 was
performed thereafter. Images were taken at ×10 magnifi-
cation (ImageXpress®, Molecular Devices, Sunnyvale, CA).
Analysis was performed using MetaXpress® with the

algorithm “multiwavelength cell scoring” and data from
nine sites/well were averaged to one data point. Dead
neurons will not adhere after fixation, and thus, the num-
ber of remaining neurons correlates with cell death [26].
To correct for adherent, but dead neurons, the few adher-
ent PI-positive neurons (MAP-2+PI+; 0.1% in average of
all conditions) were subtracted from MAP-2+PI− cells,
representing surviving neurons. H2O2 (3 μM) was used as
a positive control to induce cell death in neurons.

Statistical analysis
Experiments were performed in triplicates, if not otherwise
stated. Data were statistically analyzed using a parametric
one-way ANOVA with post hoc analyses as indicated in
the figure legends. Statistical significance was shown
as *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001
(GraphPad Prism v.7, GraphPad Software, USA).

Results
Highest secretion of pro-inflammatory and neurotoxic
cytokines occurs only after contact of microglia with
HIV-infected monocytoid cells
We first investigated if HIV-transduced monocytoid cells
are mandatory for broad microglial activation or whether
microglial contact with HIV vector without involvement
of monocytes would suffice. As depicted in Additional
file 1: Figure S1, the strongest secretion of CXCL10,
CCL5, CCL2, and IL-6 was found in microglia in direct
contact with HIV-transduced monocytoid cells (p < 0.001).
In comparison, all control conditions (HIV-transduced
monocytoid cells alone, microglia alone with HIV vector,
co-culture of microglia with non-infected monocytoid
cells, Additional file 1: Figure S1) showed significantly
lower cytokine release. HMC3 microglia in contact with
HIV vector alone showed higher release of CXCL10 and
IL-6 than HMC3 microglia alone (CXCL10 p < 0.001; IL-6
p < 0.001). CCL5 and CCL2 were not altered. Thus, in line
with our previous data [4], the strongest chemokine/cyto-
kine secretion occurred only after contact of microglia
with HIV-infected monocytoid cells but not with viral par-
ticles alone. Secretion of CXCL10, CCL5, CCL2, and IL-6
was differentially regulated. Other cytokines (IFN-γ, IL-1β,
IL-4, and IL-10) were not detected (data not shown).

Teri and MMF reduce activation of monocyte/microglia
co-culture
Next, we examined whether Teri and MMF can modu-
late the cytokine secretion in the co-culture setting. Teri
decreased the cytokine secretion in microglia exposed to
HIV vector-transduced monocytoid cells in a dose
dependent fashion (Teri 30 μM, CXCL10; 3-fold, CCL2;
2.5-fold, IL-6; 2.2-fold; p < 0.001) (Fig. 1a–d), whereas
CCL5 was not altered (B). One hundred microliter MMF
decreased secretion of CXCL10 (2.9-fold; p < 0.001)
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(Fig. 1a) but did not alter the release of CCL5, CCL2, and
IL-6 (Fig. 1b–d). DMSO used as solvent did not have an
effect on cytokine release (data not shown). Teri (30 μM)
or MMF (100 μM) in concentrations used for the co-
culture experiments did not induce cell death in monocy-
toid cells or microglia (Additional file 2: Figure S2).
Similar, albeit restricted effects of pharmacological

treatment, were also observed in the absence of mono-
cytoid cells. In microglia in contact with HIV vector
particles, treatment with 100 μM MMF led to a reduction
of CXCL10 (4.6-fold) and IL-6 (2.8-fold, all p < 0.001;
Additional file 1: Figure S1A and D). In contrast, 30 μM
Teri did not alter the secretion of CXCL10, CCL5,
and IL-6 (Additional file 1: Figure S1).
To rule out that the effects were restricted to HMC3

microglia, data were further corroborated using primary

human microglia with HIV vector-transduced monocy-
toid cells (Fig. 2). Similar to experiments performed with
HMC3 microglia, the co-culture of primary microglia
with HIV vector transduced monocytoid cells showed
higher secretion of CXCL10 (p < 0.01), CCL5, CCL2, and
IL-6 (all p < 0.001) compared to non-transduced control
conditions. Also, the control condition with the trans-
fection reagent alone confirmed that the transfection
reagent was not responsible for activation (CXCL10 p <
0.05; CCL5 p < 0.01; CCL2 p < 0.001; and IL-6 p < 0.01 in
comparison to HIV vector). Treatment with MMF
(100 μM) reduced CXCL10 (7.7-fold, p < 0.05; Fig. 2a) and
CCL5 secretion (1.6-fold, p < 0.01; Fig. 2b) whereas CCL2
and IL-6 were not altered (Fig. 2c, d). Therefore,
data generated using HMC3 mimic the response of
primary microglia.

Fig. 1 Teri and MMF reduce cytokine secretion of monocyte/microglia co-culture. Treatment of the co-culture of HMC3 microglial cells with HIV
vector-transduced monocytoid cells (U937) with Teri or MMF. Shown are three independent experiments performed in triplicates. Significance is
observed in comparison to microglia in co-culture with HIV vector transduced monocytoid cells. DMSO was used as a solvent and used in the
control condition HIV vector. Data are depicted as mean ± SEM. a, c, and d: Statistical analysis was performed using one-way ANOVA (<0.0001)
with Tukey’s multiple comparisons test as post hoc analysis. b No significant difference. ***p < 0.001
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Supernatants of Teriflunomide and MMF treated monocyte/
microglia co-cultures reduce HIV-mediated neurotoxicity
To investigate if pharmacological treatment also has
functional effects on neuronal viability, we analyzed
monocyte/microglia-induced neurotoxicity using human
fetal neurons (HFN). Neither Teri nor MMF altered
neuronal viability (data not shown). Supernatants from
microglia exposed to HIV vector in the absence of mono-
cytoid cells did not elicit neuronal cell death (Fig. 3a). In
contrast, supernatants derived from co-culture of micro-
glia with HIV vector-transduced monocytoid cells strongly
induced cell death after 48 h (31% fewer surviving neurons
than microglia with non-transduced monocytoid cells,
p < 0.0001; Fig. 3a, c). Treatment with 10 μM Teri

(11.2% fewer neurons, p < 0.01), 10 μM MMF (14.1%
fewer neurons, p < 0.05) and 30 μM MMF (12.6%
fewer neurons, p < 0.05) led to significantly enhanced
neuronal viability in comparison to supernatants de-
rived from the co-culture of microglial cells with HIV
vector transduced monocytoid cells. Higher concen-
trations of Teri (30 μM) and MMF (100 μM) did not
result in increased neuronal viability. H2O2 (3 μM)
was used as positive control and induced complete
neuronal cell death.

Discussion
In this study, we investigated the effect of Teri and MMF
in the context of HIV-mediated monocyte/microglial

Fig. 2 Reduced cytokine secretion in primary microglia co-culture upon treatment with MMF. MMF treatment of primary microglia in co-culture
with HIV vector-transduced monocytoid cells reduced the release of CXCL10 and CCL5 (a, b), whereas secretion of CCL2 and IL-6 were not altered
(c, d) . Monocytoid cells (U937) were added after transduction (HIV-Vector) or non-transduced (non-transduced) to primary microglia. Transfection
reagent was used as additional control. Shown are one to two experiments in duplicates or triplicates. Significant differences are observed in
comparison to microglia in co-culture with HIV vector-transduced monocytoid cells (***). Data are presented as mean ± SEM. Statistical analysis was
performed using one-way ANOVA (<0.0001) with Tukey’s multiple comparison test as post hoc analysis. *p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 3 (See legend on next page.)
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inflammation due to their well characterized anti-
inflammatory properties. The ultimate goal was to reduce
inflammation-related neurotoxicity. We demonstrate that
Teri and MMF lead to reduced chemotactic and pro-
inflammatory cytokine secretion in a co-culture system of
microglia with HIV-transduced monocytoid cells. This
was associated with reduced neurotoxicity of supernatant
in human fetal neurons.
One limitation of this study is the use of monocytoid

and microglial cell lines. However, our experiments
performed with primary adult human microglia corrobo-
rated data generated using the HMC3 microglia cell line.
Also, similar to the results obtained with primary embry-
onic microglia [4], HMC3 secrete more CXCL10, CCL5,
CCL2, and IL-6 in contact with HIV vector-transduced
monocytoid cells than after contact with HIV particles
alone. This finding as well as lack of neurotoxicity of
microglia exposed to HIV particles without monocytes is
in line with the bystander hypothesis.
Microglial activation in our experimental setting is

highly regulated. Mechanistically, viral RNA in monocy-
toid cells is required for full activation and subsequent
neuronal cell death [4]. Inhibition of subsequent steps
following insertion of viral RNA into monocytoid cells
did not reduce microglial activation [4]. We also excluded
that the process of transduction itself is responsible for
activation. This agrees with findings that cART treatment
does not downregulate cytokine secretion in the CNS of
HIV-infected patients [27].
Enhanced CNS inflammation in HIV infection with

elevated concentrations of mainly pro-inflammatory
cytokines and chemokines is described in patients with
HAND [7]. Differentially regulated cytokines investi-
gated in this study are associated with the neurodegener-
ative markers neurofilament heavy and light chain in
CSF of HIV-infected patients with and without neurocog-
nitive impairment. This suggests ongoing inflammation
with clinically silent neurodegeneration already during
early stages of the disease [4, 9].
Our experimental setting does not allow us to distin-

guish whether treatment effects are related to interactions
with microglia, HIV-transduced monocytes or both. Both
Teri and MMF have anti-inflammatory effects, but with
different targets. However, it remains difficult to draw

definite conclusions as both agents may have a differential
impact in vivo. Rather, our work suggests that therapeutic
modulation of innate immune cell function using Teri or
MMF may have an impact on inflammation and neurode-
generation in the context of HIV infection independent
from viral replication. Teri shows a more complete reduc-
tion of cytokines CXCL10, CCL2, and IL-6 in the co-
culture situation whereas MMF predominantly reduces
microglia CXCL10 and IL-6 release in the absence of
monocytoid cells. CXCL10 and IL-6 are associated with
immune activation and crucial for general recruitment of
immune cells [28, 29]. CCL2 showed a distinct effect of
recruiting HIV-infected leukocytes across the BBB [30].
However, it remains speculative why higher concentra-
tions of both Teri and MMF strongly reduced cytokine
secretion but failed to further enhance neuronal viability.
Neurodegeneration during HAND is presumably medi-
ated by pleiotropic mechanisms. Our main hypothesis is
that activation of innate immune cells is linked with
neurodegeneration, independent from viral replication.
Therefore, we used secretion of different inflammatory/
neurotoxic cytokines described in the pathogenesis of
HAND as markers of activation of innate immune cells.
Neurotoxicity assays were employed to demonstrate the
functional impact of the cellular activation. In our previ-
ous work, we were able to show that cytokines differen-
tially regulated in our model are correlated with
neurofilament heavy chain as a marker for neurodegenera-
tion in HIV+ patients [4]. However, this does not suggest
that cytokines investigated are exclusive mediators of
neuronal cell death. Thus, it remains speculative why the
higher concentrations of Teri and MMF which were able
to reduce cytokine secretion failed to enhance neuronal
viability. Rather, our previously published results in con-
junction with our present data argue for multifactorial
mechanisms, which have anti-inflammatory effects and
act beneficially on neuronal survival. Both Teri or
MMF act on microglia and monocytes via the inhib-
ition of nuclear factor kappa-light-chain-enhancer
(NF-κB) [31, 32]. It was postulated that Teri reduces
mRNA production of pro-inflammatory factors matrix
metalloproteinase (MMP) 2 and MMP9 in monocytes
[33]. In addition to the inhibition of mitochondrial
DHODH, Teri decreased the release of IL-6 and CCL2

(See figure on previous page.)
Fig. 3 Teri and MMF preserve neuronal viability. Treatment of human fetal neurons (HFN) with conditioned media of HMC3 microglia co-cultured
with HIV vector-transduced monocytoid cells induced cell death after 48 h (a, c) compared to the non-transduced control condition (p < 0.0001;
(b)). Neurotoxicity was significantly reduced upon treatment with 10 μM Teri (p < 0.01) (d) and 10 μM (p < 0.05) (e) or 30 μM MMF (p < 0.05).
Staining for microtubuli-associated protein (MAP)-2 (green), nuclei (Hoechst S769121, blue) and propidium iodide (red). Pictures are shown in
×20 magnification, the scale bar represents 100 μM. Shown are data generated with conditioned media of three independent experiments
performed in triplicates (a). Statistics was performed using one-way ANOVA with Sidak´s multiple comparisons test as post hoc analysis.
MAP-2+PI+ cells were subtracted from MAP-2+PI− cells, thus only showing surviving neurons. Data are normalized to the control condition
HMC3 + non-transduced monocytoid cells and are shown as mean ± SEM. Significance is shown compared to conditioned media of the
HIV vector transduced co-culture condition (“HIV vector”). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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from activated monocytes in vitro, presumably in a
DHODH independent manner [11]. Also antiviral proper-
ties of Teri have been described, hypothetically mediated
by non-specific pyrimidine depletion [34, 35]. Teri has also
an inhibitory effect on the expression of pro-inflammatory
IL-6 in the context of Enterovirus 71 infection of the CNS
cell line SY-SH5Y [33].
Data from experimental autoimmune encephalomyeli-

tis indicate effects of MMF on microglia to be mainly
mediated through activation of hydroxycarboxylic acid
receptor 2 (HCAR2), leading to a phenotypic change of
microglia with neuroprotective properties [13]. This was
also supported by findings in a neuropathy model in
rats, in which MMF causes a phenotypic shift from pro-
inflammatory to anti-inflammatory macrophages [36].
However, we did not observe a phenotype change in
our model based on secretion of IL-4 and IL-10. In
HIV-infected macrophages, MMF upregulates heme
oxygenase-1 and reduces glutamate release with reduced
neurotoxicity [14]. Furthermore, it has been reported that
MMF reduces cART-mediated neurotoxicity in pigtail
macaques and rats [37].
Whereas we aimed at investigating effects of well-

characterized agents approved for neuroimmunological
disease on innate immune cells in the context of HAND,
both agents used target lymphocytes. In addition, clinical
relevance of these medications might be restricted due
to adverse drug reactions in combination with cART
(e.g., pancytopenia and hepatotoxicity). However, also
HIV-infected T cells are implied in the pathogenesis of
HAND (e.g., IFN-γ expressing CD8+ T cells) [38], clearly
arguing for complex neuroimmunological interactions.
In a first short clinical trial teriflunomide did not lead to
a detectable decrease of CD4+ or CD8+ cells in cART
untreated HIV+ patients [39]. Immunotherapy might
especially be feasible in patients with high CD4+ cell
counts, which can be achieved with early initiation of
sufficient antiretroviral therapy [40].
Targeting enhanced inflammation in the context of

HAND is promising, considering that this chronic
immune activation is not eliminated by cART, which
instead acts by lowering viral load [8]. Effects of Teri
and MMF on cytokine levels may have implications
for subsequent recruitment of inflammatory cells to
the CNS [28, 41–43] and aggravation of neurodegenera-
tion [44, 45]. Besides its function in recruiting cells and
establishing an inflammatory environment, high levels of
IL-6 cause sleep onset insomnia [46, 47], which could in
part explain asymptomatic neurocognitive impairment in
HAND [48].
In addition to targeting cytokine secretion, other

therapeutic mechanisms have been proposed in the con-
text of HAND. Treatment with FK506 has been shown
to reduce mitochondrial injury and neurodegeneration

in gp120 transgenic mice [49]. Another approach is the
modulation of monocytoid cells via statin-treatment.
Statins reduce expression of CD163, which has been
related to neurotoxicity in HAND and also reduces
secretion of the chemoattractant CCL2 [50].
New treatment approaches are urgently needed to

attenuate HAND with its potentially devastating impact
on quality of life [51]. It is expected that HAND will in
future pose a high socioeconomic burden due to higher
life expectancy of HIV-infected patients and increase of
severity of HAND over time. Our study demonstrates
that inflammatory mechanisms of innate immunity
known to be involved in neurodegeneration can be
modulated by agents approved in autoimmune neuro-
inflammation, leading to reduced neurotoxicity. Further
research is warranted to understand molecular mecha-
nisms involved in HAND with the goal to better target
compartmentalized inflammation and neurodegeneration.

Additional files

Additional file 1: Figure S1. Co-culture secretion of cytokines is
elevated compared to mono-culture secretion. The co-culture of
microglial cells with HIV vector-transduced monocytoid cells (left side of
the panels) induced a more pronounced release of CXCL10, CCL5, CCL2,
and IL-6 compared to the microglial/monocytoid mono-culture. Distinct
from treatment in co-culture, MMF significantly decreased release of
CXCL10 and IL-6 in HMC3 mono-culture treated with HIV vector whereas
treatment with 30 μM Teri had no effect. Shown are three to six independent
experiments performed in triplicates. Significance is shown in comparison to
HMC3 in co-culture with HIV vector-transduced monocytoid cells (***) or in
comparison to HMC3 mono-culture with HIV vector (+++) or in
comparison to U937 mono-culture with HIV vector (##). Data are
shown as mean ± SEM. Statistical analysis was performed using
one-way ANOVA (<0.0001) with Tukey’s multiple comparison test as
post hoc analysis. *p < 0.05; **/##p < 0.01; ***/+++p < 0.001. (TIF 799 kb)

Additional file 2: Figure S2. Cytotoxic potential of Teri and MMF on
monocytoid cells and microglial cells. Treatment of monocytoid cells (A)
or microglial cells (B) did not lead to cell death using concentrations of
up to 30 μM of Teri and up to 100 μM MMF in monocytoid cells (A) or
up to 100 μM Teri and 1000 μM MMF in microglial cells (B). Treatment
was performed for 24 h before analysis. Cell death was determined using
7-Aminoactinomycin D (7AAD) in FACS analysis (A) or Hoechst/7AAD
co-staining (B). Three independent experiments performed in triplicates.
Significance is shown in comparison to untreated monocytoid cells (A)
or untreated HMC3 cells (B). Data are shown as mean ± SEM. Statistical
analysis was performed using one-way ANOVA (<0.0001) with Tukey’s
multiple comparison test as post hoc analysis. ***p < 0.001 (A). For
HMC3, ANOVA showed no difference (B). (TIF 259 kb)
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