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Abstract. Low-energy pion–nucleon scattering is relevant for many areas in nuclear and
hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part
of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field The-
ory. In this talk, we show how the fruitful combination of dispersion-theoretical methods,
in particular in the form of Roy–Steiner equations, with modern high-precision data on
hadronic atoms allows one to determine the pion–nucleon scattering amplitudes at low
energies with unprecedented accuracy. Special attention will be paid to the extraction of
the pion–nucleon σ-term, and we discuss in detail the current tension with recent lattice
results, as well as the determination of the low-energy constants of chiral perturbation
theory.c

1 Introduction

Pion–nucleon scattering is one of the most fundamental processes involving the lightest mesons and
baryons, hence allowing one to test, at low energies, the dynamical constraints imposed by chiral
symmetry. For instance, its low-energy parameters, especially the scattering lengths, encode crucial
information about the spontaneous and explicit breaking of chiral symmetry as realized in the nucleon
sector [3, 4]. In particular, at leading order (LO) in the chiral expansion, i.e., in the expansion in
pion masses and momenta, the two pion–nucleon scattering lengths are completely determined by a
well-known low-energy theorem (LET), which predicts the isospin-odd scattering length in terms of
the pion (Mπ) and nucleon (mN) masses as well as the pion decay constant Fπ, while the isospin-even
one is suppressed.

This expansion around the chiral limit of QCD in terms of momenta and quark masses can be
performed systematically in the framework of Chiral Perturbation Theory (ChPT) [5–7]. Nevertheless,
at next-to-leading order (NLO), the πN scattering amplitude depends on a list of low-energy constants
(LECs), which, encoding information about heavier degrees of freedom, cannot be constrained from

aSpeaker, e-mail: meissner@hiskp.uni-bonn.de
bSpeaker, e-mail: elvira@itp.unibe.ch
cThese proceedings borrow heavily from a previous conference contribution [1], as well as from our original article [2].
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chiral symmetry alone. Once determined in one process, these LECs can subsequently be used to
predict others. For πN scattering this implies applications that reach far into the domain of nuclear
physics, where the same LECs that appear in the πN amplitude govern the long-range part of the
nucleon–nucleon (NN) potential and the three-nucleon force.

In addition, also the partial waves for the crossed channel ππ → N̄N enter applications that
extend beyond the πN system. The response of the nucleon to external currents can be analyzed
via a t-channel dispersion relation, and depending on the quantum numbers ππ intermediate states
frequently provide the dominant contribution to the integral. In particular, for the P-waves, it provides
a determination of the ππ continuum contribution to the isovector spectral functions of the nucleon
electromagnetic form factors [8], an essential input for the analysis of the proton radius puzzle.

Finally, a further strong incentive to study pion–nucleon scattering derives from its relation to the
pion–nucleon σ-term σπN , defined via the scalar form factor of the nucleon

σ(t) =
1

2mN
〈N(p′)|m̂(ūu + d̄d)|N(p)〉, m̂ =

mu + md

2
, σπN ≡ σ(0), t = (p′ − p)2. (1)

The relation between σπN and the πN scattering amplitude proceeds by means of the Cheng–Dashen
LET [9, 10], which requires an analytic continuation of the Born-term-subtracted isoscalar amplitude
into the unphysical region. The σ-term has gathered strong interest beyond the hadron physics com-
munity in recent years, due to its relation to the scalar couplings of the nucleon that are prerequisite
for a consistent interpretation of direct-detection dark matter searches [11–13].

2 Roy–Steiner equations for πN scattering

In recent years, it has been repeatedly proven that the combination of ChPT with dispersive techniques
can be used to increase the predictive power of chiral symmetry. Dispersion relations exploit analytic-
ity and crossing symmetry to arrive at a representation that relates the amplitude at an arbitrary point in
the complex plane to an integral over its imaginary part. Once the amplitude is partial-wave projected,
unitarity relates the real and imaginary parts of the amplitude, which leads to a self-consistent system
of equations for the partial-wave phase shifts, so-called partial-wave dispersion relations (PWDRs).
The subtraction constants, the only free parameters, can frequently be pinned down by matching to
ChPT. The dispersive representation thus provides an ideal framework to reliably perform an analytic
continuation into the complex plane or into the unphysical region, which for instance becomes central
for the extraction of the pion–nucleon σ-term. In particular, for ππ scattering, the use of Roy equa-
tions [14] has led to a determination of the low-energy ππ scattering amplitude with unprecedented
accuracy [15, 16], which, for the first time, allowed for a precise determination of the f0(500) pole
parameters [17, 18].

In the case of πN scattering, a full system of PWDRs has to include dispersion relations for two
distinct physical processes, πN → πN (s-channel) and ππ → N̄N (t-channel), and the use of s ↔ t
crossing symmetry will intertwine s- and t-channel equations. Roy–Steiner (RS) equations [19] are
a set of PWDR that combine the s- and t- channel physical region by means of hyperbolic disper-
sion relations (HDRs). Subtractions are performed at the so-called subthreshold point, which proves
convenient for the matching to ChPT and for the extrapolation to the Cheng–Dashen point [9], and
thus for establishing the relation to σπN by means of the LET [9, 10]. Furthermore, a reliable ex-
trapolation to the subthreshold region requires additional input from the t-channel (ππ→ N̄N) partial
waves [20–22], a requirement that is straightforward to comply with in the RS formalism, as HDRs by
construction intertwine all physical regions. The construction of a complete system of RS equations
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Figure 1. Solution strategy for RS equations in πN scattering. The s- and t-channel partial waves will be solved
for up to angular momenta lm = 1 and Jm = 2, respectively. Figure taken from [2].

for πN scattering has been presented in detail in [2, 23]; see also [24–26] for partial results. For the
s-channel partial waves, they read [19]

f I
l+(W) = N I

l+(W) +
1
π

∞
∫

tπ

dt′
∑

J

{

GlJ(W, t′) Im f J
+ (t′) + HlJ(W, t′) Im f J

− (t′)
}

(2)

+
1
π

∞
∫

W+

dW ′
∞
∑

l′=0

{

K I
ll′ (W,W

′) Im f I
l′+(W ′) + K I

ll′ (W,−W ′) Im f I
(l′+1)−(W ′)

}

,

where due to G-parity only even/odd J contribute for isospin I = +/−, respectively. The kernels
K I

ll′ (W,W), GlJ(W, t), and HlJ(W, t) are known analytically, and N I
l+(W) denotes the partial-wave pro-

jections of the pole terms.
For the t-channel partial-wave projection, the corresponding t-channel RS equations are [23]

f J
+ (t) = Ñ J

+(t) +
1
π

∞
∫

tπ

dt′
∑

J′

{

K̃1
JJ′ (t, t

′) Im f J′
+ (t′) + K̃2

JJ′ (t, t
′) Im f J′

− (t′)
}

+
1
π

∞
∫

W+

dW ′
∞
∑

ℓ=0

{

G̃Jℓ(t,W
′) Im f I

ℓ+(W ′) + G̃Jℓ(t,−W ′) Im f I
(ℓ+1)−(W ′)

}

, (3)

and similarly for f J
− except for the fact that these do not receive contributions from f J

+ . In addition,
only even or odd J′ couple to even or odd J (corresponding to t-channel isospin It = 0 or It = 1),
respectively, and only higher t-channel partial waves contribute to lower ones.

The strategy for the solution of the RS equations is outlined in Fig. 1: in the s-channel, the six S -
and P-waves f I

l±, with I = ± for the isospin index and orbital angular momentum l, are considered
dynamically below a matching point sm, whereas the imaginary parts of higher partial waves for all
s, the imaginary parts of the S - and P-waves above sm, and, potentially, inelasticities below sm are
required as input. In practice, the matching point is chosen at its optimal value sm = (1.38 GeV)2 as

    
 

DOI: 10.1051/, 01014 (2017) 713701014137EPJ Web of Conferences epjconf/201
XIIth  Quark Confinement & the Hadron Spectrum

3



argued in [23]. In contrast to the six s-channel amplitudes, there are only three S - and P-waves in
the t-channel, f J

± , with total angular momentum J and the subscript referring to parallel/antiparallel
antinucleon–nucleon helicities. Below the first inelastic threshold, the t-channel unitarity relations are
linear in f J

±

Im f J
± (t) = σπt

(

tIt
J (t)
)∗ f J
± (t), (4)

from which one can infer Watson’s final-state interaction theorem [27], stating that (in the elastic
region) the phase of f J

± is given by the phase δIt
J of the respective ππ scattering partial wave tIt

J . It im-
plies that the equations for the t-channel partial waves take the form of a Muskhelishvili–Omnès (MO)
problem [28, 29], whose solution requires—in addition to higher partial waves and the imaginary parts
above the matching point tm—input for the ππ phase shifts.

Given that data in the t-channel reaction ππ→ N̄N become available only above the two-nucleon
threshold, the solution of the t-channel equations is subject to an additional complication that is related
to the large pseudophysical region in this reaction. Thus, the amplitudes in the pseudophysical region
tπ ≤ t ≤ tN required for the t-channel integrals need to be reconstructed from unitarity. While for
every partial wave ππ intermediate states generate by far the dominant contribution, intermediate
states besides ππ become relevant in the unitarity relation around 1 GeV, most notably in the S -wave,
where K̄K intermediate states account for the occurrence of the f0(980) resonance [30].

Once the t-channel problem is solved, the resulting t-channel partial waves are used as input for
the s-channel problem, which then reduces to the form of conventional ππ Roy equations. The basic
idea can be summarized in such a way that the phase shifts at low energies, from the πN threshold to
sm, are represented in suitable parameterizations whose free parameters, together with the subtraction
constants, are determined by minimizing the difference between the left-hand side (LHS) and right-
hand side (RHS) of (2),

∆2
RS =

∑

l,Is,±

N
∑

j=1

















Re f Is

l±(W j) − F
[

f Is

l±

]

(W j)

Re f Is

l±(W j)

















2

. (5)

In addition, we found that the solution can be stabilized substantially when the S -wave scattering
lengths, known very precisely from pionic atoms [2, 31, 32], are imposed as constraints

a1/2
0+ = (169.8 ± 2.0) × 10−3M−1

π , a3/2
0+ = (−86.3 ± 1.8) × 10−3M−1

π . (6)

Eventually, a full solution of the system can be obtained by iterating this procedure until all partial
waves and parameters are determined self-consistently. In practice, virtually all interdependence pro-
ceeds via the subtractions constants, so that the need for an iterative procedure can be avoided if the
corresponding terms are included explicitly in the s-channel fit. In this way, the minimization of (5)
provides us with a new set of subthreshold parameters and S - and P-wave phase shifts, which, at the
same time, satisfy both the s-channel (2) and t-channel (3) RS equations.

A full error analysis of the RS solutions was performed in [2] and includes the following number
of effects: first, the input for the matching conditions as well as for the energy region above the
matching point and higher partial waves is varied, both regarding different partial-wave analyses [33–
36] and truncations of the partial-wave expansion. Furthermore, the πN coupling constant g2/(4π) =
13.7(2) [31, 32] is also varied within uncertainties and the sensitivity to the parameterization of the
low-energy phase shifts used in the solution is investigated. Second, it is also observed that the RS
equations are more sensitive to some subthreshold parameters than others. To account for this effect, a
set of solutions corresponding to different starting values of the χ2-minimization are generated, while
imposing sum rules for the higher subthreshold parameters, and the observed distribution is taken as
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Figure 2. Error bands for the πN phase shifts. The dashed lines indicate the central curves. Figure taken from [2].

an additional source of uncertainty. Third, the errors in the scattering lengths are propagated, which
crucially enter as constraints in the minimization, to the results for the subthreshold parameters.

The corresponding results for the s-channel partial-wave phase shifts are plotted in Fig. 2 while
the solutions for the t-channel are shown in [2]. The resulting subthreshold parameters are given in
Table 1, compared to the KH80 values [33, 34]. We also keep track of the correlations between sub-
threshold parameters, obtaining a 13×13 covariance matrix that encodes uncertainties and correlations
of the 13 subthreshold parameters, which will be relevant for the matching to ChPT.
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RS KH80

d+00 [M−1
π ] −1.361 ± 0.032 −1.46 ± 0.10

d+10 [M−3
π ] 1.156 ± 0.019 1.12 ± 0.02

d+01 [M−3
π ] 1.155 ± 0.016 1.14 ± 0.02

d+20 [M−5
π ] 0.196 ± 0.003 0.200 ± 0.005

d+11 [M−5
π ] 0.185 ± 0.003 0.17 ± 0.01

d+02 [M−5
π ] 0.0336 ± 0.0006 0.036 ± 0.003

d−00 [M−2
π ] 1.411 ± 0.015 1.53 ± 0.02

d−10 [M−4
π ] −0.159 ± 0.004 −0.167 ± 0.005

d−01 [M−4
π ] −0.141 ± 0.005 −0.134 ± 0.005

b+00 [M−3
π ] −3.455 ± 0.072 −3.54 ± 0.06

b−00 [M−2
π ] 10.49 ± 0.11 10.36 ± 0.10

b−10 [M−4
π ] 1.000 ± 0.029 1.08 ± 0.05

b−01 [M−4
π ] 0.208 ± 0.020 0.24 ± 0.01

3 Consequences for the πN σ-term

The Cheng–Dashen LET [9, 10] relates the Born-term-subtracted isoscalar amplitude evaluated at the
Cheng–Dashen point (ν = 0, t = 2M2

π) to the scalar form factor of the nucleon, evaluated at momentum
transfer t = (p′ − p)2 = 2M2

π,
D̄+(0, 2M2

π) = σ(2M2
π) + ∆R, (7)

where ∆R represents higher-order corrections in the chiral expansion, which are expected to be small.
Here, we use the estimate |∆R| . 2 MeV [37], derived from resonance saturation for the O(p4) LECs.
In practice, the relation (7) is often rewritten as

σπN = σ(0) = Σd + ∆D − ∆σ − ∆R, (8)

where ∆σ = σ(2M2
π) − σπN measures the curvature in the scalar form factor, ∆D = D̄+(0, 2M2

π) −
Σd parameterizes contributions to the πN amplitude beyond the first two terms in the subthreshold
expansion, and Σd = F2

π

(

d+00 + 2M2
πd
+
01

)

. As shown in [38], although these corrections are large
individually due to strong rescattering in the isospin-0 ππ S -wave, they cancel to a large extent in the
difference. For the numerical analysis we use ∆D − ∆σ = (−1.8 ± 0.2) MeV [30, 39]. Finally, the
RS results for the subthreshold parameters d+00 and d+01 in Table 1 give Σd = (57.9 ± 1.9) MeV, which
based on (8) translates immediately to [40]

σπN = (59.1 ± 3.5) MeV, (9)

which already includes isospin-breaking corrections in the LET [41–43].
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Table 1. Subthreshold parameters from the RS analysis in comparison with the KH80 values [33, 34]. Table
taken from [2].
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Figure 3. Constraints on the πN scattering lengths from pionic atoms and latticeσ-terms. Figure taken from [49].

This result implies a significant increase compared to the “canonical value” ofσπN ∼ 45 MeV [44],
although already 4.2 MeV are due to new corrections to the LET. The remaining increase of nearly
10 MeV is dictated by the new scattering length values from pionic-atom experiments. To illustrate
the dependence of the σ-term on the scattering lengths used as input to the solution, we expand Σd

linearly around the central values and find

Σd = (57.9 ± 0.9) MeV +
∑

Is

cIs∆aIs

0+, c1/2 = 0.24 MeV, c3/2 = 0.89 MeV, (10)

where ∆aIs

0+ gives the deviation from the scattering lengths extracted from hadronic atoms in units of
10−3M−1

π . This linearized version produces Σd = (46 ± 4) MeV if the KH80 scattering lengths are
used, in excellent agreement with the original KH80 value Σd = (50 ± 7) MeV. Nevertheless, our
result for the σ-term seems to be somewhat at odds with a series of recent lattice σπN calculations
performed near or at physical pion masses, which yield values

σπN = 38(3)(3) MeV (BMW [45]), σπN = 44.4(3.2)(4.5) MeV (χQCD [46]),

σπN = 37.2(2.6)
(+1.0
−0.6
)

MeV (ETMC [47]), σπN = 35.0(6.1) MeV (RQCD [48]). (11)

Such smaller values are indeed more consistent with analyses of flavor SU(3) breaking in the baryon
spectrum and the OZI rule for scalar strangeness matrix elements of the nucleon. However, these
lattice results are in significant tension with the pionic-atom spectroscopy measurements [50–52]: the
linear relation between σπN and the πN scattering lengths in (10) can be inverted so that a given value
for the σ-term imposes a constraint in the scattering-length plane [49]. The constraints corresponding
to the lattice results of [45–47] compared to the bands extracted from pionic atoms are shown in Fig. 3,
which reflects the core of the discrepancy between lattice and phenomenology: while the three bands
from the pionic-atom measurements nicely overlap, the lattice σ-terms favor a considerably smaller
value of ã+ [49]. A lattice calculation of the πN scattering lengths may be a good way to illuminate
the cause of this discrepancy.
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Figure 4. π+p → π+p differential cross section as a function of the scattering angle θ for Tπ ≤ 50 MeV. The
experimental data are taken from the GWU-SAID data base [36], with each experiment denoted by a differently
colored error bar. Red triangles and blue squares correspond to the RS solution generated with scattering lengths
extracted from pionic atoms and KH80, respectively.

Nonetheless, an additional way to unravel the tension around the σ-term is to directly compare
with the experimental πN scattering data base. To this end, we compute πN differential cross sections
dσ/dΩ using the RS S - and P-wave phase shifts depicted in Fig. 2 as input. For the higher partial
waves we use the analysis of [35, 36], with uncertainties estimated following the procedure described
in Sect. 2. Some comments are in order. First, at low energy and forward direction, πN cross sections
are strongly affected by electromagnetic interactions, which are taken into account following the pro-
cedure described in [53]. Second, the discrepancy in the scattering lengths is mainly concentrated in
the Is = 3/2 channel: while the KH80 value for the Is = 1/2 channel a1/2

0+ = (173 ± 3.0) × 10−3M−1
π is

consistent within one standard deviation with the pionic-atom determination in (6), the Is = 3/2 one,
a3/2

0+ = (−101 ± 4) × 10−3M−1
π , lies roughly four standard deviations away. Therefore, it is suggestive

to consider the Is = 3/2 channel first, which corresponds to the π+p → π+p reaction. Third, the
scattering lengths are used as input inside the RS equations, which, in turn, allow one to generate
cross-section solutions in terms of scattering-length values. Fourth, at very low energies, namely for
Tπ ≤ 50 MeV, with Tπ =

(

s − (mN + Mπ)2
)

/2mN the kinetic energy of the incoming pion in the lab
frame, the scattering lengths used as input dominate the cross section uncertainties. Accordingly, the
difference between two different RS cross-section solutions reveals the effect of the scattering lengths
used as input. In the same way, one can compare with the experimental data base by defining the
χ2-like function

χ2
a3/2

0+

=
∑

i, j

(

O
exp
i, j − O

RS
i, j (a3/2

0+ )
)2

∆O
exp 2
i, j

, (12)

where Oi, j denotes the π+p → π+p differential cross section dσ/dΩ, and i, j stand for the incoming
pion kinetic energy and the scattering angle, respectively.

The evaluation of the χ2-like function in (12) with hadronic atom and KH80 scattering lengths
provides the results χ2

HA/d.o.f ≈ 0.8 and χ2
KH80/d.o.f ≈ 4.7. The corresponding experimental and RS
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NLO N2LO N3LO

c1 [ GeV−1] −0.74 ± 0.02 −1.07 ± 0.02 −1.11 ± 0.03

c2 [ GeV−1] 1.81 ± 0.03 3.20 ± 0.03 3.13 ± 0.03

c3 [ GeV−1] −3.61 ± 0.05 −5.32 ± 0.05 −5.61 ± 0.06

c4 [ GeV−1] 2.17 ± 0.03 3.56 ± 0.03 4.26 ± 0.04

d̄1 + d̄2 [ GeV−2] — 1.04 ± 0.06 7.42 ± 0.08

d̄3 [ GeV−2] — −0.48 ± 0.02 −10.46 ± 0.10

d̄5 [ GeV−2] — 0.14 ± 0.05 0.59 ± 0.05

d̄14 − d̄15 [ GeV−2] — −1.90 ± 0.06

ē14 [ GeV−3] — — 0.89 ± 0.04

ē15 [ GeV−3] — — −0.97 ± 0.06

ē16 [ GeV−3] — — −2.61 ± 0.03

ē17 [ GeV−3] — — 0.01 ± 0.06

ē18 [ GeV−3] — — −4.20 ± 0.05

cross section results are plotted in Fig. 4. In view of these results it is clear that only the pionic-atom
solution describes the experimental πN data. In addition, since the variation in the scattering lengths is
small, RS cross sections are well represented by a linearized version around the pionic-atom scattering
length a3/2

0+ . The minimization of (12) using this linearized version of the RS cross section data gives
a3/2

0+ = −86.6 × 10−3M−1
π , in perfect agreement with the pionic-atom determination (6).

4 Matching to chiral perturbation theory

The matching to ChPT is one of the most fundamental applications of the RS solution, since it offers
a unique opportunity for a systematic determination of πN LECs [54]. One would expect the chiral
expansion to work best in a kinematic region where no singularities occur, i.e. where the amplitude
can be described solely by a polynomial in the Mandelstam variables. This is precisely the situation
encountered in the subthreshold region: the amplitude is purely real, and characterized by its expan-
sion coefficients around (ν = 0, t = 0). The matching is thus most conveniently performed by equating
the chiral expansion for the subthreshold parameters to the RS results given in Table 1.

The πN amplitude at N3LO, O(p4), involves four NLO LECs, ci, four (combinations of) N2LO
LECs, d̄i, and five N3LO LECs, ēi, see [55]. These 13 LECs correspond to the 13 subthreshold param-
eters that receive contributions from LECs in a fourth-order calculation. Inverting the expressions for
the subthreshold parameters, we obtain the LECs summarized in Table 2, with correlation coefficients
given in [40].

At O(p2) only the ci contribute, and only four subthreshold parameters are sensitive to these LECs.
At N2LO four d̄i appear, and eight subthreshold parameters receive contributions from LECs. Com-
paring the different extractions up to N3LO, the convergence pattern for the ci looks reasonably stable.
In contrast, while the N2LO d̄i are of natural size, their values increase by nearly an order of magnitude
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Table 2. Results for the πN LECs at different orders in the chiral expansion [54].



when going to N LO (except for d5). The origin of this behavior is due to loop corrections in some
subthreshold parameters involving terms that scale with g2

A(c3−c4) ∼ −16 GeV−1, which are balanced
by the large LECs in order to keep the subthreshold parameters at their physical values. Given such
large loop corrections the errors for the LECs at a given chiral order are negligible compared to the
uncertainties to be attached to the chiral expansion itself. Nevertheless, the enhancement of the ci can
be understood from resonance saturation, which for c2−4 is mainly due to the ∆(1232) [56–58]. In
fact, the magnitude of the extracted LECs is sizeably reduced when the ∆ is included explicitly in a
consistent power counting up to full one-loop order [59] , which, in turn, leads to an improvement of
the convergence pattern in the threshold region.
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