Functional local crosstalk of inositol 1,4,5-trisphosphate receptor- and ryanodine receptor-dependent Ca\(^{2+}\) release in atrial cardiomyocytes

Marcel Wullschleger, Joaquim Blanch, and Marcel Egger*

Aims
Enhanced inositol 1,4,5-trisphosphate receptor (InsP\(_3\)R2) expression has been associated with a variety of proarhythmogenic cardiac disorders. The functional interaction between the two major Ca\(^{2+}\) release mechanisms in cardiomyocytes, Ca\(^{2+}\) release mediated by ryanodine receptors (RyRs) and InsP\(_3\)-induced intracellular Ca\(^{2+}\) release (IP3ICR) remains enigmatic. We aimed at identifying characterizing local IP3ICR events, and elucidating functional local crosstalk mechanisms between cardiac InsP\(_3\)R2s and RyRs under conditions of enhanced cardiac specific InsP\(_3\)R2 activity.

Methods and results
Using confocal imaging and two-dimensional spark analysis, we demonstrate in atrial myocytes (mouse model cardiac specific overexpressing InsP\(_3\)R2s) that local Ca\(^{2+}\) release through InsP\(_3\)R2s (Ca\(^{2+}\) sparks) directly activates RyRs and triggers elementary Ca\(^{2+}\) release events (Ca\(^{2+}\) sparks). In the presence of increased intracellular InsP\(_3\) concentrations IP3ICR can modulate RyRs openings and Ca\(^{2+}\) spark probability. We show as well that IP3ICR remains under local control of Ca\(^{2+}\) release through RyRs.

Conclusions
Our results support the concept of bidirectional interaction between RyRs and InsP\(_3\)R2s (i.e. Ca\(^{2+}\) sparks and Ca\(^{2+}\) sparks) in atrial myocytes. We conclude that highly efficient InsP\(_3\) independent SR-Ca\(^{2+}\) flux constitute the main mechanism of functional crosstalk between InsP\(_3\)Rs and RyRs resulting in more Ca\(^{2+}\) sensitized RyRs to trigger subsequent Ca\(^{2+}\)-induced Ca\(^{2+}\) release activation. In this way, bidirectional local interaction of both SR-Ca\(^{2+}\) release channels may contribute to the shaping of global Ca\(^{2+}\) transients and thereby to contractility in cardiac myocytes.

Keywords
InsP\(_3\)R • RyR • Ca\(^{2+}\) sparks • Ca\(^{2+}\) sparks • CICR • Atrial myocytes • Local modulation of calcium sparks and calcium puffs

Introduction
Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR) is known as the main mechanism involved in the excitation–contraction coupling (ECC) of cardiomyocytes.\(^1\) However, a second mechanism involving InsP\(_3\)-induced intracellular Ca\(^{2+}\) release (IP3ICR) has been described.\(^2\)–\(^4\) It can be activated through the binding of cardioactive hormones to G protein–coupled receptors (GPCRs), amongst others endothelin-1 (ET-1) and angiotensin II (AngII). The contribution of IP3ICR to the CICR and therefore to the ECC in both normal and pathophysiological conditions remains poorly understood.

In atrial cardiomyocytes, the ryanodine receptors (RyRs) constitute the major mediator of SR-Ca\(^{2+}\) release. They are functionally coupled and organized in channel clusters.\(^2\) The opening of these clustered RyRs, triggered by the Ca\(^{2+}\) influx through the voltage-operated L-Type Ca\(^{2+}\) channels, elicit local Ca\(^{2+}\) release events known as ‘Ca\(^{2+}\) sparks’, the basis for global Ca\(^{2+}\) transients.\(^5\) The coordinated openings of clustered InsP\(_3\)Rs will result, as well, in local SR-Ca\(^{2+}\) release called ‘Ca\(^{2+}\) puffs’ exhibiting distinct spatio-temporal properties.\(^6\) In addition to microscopically detectable Ca\(^{2+}\) puffs, eventless SR-Ca\(^{2+}\) release by individual InsP\(_3\)R openings has been described.\(^8\)

Although the functional expression of InsP\(_3\)Rs in cardiac tissue is limited, in comparison to RyRs, evidence suggests that the IP3ICR may contribute to the ECC in atrial cardiomyocytes.\(^9\),\(^10\) This hypothesis is for instance, supported by the following observations: (i) under pathophysiological conditions the InsP\(_3\)R expression is upregulated which
favour delayed afterdepolarizations and Ca\(^{2+}\)-dependent arrhythmogeneity\(^{2,3}\); (ii) down-regulation of InsP\(_3\)Rs in cardiac tissue was found to be protective against pro-arrhythmogenic stress\(^{15}\); and (iii) small and invisible SR-Ca\(^{2+}\) release events originating from InsP\(_3\)Rs openings were found to have a modulatory function on Ca\(^{2+}\) signalling in subcellular microdomains and may be involved in the functional crosstalk between RyRs and InsP\(_3\)Rs.\(^8\)

The present study focuses on local functional crosstalk between IP3ICR and RyRs and aims at better understanding its impact on local Ca\(^{2+}\) release within atrial cardiomyocytes. Since a potential crosstalk between InsP\(_3\)Rs and RyRs can only be investigated with high accuracy at a local scale with a substantial InsP\(_3\)Rs activity, we opted to use an InsP\(_3\)Rs transgenic mouse model\(^{12}\) in which increased open probability (e.g. Ca\(^{2+}\) puffs) is a consequence of enhanced InsP\(_3\)R expression. The transgenic (TG) model mimics a pathophysiological condition associated with both receptor alteration and increased InsP\(_3\)R protein expression.\(^{13,15}\) We examined local IP3ICR activity using a custom designed two-dimensional spark analysis algorithm and found that local IP3ICR events (Ca\(^{2+}\) puffs) in close proximity to RyRs lead to the activation of RyRs followed by CICR events (Ca\(^{2+}\) sparks). In addition, we found that the opposite direction of crosstalk seems to be possible: IP3ICR can be modulated by local Ca\(^{2+}\) release produced by RyRs. These results support the concept that IP3ICR, in a pathophysiological condition with increased InsP\(_3\)Rs functional expression, may interfere with RyRs openings and Ca\(^{2+}\) spark probability in cardiac myocytes.

Methods

Cell preparation and chemicals

The InsP\(_3\)R type II overexpressing mouse model\(^{12}\) (TG) and WT (FVB/N background) mice were obtained from Charles River Laboratories (Germany). C57BL6 mice were provided by our Central Animal Facility, University of Bern (Switzerland) for control purposes. Hearts were removed from animals euthanized by cervical dislocation. Acute atrial myocytes isolation was performed using the Langendorff perfusion technique. All experiments were performed at room temperature and approved by the Swiss Federal Animal Protection Law (see Supplementary material online, Figure S1).

Pharmacological experiments included 2-aminoethoxydiphenyl borate (2-APB; Sigma-Aldrich), tetracaine (Sigma-Aldrich), xestospongin C (A.G. Scientific Inc.), InsP\(_3\) AM (SiChem GmbH), endothelin-1 (ET-1; Sigma-Aldrich), DM-nitrophen AM (Setareh Biotech), phenylephrine hydrochloride (PE, Sigma-Aldrich), U-73122 and U-73343 (Tocris Bioscience). For Ca\(^{2+}\) imaging, atrial myocytes were incubated with Fluo-3 AM (Biotium), loaded with the Intracellular imaging and data analysis

Rapid two-dimensional confocal full-frame Ca\(^{2+}\) imaging (150 Hz; 0.267 μm × 0.267 μm pixel\(^{-1}\), 512 × 64 pixel per frame-scan) was performed on Fluo-3 AM loaded atrial myocytes using a diode laser (488 nm, 50 mW) and a multi-beam confocal scanner (VT-infinity, VisiTech international) mounted on an inverted microscope (Nikon). Raw data were initially analysed for frequency, mean fluorescence amplitude (∆F/F\(_0\)) and mean full width at half maximal amplitude in x- and y-direction (FWHM\(_{x,y}\)) using a two-dimensional Ca\(^{2+}\) spark analysis software.\(^{16}\) A detailed event analysis was built using a python algorithm following a two-step pixel clustering procedure (density-based spatial clustering of applications with noise).\(^{17}\) A more detailed version of the method section is provided in the supplementary section.

Immunocytochemistry

For immunostaining cells were incubated overnight at +4 °C with a mix of primary antibodies against InsP\(_3\)R2 (1:1000, Abcam ab77838) and RyR2 (1:200, Abcam ab2827) followed by incubation with a mix of secondary anti-mouse and anti-rabbit antibodies conjugated to Alexa Fluor 488 and 568, respectively (1:600, Molecular Probes). For Western Blot anti-InsP\(_3\)R2 antibody (1:5000, KM1083, gift from Dr. K. Mikoshiba) or anti-GAPDH antibody (1:100 000, Fitzgerald 10R-G109A) was used. RT-qPCR was performed with primers specific for itpr2 and β-actin with the Eco Real-Time PCR system (Ilumina) and using KAPA SYBR FAST One-Step kit (Kapa Biosystems).

A more detailed version of the method section is provided in the supplementary section.

Results

ET-1 induced InsP\(_3\)R Ca\(^{2+}\) release in atrial myocytes

Figure 1 shows that rapid superfusion of atrial myocytes isolated from WT (FVB) mice with 100 nmol/L ET-1 caused an increase in spontaneous local Ca\(^{2+}\) release events of approximately 85% in comparison with control condition. This increase in local Ca\(^{2+}\) release events was completely antagonized by the InsP\(_3\)R blocker xestospongin C (5 μmol/L). RyR2 inhibition (1 mmol/L tetracaine) in combination with ET-1 stimulation reduced the Ca\(^{2+}\) release frequency by 21% compared to control. This remaining Ca\(^{2+}\) event activity could be linked to IP3ICR activity. In atrial myocytes isolated from TGs overexpressing the InsP\(_3\)R type II, stimulation with ET-1 triggered a more pronounced increase in local Ca\(^{2+}\) release of about 313% compared to control condition. This increase was antagonized by xestospongin C to values about 54% of control value. Tetracaine reduced as well the spontaneous local Ca\(^{2+}\) release events but down to 12% of control value.

Immunostaining of InsP\(_3\)R2s and RyR2s revealed a co-localization of InsP\(_3\)R2 with RyR2, suggesting a junctional and non-junctional distribution pattern for RyR2s and InsP\(_3\)R2s in atrial myocytes isolated from TG mice with cardiac specific overexpression of InsP\(_3\)R2s (see Supplementary material online, Figure S1). Semi-quantitative assessment for InsP\(_3\)R2 protein expression and RT-qPCR analysis determined a 1.6-fold increase in InsP\(_3\)R2 expression in TG mice compared to atrial tissue extracts from control.

To get further insight in the local contribution of IP3ICR and ensure the proper discrimination of CICR- and IP3ICR events, interventions aiming at controlling the phospholipase C (PLC) function were used.

Atrial myocytes isolated from TGs were field-stimulated to control SR-Ca\(^{2+}\) loading conditions. The frequency of Ca\(^{2+}\) sparks, mini-waves (Ca\(^{2+}\) events propagating partially throughout the entire cell), and waves
(Ca$^{2+}$ events propagating throughout the entire cell) was measured upon specific pharmacological intervention (Figure 2B). In comparison to control condition, application of 10 μmol/L of the α₁-adrenergic receptor agonist phenylephrine (PE) increased Ca$^{2+}$ spark frequency per confocal recording area by 152% from 3.4 (4.0 SD) to 5.1 (3.6 SD) 10^{3} μm$^{-2}$s$^{-1}$. The frequency of Ca$^{2+}$ mini-waves increased from 1.5 (2.3 SD) to 2.4 (4.8 SD) events 10^{3} μm$^{-2}$s$^{-1}$, whereas the Ca$^{2+}$ wave occurrence decreased from 0.3 (0.3 SD) to 0.0 (0.0 SD) events cell$^{-1}$s$^{-1}$. Concomitant inhibition of PLC (1 μmol/L U-73122) and in combination with RyR2 inhibition (1 mmol/L tetracaine) led to the absence of any event while in the presence of both 1 μmol/L U-73343 and 1 mmol/L tetracaine, Ca$^{2+}$ sparks and Ca$^{2+}$ mini-waves were reduced to a frequency with very rare events (Figure 2D).

Taken together, these observations support that in atrial myocytes ET-1 receptor stimulation subsequently triggered Ca$^{2+}$ release events which may be caused, at least in part, by IP3ICR. In addition, intracellular provision of InsP$_3$ in terms of PLC activation (e.g. induced by a humoral agonist) appears to be a precondition for IP3ICR. An increased number of InsP$_3$ dependent Ca$^{2+}$ events in cells from TGs may facilitate the probability of potential crosstalk events between InsP$_3$Rs and RyRs. These interactions can accurately be examined on a local scale exclusively with an appropriate basal InsP$_3$Rs activity.

As illustrated in Figure 3, we analysed the amplitude (∆F/∆F$_{0}$), FWHM$_{x}$, and FWHM$_{y}$ of individual Ca$^{2+}$ events by using conventional two-dimensional Ca$^{2+}$ spark analysis tools. The spatio-temporal characterization of ET-1 triggered Ca$^{2+}$ events in atrial myocytes isolated from FVB and TG mice did not reveal distinct classes of events (i.e. Ca$^{2+}$ sparks and Ca$^{2+}$ puffs), even though we would have expected for one group increased FWHM$_{x,y}$ and smaller ∆F/∆F$_{0}$ due to ‘Ca$^{2+}$ puffs’. Nevertheless, in the presence of RyR inhibition by tetracaine the remaining Ca$^{2+}$ release events showed a smaller amplitude, suggesting a small proportion of possibly InsP$_3$-induced Ca$^{2+}$ release events in atrial myocytes. Local Ca$^{2+}$ release events were also assessed in permeabilized atrial myocytes using classical confocal linescan mode (see Supplementary material online, Figure S2). Compared to control condition, superfusion with the RyR antagonist tetracaine (1 mmol/L) abolished detectable Ca$^{2+}$ release events, whereas subsequent selective stimulation of InsP$_3$Rs (20 μmol/L InsP$_3$-salt, 1 mmol/L tetracaine) partially recovered Ca$^{2+}$ release event activity. This persistent Ca$^{2+}$ event activity was sensitive to the InsP$_3$R antagonist 2-APB (2 μmol/L) with previously triggered Ca$^{2+}$ release events being suppressed. Spatio-temporal characterization of these events showed overlap with control, but a fraction of events was found to be lower in amplitude and longer in FWHM, supporting that IP3ICR contributes at least in part to the total number of Ca$^{2+}$ events (see supplementary material online).

Taken together and based on the pharmacological interventions, IP3ICR appears to contribute to the constitution of local Ca$^{2+}$ release events, although their spatio-temporal characterization by using conventional two-dimensional or one-dimensional Ca$^{2+}$ spark analysis fails to

Figure 1 ET-1 increases Ca$^{2+}$ release event occurrence. (A) Ca$^{2+}$ event frequency normalized to spontaneous Ca$^{2+}$ event frequencies in atrial myocytes obtained from FVB and TGs. Event frequency measured as Ca$^{2+}$ sparks 10^{3} μm$^{-2}$s$^{-1}$ in the presence of ET-1: FVB = 1.3 (P = 0.102), n$_{i}$ = 15, N = 4; TGs = 9.0 (P = 0.039), n$_{i}$ = 8, N = 2; ET-1 + xestospongin C: FVB = 2.6 (P = 0.023), n$_{i}$ = 15, N = 2; TGs = 2.5 (P = 0.255), n$_{i}$ = 10, N = 2; ET-1 + tetracaine: FVB = 0.2 (P < 0.001), n$_{i}$ = 33, N = 5; TGs = 0.05 (P = 0.016) n$_{i}$ = 13, N = 2. Histogram shows mean (SD) values. Groups were compared with a paired Student’s t-test (*P < 0.050, **P < 0.010, ***P < 0.001). (B and C) Examples for spontaneous local Ca$^{2+}$ events. Two framescan series were recorded from each cell (control vs. pharmacological intervention).
Identification and separation of individual \(\text{Ca}^{2+} \) puffs and \(\text{Ca}^{2+} \) sparks

To overcome the limitations mentioned above, we applied a custom-made mathematical tool to analyse local \(\text{Ca}^{2+} \) release events with an individual pixel basis applied on mapped regions of interest (ROIs) of two-dimensional full-frame confocal image stacks (Figure 4).\(^{17}\)

Each pixel is characterized by various individual parameters (amplitude, duration, \(\tau_{\text{rise}} \) and \(\tau_{\text{decay}} \)) which together determine the shape of each \(\text{Ca}^{2+} \) release event. In order to characterize a pixel event, the pixel’s location in space and time should be known as well. In other words, a pixel event can be completely defined by two vectors: the shape vector and the position vector. If done, a new ‘denoised’ event-image can be reconstructed. However, a prior two-step clustering procedure of pixels needs to be performed (density-based spatial clustering of applications with noise).\(^{18}\) A first clustering of pixels according to their shape is then followed by a spatio-temporal clustering within that group. The outcome then allows the extraction of desired parameters from the cluster such as amplitude, FDHM, FWHM\(_{xy}\), rise and decay times and separation into physiologically relevant \(\text{Ca}^{2+} \) signalling events (e.g. \(\text{Ca}^{2+} \) sparks/\(\text{Ca}^{2+} \) puffs).

As aforementioned, the procedure started with a conventional \(\text{Ca}^{2+} \) spark analysis where local \(\text{Ca}^{2+} \) release events were first detected.\(^{19}\) Selected single \(\text{Ca}^{2+} \) release events were further processed for a detailed analysis using our pixel-wise fitting algorithm, whereby the fitted fluorescence intensity fluctuation within each pixel, belonging to the ROI and a selected time window, were clustered according to the combined spatio-temporal characteristics: amplitude, \(\tau_{\text{rise}} \) FDHM, \(\tau_{\text{decay}} \), FWHM\(_x\), and FWHM\(_y\), (level ‘\(\text{Ca}^{2+} \) release event’). Pixel intensities for each ROI were calculated to establish threshold values for \(\text{Ca}^{2+} \) puffs (FDHM \(\geq 180\) ms and \(\Delta F/F_0 \times 10^{3} \) FDHM [ms] \(\leq 3 \)) and thus provide the basis for analysis of the two-dimensional full-frame image stacks.

One advantage of this procedure is, that even though the spatio-temporal characteristics of pixels (individual parameters) within the ROI are not statistically different, the combination of all the obtained parameters will ensure the success in providing an optimal event separation. The core of local \(\text{Ca}^{2+} \) release events can thus be precisely determined, facilitating the exclusion of \(\text{Ca}^{2+} \) mini-waves and fuzzy signals due to \(\text{Ca}^{2+} \) diffusion. Figure 4A–C shows a confocal frame-scan image of an atrial myocyte exhibiting a \(\text{Ca}^{2+} \) spark and a \(\text{Ca}^{2+} \) puff. In this example,
Figure 3 ET-1 induced SR-Ca\(^{2+}\) release in atrial myocytes. Spatio-temporal characterization of local Ca\(^{2+}\) events by using conventional two-dimensional Ca\(^{2+}\) spark analysis fails to identify two distinct classes of events such as Ca\(^{2+}\) sparks and Ca\(^{2+}\) puffs. (A) ET-1 (100 nmol/L; \(n_c = 15, N = 4\)): Ca\(^{2+}\) spark frequency (1.34 Ca\(^{2+}\) sparks \(1000 \mu m^2 \cdot s^{-1}\), \(P = 0.104\)), \(\Delta F_0 / F_0\) (\(P = 0.828\)), FWHM, \(\mu m\) (\(P = 0.600\)), FWHM, \(\mu m\) (\(P = 0.561\)); (B) ET-1 + xestospongin C (5 \(\mu\)mol/L; \(n_c = 15, N = 2\)): Ca\(^{2+}\) event frequency (\(P < 0.001\)), \(\Delta F_0 / F_0\) (\(P = 0.001\)), FWHM, \(\mu m\) (\(P < 0.001\)) and FWHM, \(\mu m\) (\(P < 0.001\)); (C) ET-1 (\(n_c = 8, N = 2\)): Ca\(^{2+}\) spark frequency (\(P = 0.039\)), \(\Delta F_0 / F_0\) (\(P = 0.092\)), FWHM, \(\mu m\) (\(P = 0.561\)), and FWHM, \(\mu m\) (\(P = 0.720\)); (E) ET-1 + tetracaine (1 \(\mu mol/L\); \(n_c = 33, N = 5\)): Ca\(^{2+}\) event frequency (\(P < 0.001\)), \(\Delta F_0 / F_0\) (\(P = 0.001\)), FWHM, \(\mu m\) (\(P < 0.001\)) and FWHM, \(\mu m\) (\(P < 0.001\)); (D) ET-1 (\(n_c = 8, N = 2\)): Ca\(^{2+}\) spark frequency (\(P = 0.039\)), \(\Delta F_0 / F_0\) (\(P = 0.251\)), FWHM, \(\mu m\) (\(P = 0.358\)), and FWHM, \(\mu m\) (\(P = 0.055\)); (E) ET-1 + xestospongin C (\(n_c = 10, N = 2\)): Ca\(^{2+}\) spark frequency (\(P = 0.266\)), \(\Delta F_0 / F_0\) (\(P = 0.618\)), FWHM, \(\mu m\) (\(P = 0.220\)), and FWHM, \(\mu m\) (\(P = 0.292\)). ET-1 + tetracaine (\(n_c = 13, N = 2\)) is followed by an almost complete elimination of detected Ca\(^{2+}\) release events (\(P = 0.016\)). Data are presented as Tukey boxplots with median values. For normally distributed data a two-tailed, paired Student’s t-test was applied. Non-normally distributed samples were evaluated with the Wilcoxon matched-pairs signed rank test. Analysis of variance was used for samples with unequal numbers of data records.
the time course of averaged F/F₀ fluorescence intensity is taken from pseudo-linears (linescan-type x-t plot from a x-y-t timecourse) analysis. The ROIs shown include a Ca²⁺ spark and a Ca²⁺ puff. The maximal signal of each pixel in the ROI illustrated in Figure 4C allows the clustering of events (Figure 4D). Even though, pixels exhibit some overlap in the cluster of F/F₀ fluorescence and/or other parameters (e.g. FDHM), Ca²⁺ sparks and Ca²⁺ puffs can be distinguished. The threshold used for Ca²⁺ puff classification is illustrated in Figure 4E. Figure 4F and G shows a typical Ca²⁺ spark and Ca²⁺ puff- separation and -classification based on the spatio-temporal parameters. Numerical data of the same example are given in the supplements (see Supplementary material online, Table S1). Spatio-temporal parameters were found to be statistically significant with the exception of FWHMₓ and FWHMᵧ.

Figure 5 shows representative spatio-temporal parameters obtained for Ca²⁺ puffs (nₑ = 95; Figure 4F and G) from atrial myocytes isolated from FVB and TG mice. No significant differences in the Ca²⁺ event characteristics were observed. In addition, no differences were found in classified Ca²⁺ puffs from CS7BL6 atrial myocytes. Figure 5 shows, as well, that the spatio-temporal profile of Ca²⁺ puffs is independent from their trigger (e.g. ET-1, InsP₃ AM). Of importance, the spatio-temporal profile of the classified Ca²⁺ puffs is not significantly affected by tetracaine RyR inhibition. This supports the robustness of our approach.

In conclusion, the pixel-wise fitting algorithm approach in combination with a Ca²⁺ puff thresholding and appropriate selective pharmacology allows a successful separation and classification of local Ca²⁺ release events.

IP3ICR is sensitive to CICR

The open probability of the InsP₃R2 is known to be modulated by cytosolic and luminal [Ca²⁺]. Because of the spatial proximity of RyR2 and InsP₃R2 in atrial myocytes, we hypothesized that CICR may also directly affect the open probability of the InsP₃R2. For this reason, we transiently increased the Ca²⁺ spark frequency by ultraviolet (UV)-flash photolysis of caged Ca²⁺ (50 μmol/L DM-nitrophen AM) in the presence of high-intracellular InsP₃ (50 μmol/L InsP₃ AM).

Cells were conditioned by field stimulation. The frequency and local sequence of Ca²⁺ puffs as well as spontaneous Ca²⁺ sparks were examined (Figure 7A–G). In control conditions (high [InsP₃]), a Ca²⁺ puff/ Ca²⁺ spark frequency ratio (fₚ/fₛ) of 0.022 was determined ([fₚ/fₛ] = 0.2 Ca²⁺ puffs 10⁻³ μm⁻² s⁻¹; 9.2 Ca²⁺ sparks 10⁻³ μm⁻² s⁻¹; nₑ = 8). Before UV-flash photolysis of caged Ca²⁺ fₚ/fₛ ratio was 0.017 (0.1 Ca²⁺ puffs 10⁻³ μm⁻² s⁻¹; 5.8 Ca²⁺ sparks 10⁻³ μm⁻² s⁻¹; nₑ = 56). The reduced Ca²⁺ spark frequency prior to photolytic Ca²⁺ release may be explained by a Ca²⁺ buffering action of DM-nitrophen. After a moderate but rapid photolytic [Ca²⁺] jump, the frequency of spontaneous Ca²⁺ sparks increased to 186%. This manoeuvre also increased the fₚ/fₛ ratio about two-fold ([fₚ/fₛ] = 0.037; 0.4 Ca²⁺ puffs 10⁻³ μm⁻² s⁻¹; 10.8 Ca²⁺ sparks 10⁻³ μm⁻² s⁻¹; nₑ = 56). Figure 7D) suggests that the Ca²⁺ puff frequency was affected by local CICR. Sequence analysis at a local scale revealed that IP3ICR events occurred subsequently to Ca²⁺ spark initiation with a delay of 49 ms (12 SD; Figure 7E) and with a probability of 9% (5/56). The probability of misclassification of the sequence (e.g. Ca²⁺ puffs arising randomly at the time of photolytic intracellular Ca²⁺ release) was found to be lower than 2% within a time window of 500 ms following [Ca²⁺] increase. The CICR to IP3ICR event sequence was not observed in the presence of 5 μmol/L xestospongin C (nₑ = 9) and/or in combination with the RyR2 blocker tetracaine (1 mmol/L; nₑ = 6).

Ca²⁺ release events occurring after rapid [Ca²⁺] increase are spatio-temporally identical to IP3ICR events under control conditions (see Figure 7F, see Supplementary material online, Table S2). Although, τᵣₑₛₑ, FDHM, τₑₛₑ, ΔF/F₀ and FWVHMₓ,ᵧ were in the same order of magnitude, the mean FDHM (241 ms, 116 SD) was found to be shorter than the internal reference for FDHM (403 ms, 196 SD) for Ca²⁺ puffs. FDHM was longer than the typical range of Ca²⁺ sparks which averaged 61 ms (25 SD). With 0.3 (0.2 SD) ΔF/F₀, the amplitude was in the lower range compared to previous data obtained, i.e. 0.4 (0.2 SD).}

Discussion

The current observations unmask the existence of previously unrecognized functional bi-directional crosstalk of InsP₃R2 and RyR2 in atrial cardiomyocytes. Although this interaction has been suggested, the mechanisms have not yet been directly examined at a local subcellular scale.²,²¹,²²

Identification of CICR and IP3ICR events in atrial myocytes

Recent studies have focused on the IP3ICR mechanism and its regulatory functions on CICR and excitation–transcription coupling (ETC) in cardiomyocytes.¹⁵,²³ In atrial myocytes, the central mechanism for ECC is the CICR. However, the significance of IP3ICR in initiation, propagation, and amplification of local and global SR-Ca²⁺ release in atrial myocytes remains open.³ A direct impact of IP3ICR on ECC and ETC has been suggested. This idea was based on indirect functional studies including global
Figure 4 Identification of Ca$^{2+}$ puffs and Ca$^{2+}$ sparks. InsP$_3$R$_2$s in intact atrial myocytes were stimulated by ET-1 (100 nmol/L), PE (10 µmol/L), or directly with 50 µmol/L InsP$_3$ AM. RyRs were inhibited with tetracaine (1 mmol/L) in some measurements (for specification according pharmacological intervention/animal type (see Figure 5 and see Supplementary material online, Table S2). (A) Spontaneous Ca$^{2+}$ spark (single arrow) and Ca$^{2+}$ puff (double arrow), (B) Time course of F/F$_0$ fluorescence of a Ca$^{2+}$ spark (blue) and a Ca$^{2+}$ puff (red) based on pseudo-linescans extracted from the image sequence. (C) Ca$^{2+}$ puff and Ca$^{2+}$ spark in the x-y-ROI can be identified (same events as shown in B). (D) Maximum fluorescence amplitude and FDHM for each pixel within the ROI are shown. The blue cloud refers to the Ca$^{2+}$ spark, the red one to the Ca$^{2+}$ puff. The overlap within the Ca$^{2+}$ spark cloud is due to peripheral pixels of the Ca$^{2+}$ puff showing similar values for amplitude and FDHM. (E) Boundary conditions for Ca$^{2+}$ puff classification ($n_e = 95$). (F) Ca$^{2+}$ puff ($P; n_e = 95, n_c = 74, N = 34$) and Ca$^{2+}$ spark ($S, n_e = 95, n_c = 88, N = 30$) characteristics. Equal numbers of randomly selected Ca$^{2+}$ sparks were used for comparison. Differences between Ca$^{2+}$ puffs and Ca$^{2+}$ sparks were statistically significant for amplitude ($P < 0.001$), T_{rise} ($P < 0.001$), FDHM ($P < 0.001$), T_{decay} ($P < 0.001$), and FWHM ($P < 0.001$). FWHM$_x$ ($P = 0.679$) was not significant. (G) Distribution of Ca$^{2+}$ puffs (red dots) and Ca$^{2+}$ sparks (blue dots). Data are given as Tukey boxplots with median values, groups were compared by unpaired Student’s t-test or a Mann–Whitney U test (non-normal distribution).
and local SR-Ca^{2+} release, InsP_{3}R expression, and immunohistochemistry.2,21,22 TG mouse models have been rarely used because in mouse cardiomyocytes the direct detection of IP3ICR events was considered to be limited.8,24 We hypothesized that conventional Ca^{2+} spark analysis tools are not sensitive enough to allow the identification of Ca^{2+} puffs in cardiomyocytes with a sufficient precision, a statement based on one-dimensional confocal linescan analysis. The reason is that the probability of IP3ICR events is generally low in cardiac preparations.25 In addition, Ca^{2+} puffs may not differ significantly in terms of their spatio-temporal profiles from other elementary Ca^{2+} release events. Importantly, pharmacological separation between Ca^{2+} puffs and Ca^{2+} sparks has some limitations due to incomplete specificity.25 In our approach, full frame raw data were partitioned into specific ROIs and SOIs (sequences of interest, e.g. for the full duration of Ca^{2+} release events). ROI framescan series were subsequently processed by cluster analysis of Ca^{2+} events: density-based spatial clustering of applications with noise.18 This multi-parametric approach enabled us to extract parameters such as amplitude, FDHM, FWHM, rise time, decay time, and to separate and classify Ca^{2+} puffs and Ca^{2+} sparks (Figure 4D). This approach is comparable to a multi-dimensional vector rotating in a data cloud, where the vector length and orientation depend on the value of each individual data point within the data cloud. It should be pointed out that even individual spatio-temporal parameters of pixels within the ROI may not be significantly different, but by combining different pixel parameters, the procedure may successfully find an optimum for event separation. In other words, by using a combination of all spatio-temporal event parameters, a differentiation and classification of events can be made. Even though parameters (e.g., FWHM,) from both event types strongly overlapped when taken as individual parameter, in combination with others (e.g., ΔF/Δt0, τ_{rise}, τ_{decay}, FDHM) they were sufficient for event discrimination. For ΔF/Δt0 thresholds, 75% of Ca^{2+} puffs were found to be equal or below 0.5 (ΔF/Δt0) and about 25% of Ca^{2+} sparks were also found in this range. τ_{rise} and τ_{decay} were similar between Ca^{2+} puffs and sparks with values in the range of 70–110 ms. In case of Ca^{2+} puff separation, a discrimination threshold of 180 ms for FDHM was validated. Compared to Ca^{2+} sparks elicited by RyR2s, Ca^{2+} puffs have slower kinetics and show smaller amplitudes.25 The obtained spatio-temporal profiles of Ca^{2+} sparks and Ca^{2+} puffs were comparable with previously published studies with different animal preparations (see Supplementary material online, Table S1).2,25 The robustness of the applied approach was underscored by the key observation that the extraction of parameters (e.g. amplitude, FDHM, FWHM, rise-, decay -times etc.) from local events classified as ‘Ca^{2+} puffs’ were (i) independent from the source of preparation (FVB, TG’s, C57BL6), (ii) not affected by the nature of the trigger inducing IP3ICR, and (iii) not affected by the RyR inhibitor tetracaine. Hence, the present study substantiates simultaneously occurring Ca^{2+} sparks and Ca^{2+} puffs in atrial cardiomyocytes.

Functional crosstalk between InsP_{3}R2 and RyR2

Functional modulation of RyR2s open probability and Ca^{2+} sensitivity by co-localized IP3ICR was originally conceptualized for smooth muscle cells. An increase in [Ca^{2+}], through activity of InsP_{3}Rs has been suggested to recruit neighbouring RyRs domains through increased [Ca^{2+}], in the vicinity of RyRs. Such an effect triggers CICR as well as saltatory propagation of Ca^{2+} waves in the myocytes of the portal vein.25 This concept is also in accordance with previous reports in adult cat...
Crosstalk of calcium sparks and calcium puffs

So far, elucidating cardiac InsP3Rs/RyRs crosstalk mechanisms was largely limited to observations on the level of global Ca2+ events (e.g. of Ca2+ waves or Ca2+ transients) or by an indirect proof of interaction quantifying the modulation of Ca2+ event frequencies.30 The observation of individual Ca2+ sparks triggered by individual IP3ICR events in cardiomyocytes has not been reported before, although previous studies have mentioned a contribution of IP3ICR to local Ca2+ signalling.31 The immunofluorescent determination of RyR2 and InsP3R2 co-localization in our TG model supports the observed functional crosstalk of the two SR-Ca2+ release channels. Recently, we reported that ‘eventless’ IP3ICR, which do not go along with Ca2+ puffs, could also favor CICR.3 In the present study, we confirm this hypothesis with a direct identification of Ca2+ sparks causing Ca2+ puffs.

We suggest that InsP3Rs open probability, which at least could lead to different Ca2+ fluxes and local events, may be responsible for microdomain [Ca2+], increase that either sensitizes RyRs for CICR or leads to direct RyR activation. Functional InsP3R/RyR crosstalk can in principle operate in both directions. Hence, microdomain [Ca2+], elevations could sensitize InsP3Rs for InsP3, which would favour InsP3R openings.20 The effect has been shown in other cell types, whereby CICR was the coordinative mechanism of the concerted opening of clustered InsP3Rs.30 We increased the Ca2+ spark frequency with rapid and homogeneous photolytic [Ca2+] jumps. Ca2+ sparks occurring subsequently to this intervention provoked Ca2+ puffs in a coordinated fashion. It was suggested that InsP3R2 open probability may be controlled with both InsP3 and Ca2+. Therefore, InsP3R2s with InsP3 bound can be fully activated with additional Ca2+ binding.9

Physiological and pathophysiological implications

In atrial tissue collected from patients with atrial fibrillation, it has been reported that chronic pressure overload of the atrial wall is associated with increased InsP3R expression. Such an increase may be a likely contributor for the initiation or perpetuation of atrial fibrillation.31 In functional studies performed in atrial cells from rabbit HF model, increased Ca2+ transients related to enhanced IP3ICR expression have been identified.32 The TG model used in our study shows a mild up-regulation of InsP3R2 expression with similarities in terms of cellular remodelling reported for human dilated cardiomyopathy with arrhythmogenic substrate.3,13,14,31,33,34 The need for synergistic binding of InsP3 and Ca2+ on the InsP3R for subsequent activation was supported by our Ca2+ uncaging experiments, where increased [Ca2+] was associated with an upregulated IP3ICR/CICR event ratio.35 With increased intracellular InsP3 concentrations, InsP3Rs might become activated at normal diastolic Ca2+ levels and therefore may promote arrhythmia Ca2+ transients in cardiac diseases with increased InsP3R expression.9 In addition, functional InsP3R up-regulation may have positive inotropic consequences.35 Although the number of directly observed InsP3R/RyR crosstalk events was rather low in our hands, a significant impact on CICR/ECC is possible. The present study supports a modulatory role of InsP3R/RyR crosstalk mechanisms for ECC and suggests IP3ICR as a potential target for treating Ca2+-dependent cardiac disorders.
Supplementary material is available at Cardiovascular Research online.

Acknowledgements
The authors thank Ernst Niggli, Radoslav Janicek, Miguel Fernandez-Tenorio, and Ange Maguy for their helpful comments on the manuscript, Marianne Courtehoux for her expertise in immunocytochemistry and Ardo Illaste for software development.

Funding
This work was supported by the Swiss National Science Foundation (31003A-149301) and Novartis Res. Foundation to M.E. Funding to pay the Open Access publication charges for this article was provided by SNF.

Conflict of interest: none declared.

REFERENCES
3. Mackenzie L, Roderick HL, Proven A, Conway SJ, Bootman MD. Insoluble 1,4,5-tri-
MD, Roderick HL. Increased InsP3Rs in the junctional sarcoplasmic reticulum aug-
ment Ca2+ transients and arrhythmias associated with cardiac hypertrophy. PNAS
5. Niggl E, Shirokova N. A guide to sparkology: the taxonomy of elementary cellular
6. Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying
7. Parker I, Yao Y. Regenerative release of calcium from functionally discrete subcellular
8. Horn T, Ulrich ND, Egger M. ‘Eventless’ InsP3-dependent SR-Ca2+ release affecting
roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol
11. Li X, Zima AV, Sheikh F, Blatter LA. Chen J. Endothelin-1-induced arrhythmogenic
Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate (IP3)-re-
12. Nakayama H, Bodi I, Maillet M, DeSantiago J, Domeier T, Mikoshiba K, Lorenz J,
Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clus-
ters in high-dimensional data. In Proceedings of the Twelfth International Con-
ference on Knowledge Discovery and Data Mining (KDD ’06); E. Simoudis, J. Han,
14. Escobar AL, Perez CG, Reyes ME, Lucero SG, Komyaryev D, Mejia-Alvarez R,
Ramos-Franco J. Role of insoluble 1,4,5-trisphosphate in the regulation of ventricular
Mante F, D’Alessandro DA, Wunimenghe G, Michler RE, Hosoda T, Gochberg F,
Leri A, Kajstura J, Anversa P, Rota M. Insoluble 1,4,5-trisphosphate receptors and
16. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olsen EN, Chen J,
Brown JH, Bers DM. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac
Woodcock EA. No contribution of IP3R2 to disease phenotype in models of dilated car-
18. Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Bramlage JF, Peppiatt CM. 2-
aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+
entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J
20. Gordenko D, Bolton T. Crosstalk betweenryanodine receptors and IP3 receptors
as a factor shaping spontaneous Ca2+-release events in rabbit portal vein myocytes.
mediated Ca2+ release modulates excitation-contraction coupling in rabbit ven-
22. Ramay HR, Liu OZ, Sobie EA. Recovery of cardiac calcium release is controlled by
sarcoplasmic reticulum refilling and ryanodine receptor sensitivity. Cardiovasc Res
2011;91:598–605.
23. Yamasaki PL, Demuro A, Parker I. Cytosolic [Ca2+]i regulation of InsP3-evoked
24. Yamasaki PL, Okusawa T, Nao T, Ueyama T, Yano M, Kobayahsi S, Hamano K, Etoh K,
Matsuura M. Up-regulation of inositol 1,4,5-trisphosphate receptor expression in atrial
25. Hohendanner F, McCulloch AD, Bootman LA, Mchialova AP. Calcium and IP3 dy-
namics in cardiac myocytes: experimental and computational perspectives and
approaches. Front Pharmacol 2014;5:35.
sphosphate and ryanodine-dependent Ca2+ signaling in a chronic dog model of atrial
inositol-1,4,5-trisphosphate receptors in atrial myocytes of atrial fibrillation patients.
in atrial EC-coupling during prolonged stimulation with endothelin-1. Cell Calcium