
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
0
6
3
9
9
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
6
.
4
.
2
0
2
4

Chiral Symmetry restoration from the hadronic regime
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Abstract. We discuss recent advances on QCD chiral symmetry restoration at finite tem-
perature, within the theoretical framework of Effective Theories. U(3) Ward Identities
are derived between pseudoscalar susceptibilities and quark condensates, allowing to ex-
plain the behaviour of lattice meson screening masses. Unitarized interactions and the
generated f0(500) thermal state are showed to play an essential role in the description of
the transition through the scalar susceptibility.

1 Introduction

Chiral symmetry restoration is a fundamental part of the QCD phase diagram and plays an essential
role in the understanding of the Physics of strong interactions in extreme conditions, such as those
reached in Relativistic Heavy Ion Collisions. It is important to provide solid theoretical analysis
regarding chiral restoration, given the limitations of perturbative QCD at those temperature scales.
We review here recent advances on the description of such environment. Most of our theoretical work
has been carried out within the Chiral Effective Lagrangian framework. For the relevant temperature
range, one needs an effective description accounting for the degrees of freedom involved, which at low
and moderate temperatures below the transition Tc are just pions, the more abundant ones. Thus, our
main theoretical setup to describe the physics involved has been Chiral Perturbation Theory (ChPT)
[1] and its unitarized versions (see Sects. 4 and 5). Within that framework several properties of
interest for the hadron gas have been studied. In particular, unitarized interactions have allowed
to describe properly thermal resonances [2] and transport coefficients [3]. Here we will first discuss
general ideas about partners and patterns (Sect. 2) in the context of lattice and effective theory analysis
of susceptibilities in the scalar and pseudoscalar sectors [4]. In Sect. 3, we will show that QCD Ward
identities relating pseudoscalar susceptibilities and quark condensates allow to describe the behaviour
of meson screening masses near chiral restoration [4, 5]. Sect. 4 describes the role of the thermal
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f0(500) state for the description of the scalar susceptibility [4]. Finally, recent analysis within the
large number of Nambu-Goldstone Bosons (NGB) framework [6, 7] will be presented in Sect. 5.

2 Chiral partners and patterns

The main properties of the chiral phase transition at finite temperature T and zero baryon density have
been established recently by lattice simulations. For N f = 2 + 1 flavours and physical quark masses,
the transition is a crossover at Tc ∼ 155 MeV, signaled by the peak of the scalar susceptibility and the
inflection point of the asymptotically vanishing light quark condensate

〈
ψ̄lψl

〉
[8, 9]. However there

are still open problems, like the behavior under different degeneracy patterns and the correspond-
ing chiral partners. For instance, the chiral partner of the pion for a given pattern. Thus, the early
O(4) → O(3) pattern for chiral symmetry breaking [10] would imply degeneration of π − σ states,
esentially by σ mass dropping driven by the order parameter 〈σ〉 ∼

〈
ψ̄lψl

〉
. However, it is nowadays

well established that the σ state with isospin and total angular momentum I = J = 0 is actually a
broad resonance in ππ scattering, denoted f0(500) in the modern notation [11]. A consistent way to
describe those chiral partners without assuming any particular nature for the f0(500) can be achieved
by studying the corresponding scalar and pseudoscalar susceptibilities, which for the light sector read:

χσS (T ) = −
∂

∂ml

〈
ψ̄lψl

〉
(T ) =

∫
E

d4x
[
〈T (ψ̄lψl)(x) (ψ̄lψl)(0)〉T −

〈
ψ̄lψl

〉2]
=

1
Z

∫
E

d4x
[

δ

δs(x)
δ

δs(0)
Z[s, p]

∣∣∣∣∣
s=M,pa=0

]
, (1)

χπP(T )δab =

∫
E

d4x〈Tπa(x)πb(0)〉T =
1
Z

∫
E

d4x
[

δ

δpa(x)
δ

δpb(0)
Z[s, p]

∣∣∣∣∣
s=M,pa=0

]
, (2)

where M = diag(ml,ml,ms) is the quark mass matrix,
∫

E extends over euclidean space-time, Z =

Z[s = M, p = 0] is the QCD partition function and s(x), p(x) are scalar and pseudoscalar sources.
The quark bilinears entering have the quantum numbers of the pion and f0(500) states:

πa = ψ̄lγ5τ
aψl; σ = ψ̄lψl. (3)

Therefore, within the O(4) pattern, χS (T ) and χP(T ) should become degenerate near the maximum
of χS (T ). This is actually the case in the lattice, as can be seen from figure 1, where we show lattice
data from [8] for χS and the ratio of subtracted quark condensates ∆l,s, which through the Ward
identities explained in Sect. 3, has the same temperature dependence as χP(T )/χP(0) [4]. Direct
comparison between χS and χP in [12] shows the same degeneration. On the other hand, ChPT to
one loop yields an increasing χS (T ), intersecting χP(T ) at Td ' 0.9Tc, where

〈
ψ̄lψl

〉ChPT (Tc) = 0.
Although this is just an extrapolation of the model-independent expressions for χS (T ) and χP(T ) near
Tc, ChPT supports the idea of partner degeneration. Actually, near the chiral limit Mπ � T , where
critical effects are meant to be enhanced and different critical points should coincide in a true phase
transition, both temperatures degenerate as Td = Tc − 3Mπ/4π + O(M2

π/Tc).
An important related question is whether the UA(1) symmetry is restored or not at the chiral

transition. This is still a matter of debate in lattice analysis and is usually addressed by examining, in
addition to the states in eq.(3),

δa = ψ̄lτ
aψl ηl = ψ̄lγ5ψl, (4)

which correspond physically to the a0(980) (δ) and the light part of the η. Thus, a pure S UA(2)
transformation allows to connect πa − σ (as in the O(4) pattern) and δa − ηl states while a UA(1)
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Figure 1. Left: U(3) ChPT one-loop results for susceptibilities. Right: Scalar-pseudoscalar degeneration in the
π − σ sector from lattice results in [8]

connects πa − δa and ηl −σ. Although the UA(1) symmetry is broken by the axial anomaly, it could in
principle be restored at high enough temperature, and if that was the case, degeneration of the above
patterns should be observed in lattice simulations around Tc. The symmetry breaking pattern would
be then O(4)×UA(1), which would mean in particular that the η′ plays an active role since it becomes
a ninth Goldstone boson, as in the large-Nc context [13]. Actually, the ChPT framework can be
extended by adding the 1/Nc counting to the standard chiral low-energy one, describing consistently
the η′ and the UA(1) anomaly [14], giving rise to the so called U(3) ChPT.

Regarding the lattice results for UA(1) restoration, the susceptibilities associated to the above
quark bilinears have been studied in [12] and it has been found that χπ−χδ and χσ−χηl vanish asymp-
totically well above Tc, so the transition pattern remains O(4), consistent also with earlier analysis of
the same group on screening masses [15]. However, the correlator analysis of [16] is compatible with
π− δ−σ− ηl degeneration and thus with UA(1) restoration at the chiral transition. In addition, recent
results in [17] show that the difference of screening masses of the π and δ channel are found to be
compatible with zero at the chiral transition.

In figure 1 we show the results of U(3) ChPT for the above susceptibilities, calculated to one
loop and with standard typical values for the low-energy constants involved, where B0 = M2

π/2ml to
leading order. We observe that χδ matches χπ above the point where χσ − χπ match, corresponding
to a linear growth χσS ∝ T/Mπ (a similar growing behaviour is obtained in the virial approach [18])
and a quadratic one χδS ∼∝ T 2/M2

η suppressed by the inverse strange mass [19]. One could then argue
that ChPT favors UA(1) restoration at a higher temperature than chiral O(4). However, we must keep
in mind that the gap between O(4) χσS − χ

π
P intersection and the vanishing of the quark condensate is

relatively small and actually tends to vanish in the chiral limit, as discussed above. Therefore, ChPT
would also be compatible with the O(4) × UA(1) pattern from this viewpoint of partner degeneration.
In addition, the temperatures involved are beyond the strict ChPT validity range, which adds more
uncertainty to this conclusion. In this sense, note that the critical temperatures in ChPT are higher
than lattice values, which is a known feature of a pure NGB light meson description, to be improved
by considering higher orders and heavier hadron states [1, 20].
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3 Ward Identities and lattice screening masses

As it is clear from the discussion in the previous section, scalar and pseudoscalar susceptibilities play
a crucial role to understand the nature of the chiral phase transition. In the pseudoscalar case, we
have seen that χπ actually inherits the critical properties through its direct relation with the light quark
condensate. That relation is a particular example of a set of Ward Identities (WI) obtained formally
from QCD by performing U(3) axial transformations, extending previous works [21], and verified
explicitly in U(3) ChPT [5]. For the π, K and s̄s sector, they read:

ml χ
π
P(T ) = −

〈
ψ̄lψl

〉
(T ) (5)

(ml + ms) χK
P (T ) = −

[〈
ψ̄lψl

〉
(T ) + 2 〈s̄s〉 (T )

]
(6)

χs̄s
P = −

〈s̄s〉
ms

+
ml

4
√

3ms (ml − ms)
χ8A

P , (7)

where the above pseudoscalar susceptibilities are constructed analogously to the π channel in (2), and
χ8A

P corresponds to a crossed correlator between ψ̄λ8ψ and the anomalous operator A(x) =
3g2

32π2 Ga
µνG̃

µν
a .

Note that in the U(3) case, the octet member η8, the singlet η0 and the anomaly A are mixed. Recall
also that in the s̄s channel equation (7), the anomalous term is suppressed by a ml/ms factor with
respect to the nonanomalous one. That suppression is confirmed by the lattice direct check of this
identity in [12], where the π-channel one is also checked. However, to the best of our knowledge,
there is no direct check of the K channel.

The above WI turn out to be a powerful tool to explain the behaviour of meson screening masses
Msc

i for those channels, measured in the lattice at finite temperature. Under certain assumptions, they
can be related to susceptibilities [5]. Actually, the latter are nothing but the zero momentum limit of
correlators so that we expect χ ∼ M−2 with M the mass of the corresponding channel. In particular,
from (5), (6), (7), one is led to the following scaling behaviour [5]:

Msc
π (T )

Msc
π (0)

∼

[
χπP(0)
χπP(T )

]1/2

=

[ 〈
ψ̄lψl

〉
(0)〈

ψ̄lψl
〉

(T )

]1/2

(8)

Msc
K (T )

Msc
K (0)

∼

[
χK

P (0)

χK
P (T )

]1/2

=

[ 〈
ψ̄lψl

〉
(0) + 2 〈s̄s〉 (0)〈

ψ̄lψl
〉

(T ) + 2 〈s̄s〉 (T )

]1/2

(9)

Msc
s̄s(T )

Msc
s̄s(0)

∼

[
χs̄s

P (0)
χs̄s

P (T )

]1/2

∼

[
〈s̄s〉 (0)
〈s̄s〉 (T )

]1/2

, (10)

where in (10) we have ignored the anomalous contribution. The above relations can then be directly
tested with lattice data, although a proper comparison with the left hand side requires to take into ac-
count finite-size divergences of the kind

〈
ψ̄iψi

〉
∝ mi/a2. This is a known feature of lattice calculation

which is avoided by defining properly subtracted condensates. In figure 2 we check this prediction
based on WI with subtracted condensates ∆l,K,s defined in [5] following the lattice prescriptions in [9]
with two fitted parameters, and corresponding to the r.h.s of equations (8), (9), (10). The lattice data
for screening masses and condensates in that figure are taken from the same collaboration with the
same lattice action and size, namely [15] for the screening masses and [22] for the condensates.

The above results show an excellent agreement (discrepancy below 5%) between the data and the
predicted scaling law, which is remarkable given the different uncertainties involved. Furthermore,
the WI explain the sudden growth of Msc

π near the transition, since it is driven by the inverse squared
root of the light condensate, while in the K channel the growth is softer due to the presence of the 〈s̄s〉
component, and it is even softer for s̄s for which there is no light condensate contribution.
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Figure 2. Comparison between screening masses and subtracted quark condensates, according to the WI scaling
(8), (9), (10).

4 Saturated Scalar susceptibility: role of the thermal f0(500)
As discussed above, susceptibilities are expected to be saturated by inverse squared masses of the cor-
responding correlators. In the case of the scalar susceptibility, the relevant contributing state should
be the f0(500) for the two-flavour case. That state can be generated within the ChPT formalism
by the so called unitarization methods, constructed by demanding unitarity on the partial waves of
pion scattering. We make use of the so called Inverse Amplitude Method (IAM) extended at finite
T [2, 23]. One starts from the ChPT series for a partial wave with given isospin I and angular mo-
mentum J, t(s; T ) = t2(s) + t4(s; T ) + · · · , where s is the Mandelstam variable, t2 is the tree level
from the lowest order ChPT lagrangian L2 and t4 includes loop corrections from L2 plus tree level
contributions from the NLO L4, hence absorbing the loop divergences. Such perturbative ampli-
tude satisfies the perturbative unitarity relation Im t4(s + iε; T ) = σT (s)t2(s)2 + · · · for s > 4M2

π

with σT (s) =
√

1 − 4M2
π/s

[
1 + 2nB(

√
s/2; T )

]
and nB(x; T ) =

[
exp(x/T ) − 1

]−1 the Bose-Einstein
distribution function. Here, σT is the thermal two-particle phase space, enhanced with respect to
the T = 0 one by the difference between emission and absorption scattering processes allowed in
the thermal bath [23]. The IAM amplitude tIAM is obtained by demanding exact thermal unitarity,
namely, Im tIAM(s + iε; T ) = σT (s)tIAM(s)2 while complying with the low energy expansion, i.e,
tIAM = t2 + t4 + · · · . These two conditions lead to:

tIAM(s; T ) =
t2(s)2

t2(s) − t4(s; T )
. (11)

Recall that in this construction, thermal unitarity is imposed for the unitarized amplitude. While
at T = 0 this is just the standard unitarity requirement, at finite T requires to promote the ChPT per-
turbative relation based on the above mentioned thermal bath processes. As we will see in Sect. 5, that
thermal relation actually holds exactly to leading order in the large-N (number of Goldstone Bosons)
framework, which supports the previous assumptions. In addition, the thermal IAM unitarized ampli-
tude is analytical in the complex s plane off the real axis, which allows to define the second Riemann
sheet amplitude in the usual way, demanding continuity across the unitarity cut. When doing so, res-
onances in different channels appear as T -dependent poles of the amplitude in the second Riemann
sheet at sp(T ) =

[
Mp(T ) − iΓp(T )/2

]2
. Thus, for the case of pion scattering, the thermal f0(500) and

ρ(770) are generated [2], their T = 0 values for the resonance parameters being in good agreement
with the PDG ones for phenomenologically meaningful values of the low-energy constants involved.
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Figure 3. Temperature dependence of the f0(500) (I = J = 0) and ρ(770) (I = J = 1) poles

In figure 3 we show the temperature dependence of those resonance parameters. The f0(500)
state shows distinctive features with respect to to the vector channel, which are actually signals of
chiral restoration crucial for the present discussion. Thus, Mp drops with temperature while Γp in-
creases at low temperatures (driven by phase space thermal enhancement) but decreases closer to the
transition. This is mostly due to the phase space reduction induced by the decreasing Mp. Interest-
ingly, Re sp(T ) = M2

p(T ) − Γ2
p(T )/4 ≡ M2

S (T ), which would correspond to the self-energy real part
of a scalar particle exchanged between the incoming and outgoing pions, decreases even faster than
Mp thus showing the expected chiral-restoring dropping mass behaviour for this state. Furthermore,
following the previous arguments, one can define a saturated unitarized susceptibility as [4]:

χU
S (T ) =

χChPT
S (0)M2

S (0)

M2
S (T )

, (12)

where we have normalized to the T = 0 ChPT model-independent value. This normalization com-
pensates partly the difference between the self-energy real part at p = 0 (where the susceptibility is
defined) and that at the pole position. Hence, with this definition, the minimum observed for M2

S (T )
turns into the expected maximum of χS , which turns out to be very close to the predicted lattice value,
as showed in figure 4. In that figure we also show a unitarized light condensate defined by integration
in mass of χU

S , assuming the same T/M dependences of the condensate and the susceptibility as in
perturbative ChPT [4]. The results in figure 4 show a clear improvement of the unitarized susceptibil-
ity to describe lattice data, which highlights the importance of including properly the thermal f0(500)
state. Recall that the above result is not fitted to lattice points but it is just the prediction of the light
sector with parameters chosen to describe T = 0 resonances. Further improvement can be achieved
by incorporating higher mass hadron states and fitting the lattice data. Note also that χU

S remains close
to the ChPT result for low temperatures, even though they come from a complete different descrip-
tion and are matched only at T = 0. In addition, the unitarized condensate intersects χU

S close to its
maximum, in agreement with the expectations of π − σ partner degeneration discussed above.

5 Large NGB approach

In this section we will show how some of the ideas developed above are actually realized analytically
in a particular framework within the effective lagrangian approach, namely, the large-N one where N is
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Figure 4. Unitarized scalar susceptibility and quark condensate compared to lattice data and ChPT results. The
lattice points correspond to figure 1 (right).

the number of Goldstone Bosons. That scheme provides actually a resummation procedure for infinite
subsets of ChPT diagrams and is based on the S N = O(N + 1)/O(N) formulation of the non-linear
sigma model, i.e, the lowest order ChPT lagrangian. This is the most general O(N + 1)-invariant (in
the chiral limit) and S N covariant lagrangian to lowest order in derivatives. Thus, from the lagrangian
vertices, different observables can be calculated identifying the dominant diagrams, including finite
temperature corrections within the standard imaginary-time formalism. This program has been carried
out recently in the chiral limit for pion scattering, the thermal f0(500) and the saturated susceptibility
in [6] and for the quark condensate and scalar susceptibility derived from the partition function in
[7]. Higher order lagrangians absorb loop divergences and it can be shown that a T = 0 vertex
renormalization guarantees the finiteness of the results (see details in [6]).

For the analysis of pion scattering, the relevant dominant diagrams are showed in figure 5, in terms
of the effective thermal vertex defined in figure 6, which resums tadpole insertions and is a genuine
thermal correction. Here, A(p; T ) is the scattering function in terms of which all NGB scattering
processes are defined and we denote Iβ = T 2/12, the thermal tadpole correction to G1 ≡ G(x = 0),
with G the NGB propagator, and NF2 is the pion decay constant squared.

A(p;T ) = + +

+ + · · ·

Figure 5. Diagrams contributing to the leading order large-N NGB scattering amplitude

Once the amplitude is renormalized, it depends only on two parameters, F and the renormalization
scale µ at which the low-energy renormalizing constants are chosen to have vanishing finite part.
Those parameters are then fixed to low-energy scattering phase shift for the I = J = 0 partial wave,
which is the dominant one at large N. Even though the data correspond to nonzero pion mass, the
fits are rather good [6], giving a larger value for F than expected precisely to absorb those finite
mass effects. An important result in this analysis is that the scattering amplitude, including finite

    
 

DOI: 10.1051/, 07016  (2017) 713707016137EPJ Web of Conferences epjconf/201
XIIth  Quark Confinement & the Hadron Spectrum

7



= + + + + · · ·

. . .+ =
s

NF 2

1

1− Iβ/F 2

Figure 6. Thermal effective vertex entering the large-N scattering amplitude

T corrections, satisfies automatically the thermal unitarity relation Im t = σT |t|2 in the I = J = 0
channel and has the expected analytical behavior. This allows to generate the f0(500) state also in this
approach, giving rise to T = 0 values of Mp and Γp in reasonable agreement with the PDG ones for
the above mentioned parameter fits. At nonzero T , the evolution of M2

S (T ) defined in Sect. 4, which
would saturate the scalar susceptibility, is showed in figure 7 (left) for differents fits to scattering data
[6]. Since we are working in the chiral limit, the susceptibility is expected to diverge at Tc within
a second-order phase transition regime and so it does, with M2

S (T ) vanishing at the Tc values given
in the figure. They range from 90-130 MeV, being not far from the expectations of lattice results in
the chiral limit. The critical exponents for χS are also in agreement with lattice, thus providing a
consistent picture within this framework [6].
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Figure 7. Left:Scalar mass for the f0(500) resonance within the large-N approach for different fits as discussed
in [6]. Right: Comparison of different approaches for the scalar susceptibility in the chiral limit

An alternative approach within the large-N framework is to work out the diagrammatic expansion
of the partition function for finite NGB mass M, in order to extract the quark condensate and the
scalar susceptibility as first and second derivatives with respect to M of the free energy, respectively
[7]. The leading diagrams in this case are displayed in figure 8 for the chiral limit calculation, with
the effective mass vertex in figure 8, where g = − 8

x2

[√
1 − x − 1 + x

2

]
. In figure 7 (right) we show the

different approaches to the scalar susceptibility, incluing the IAM described in the previous section,
in terms of T/Tc with different Tc for every approach, so that we can compare their critical behaviour
in the chiral limit. In that plot, we have defined the saturated susceptibility in the chiral limit as
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χS =
NT B0

4πM
M2

S (0)

M2
S (T )

so that it reproduces the expected ChPT behaviour at low T (see Sect. 2). When

comparing the thermal evolution and critical exponents of the different approaches, they are consistent
within the uncertainties expected for the large-N approach.

zc

(a)

z0

(b)

z1

(c)

z2

(d)

zn

(e)

Figure 8. Diagrams contributing to leading order in N and to O(M3) to the partition function

= − M2

8NF 2




+ 1
2 + 5

16

+ 7
32

+ · · · + 8(−1)k+1

(
1/2

k + 2

)

k 

= − M2

8NF 2 g
(
G1
F 2

)

Figure 9. Effective mass thermal vertex entering the partition function analysis at large N.

6 Conclusions

We have presented recent results regarding chiral symmetry restoration in QCD. Our theoretical ap-
proach, based on the effective theories, incorporates ideas from QCD Ward Identities, unitarization
and the large-N framework. WI relating quark condensates and pseudoscalar susceptibilities provide
a way to understand the thermal behaviour of lattice screening masses near the transition. On the other
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hand, the thermal f0(500) pole generated from unitarized schemes plays a crucial role in the descrip-
tion of the scalar susceptibility, yielding a peak compatible with lattice data and a picture consistent
with O(4) degeneration. The large-N framework allows to verify thermal unitarity and to describe
a second-order phase transition in the chiral limit consistent with lattice results and other theoretical
analysis. Within these ideas, the analysis of the possible restoration of UA(1) at the chiral transition
within the context of the scalar-pseudoscalar nonet degeneration is a matter for future work.
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