Functional local crosstalk of inositol 1,4,5-trisphosphate receptor- and ryanodine receptor-dependent Ca\(^{2+}\) release in atrial cardiomyocytes

Marcel Wullschleger, Joaquim Blanch, and Marcel Egger*

Department of Physiology, University of Bern, Buehlpaltz 5, CH 3012 Bern, Switzerland

Received 1 June 2016; revised 11 November 2016; editorial decision 18 January 2017; accepted 31 January 2017

Time for primary review: 50 days

Aims

Enhanced inositol 1,4,5-trisphosphate receptor (InsP\(_3\)R2) expression has been associated with a variety of proarrhythmogenic cardiac disorders. The functional interaction between the two major Ca\(^{2+}\) release mechanisms in cardiomyocytes, Ca\(^{2+}\) release mediated by ryanodine receptors (RyR2s) and InsP\(_3\)-induced intracellular Ca\(^{2+}\) release (IP3ICR) remains enigmatic. We aimed at identifying characterizing local IP3ICR events, and elucidating functional local crosstalk mechanisms between cardiac InsP\(_3\)R2s and RyR2s under conditions of enhanced cardiac specific InsP\(_3\)R2 activity.

Methods and results

Using confocal imaging and two-dimensional spark analysis, we demonstrate in atrial myocytes (mouse model cardiac specific overexpressing InsP\(_3\)R2s) that local Ca\(^{2+}\) release through InsP\(_3\)Rs (Ca\(^{2+}\) puffs) directly activates RyRs and triggers elementary Ca\(^{2+}\) release events (Ca\(^{2+}\) sparks). In the presence of increased intracellular InsP\(_3\) concentrations IP3ICR can modulate RyRs openings and Ca\(^{2+}\) spark probability. We show as well that IP3ICR remains under local control of Ca\(^{2+}\) release through RyRs.

Conclusions

Our results support the concept of bidirectional interaction between RyRs and InsP\(_3\)Rs (i.e. Ca\(^{2+}\) sparks and Ca\(^{2+}\) puffs) in atrial myocytes. We conclude that highly efficient InsP\(_3\) dependent SR-Ca\(^{2+}\) flux constitute the main mechanism of functional crosstalk between InsP\(_3\)Rs and RyRs resulting in more Ca\(^{2+}\) sensitized RyRs to trigger subsequent Ca\(^{2+}\) release activation. In this way, bidirectional local interaction of both SR-Ca\(^{2+}\) release channels may contribute to the shaping of global Ca\(^{2+}\) transients and thereby to contractility in cardiac myocytes.

Keywords

InsP\(_3\)R • RyR • Ca\(^{2+}\) sparks • Ca\(^{2+}\) puffs • CICR • Atrial myocytes • Local modulation of calcium sparks and calcium puffs

Introduction

Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR) is known as the main mechanism involved in the excitation–contraction coupling (ECC) of cardiomyocytes.\(^1\) However a second mechanism involving InsP\(_3\)-induced intracellular Ca\(^{2+}\) release (IP3ICR) has been described.\(^2-5\) It can be activated through the binding of cardioactive hormones to G protein–coupled receptors (GPCRs), amongst others endothelin-1 (ET-1) and angiotensin II (AngII). The contribution of IP3ICR to the CICR and therefore to the ECC in both normal and pathophysiological conditions remains poorly understood.

In atrial cardiomyocytes, the ryanodine receptors (RyRs) constitute the major mediator of SR-Ca\(^{2+}\) release. They are functionally coupled and organized in channel clusters.\(^6\) The opening of these clustered RyRs, triggered by the Ca\(^{2+}\) influx through the voltage-operated L-Type Ca\(^{2+}\) channels, elicit local Ca\(^{2+}\) release events known as ‘Ca\(^{2+}\) sparks’, the basis for global Ca\(^{2+}\) transients.\(^6\) The coordinated openings of clustered InsP\(_3\)Rs will result, as well, in local SR-Ca\(^{2+}\) release called ‘Ca\(^{2+}\) puffs’ exhibiting distinct spatio-temporal properties.\(^7\) In addition to microscopically detectable Ca\(^{2+}\) puffs, eventless SR-Ca\(^{2+}\) release by individual InsP\(_3\)R openings has been described.\(^8\)

Although the functional expression of InsP\(_3\)Rs in cardiac tissue is limited, in comparison to RyRs, evidence suggests that the IP3ICR may contribute to the ECC in atrial cardiomyocytes.\(^9,10\) This hypothesis is for instance, supported by the following observations: (i) under pathophysiological conditions the InsP\(_3\)R expression is upregulated which...
favours delayed afterdepolarizations and Ca2+-dependent arrhythmogenicity2,4; (ii) down-regulation of InsP\textsubscript{3}Rs in cardiac tissue was found to be protective against pro-arrhythmogenic stress13; and (iii) small and invisible SR-Ca2+ release events originating from InsP\textsubscript{3}Rs openings were found to have a modulatory function on Ca2+ signalling in subcellular microdomains and may be involved in the functional crosstalk between RyRs and InsP\textsubscript{3}Rs.2,4

The present study focuses on local functional crosstalk between IP\textsubscript{3}ICR and RyRs and aims at better understanding its impact on local Ca2+ release within atrial cardiomyocytes. Since a potential crosstalk between InsP\textsubscript{3}Rs and RyRs can only be investigated with high accuracy at a local scale with a substantial InsP\textsubscript{3}R activity, we opted to use an InsP\textsubscript{3}Rs transgenic mouse model12 in which increased open probability (e.g. Ca2+ puffs) is a consequence of enhanced InsP\textsubscript{3}R expression. The transgenic (TG) model mimics a pathophysiological condition associated with both receptor alteration and increased InsP\textsubscript{3}R protein expression.13-15 We examined local IP\textsubscript{3}ICR activity using a custom designed two-dimensional spark analysis algorithm and found that local IP\textsubscript{3}ICR events (Ca2+ puffs) in close proximity to RyRs lead to the activation of RyRs followed by CICR events (Ca2+ sparks). In addition, we found that the opposite direction of crosstalk seems to be possible: IP\textsubscript{3}ICR can be modulated by local Ca2+ release produced by RyRs. These results support the concept that IP\textsubscript{3}ICR, in a pathophysiological condition with increased InsP\textsubscript{3}Rs functional expression, may interfere with RyRs openings and Ca2+ spark probability in cardiac myocytes.

Methods

Cell preparation and chemicals

The InsP\textsubscript{3}R type II overexpressing mouse model12 (TG) and WT (FVB/N background) mice were obtained from Charles River Laboratories (Germany). C57BL6 mice were provided by our Central Animal Facility, University of Bern (Switzerland) for control purposes. Hearts were removed after animals were euthanized by cervical dislocation. Acute atrial myocytes isolation was performed using the Langendorff perfusion technique. All experiments were performed at room temperature and approved by the State Veterinary Office of Bern, Switzerland, according to Swiss Federal Animal Protection Law (see Supplementary material online, Figure S1).

Pharmacological experiments included 2-aminoethoxydiphenyl borate (2-APB; Sigma-Aldrich), tetrodaine (Sigma-Aldrich), xestospongin C (A.G. Richter, Munich, Germany), U-73122 and U-73343 (Tocris Bioscience), 2-aminoethyl diphenyl borate (2-APB; Sigma-Aldrich), tetrodaine (Sigma-Aldrich), and Fluo-3 AM (Biotium). InsP\textsubscript{3}R blockers were xestospongin C (5 μmol/L), and xestospongin C (1 μmol/L).

Confocal Ca2+ imaging and data analysis

Rapid two-dimensional confocal full-frame Ca2+ imaging (150 Hz; 0.267 μm × 0.267 μm pixel-1, 512 × 64 pixel per frame scan) was performed on Fluo-3 AM loaded atrial myocytes using a diode laser (488 nm, 50 mW) and a two-beam confocal scanner (VT-infinity, VisiTech international) mounted on an inverted microscope (Nikon). Raw data were initially analysed for frequency, mean fluorescence amplitude (ΔF/Δt) and mean full width at half maximal amplitude in x- and y-direction (FWHM\textsubscript{x,y}) using a two-dimensional Ca2+ spark analysis software.16 A detailed event analysis was built using a python algorithm following a two-step pixel clustering procedure (density-based spatial clustering of applications with noise).17 Ca2+ puff identification was performed by pharmacological separation and framescan (x-y-t) data. Local, immobile Ca2+ release events with a full duration at half maximal amplitude (FDHM) ≤ 180 ms and (ΔF/Δt)10 /FDHM [ms] ≤ 3 were classified as Ca2+ puffs (the second condition was introduced in order to exclude ‘macro-sparks’; see Supplementary material online for details). Data are presented as Tukey box-plots or mean ± standard deviation (SD) values. Statistical comparison was performed as indicated within the figure legends as well as online supplementary materials. The number of animals (N), cells (n), and Ca2+ release events (n\textsubscript{r}) are given in each of the figure legend.

Immunocytochemistry

For immunostaining cells were incubated overnight at +4 °C with a mix of primary antibodies against InsP\textsubscript{3}R2 (1:1000, Abcam ab77838) and RyR2 (1:200, Abcam ab28277) followed by incubation with a mix of secondary anti-mouse and anti-rabbit antibodies conjugated to Alexa Fluor 488 and 568, respectively (1:600, Molecular Probes). For Western Blot anti-InsP\textsubscript{3}R2 antibody (1:5000, KM1083, gift from Dr. K. Mikoshiba) or anti-GAPDH antibody (1:100 000, Fitzgerald 10R-G109A) was used. RT-qPCR was performed with primers specific for itpr2 and β-actin with the Eco Real-Time PCR system (illumina) and using KAPA SYBR FAST One-Step kit (Kapa Biosystems).

A more detailed version of the method section is provided in the supplementary section.

Results

ET-1 induced InsP\textsubscript{3}R Ca2+ release in atrial myocytes

Figure 1 shows that rapid superfusion of atrial myocytes isolated from WT (FVB) mice with 100 nmol/L ET-1 caused an increase in spontaneous local Ca2+ release events of approximately 85% in comparison with control condition. This increase in local Ca2+ release events was completely antagonized by the InsP\textsubscript{3}R blocker xestospongin C (5 μmol/L). RyR2 inhibition (1 mmol/L tetracaine) in combination with ET-1 stimulation reduced the Ca2+ release frequency by 21% compared to control. This remaining Ca2+ event activity could be linked to IP\textsubscript{3}ICR activity. In atrial myocytes isolated from TGs overexpressing the InsP\textsubscript{3}R type II, stimulation with ET-1 triggered a more pronounced increase in local Ca2+ release of about 313% compared to control condition. This increase was antagonized by xestospongin C to values about 54% of control value. Tetracaine reduced as well the spontaneous local Ca2+ release events but down to 12% of control value.

Immunostaining of InsP\textsubscript{3}R2s and RyR2s revealed a co-localization of InsP\textsubscript{3}R2 with RyR2, suggesting a junctional and non-junctional distribution pattern for RyR2 and InsP\textsubscript{3}R2 in atrial myocytes isolated from TG mice with cardiac specific overexpression of InsP\textsubscript{3}R2s (see Supplementary material online, Figure S1). Semi-quantitative assessment for InsP\textsubscript{3}R2 protein expression and RT-qPCR analysis determined a 1.6-fold increase in InsP\textsubscript{3}R2 expression in TG mice compared to atrial tissue extracts from control.

To get further insight in the local contribution of IP\textsubscript{3}ICR and ensure the proper discrimination of CICR- and IP\textsubscript{3}ICR events, interventions aiming at controlling the phospholipase C (PLC) function were used. Atrial myocytes isolated from TGs were field-stimulated to control SR-Ca2+ loading conditions. The frequency of Ca2+ sparks, mini-waves (Ca2+ events propagating partially throughout the entire cell), and waves...
(Ca\(^{2+}\) events propagating throughout the entire cell) was measured upon specific pharmacological intervention (Figure 2B). In comparison to control condition, application of 10 μmol/L of the α\(_{1}\)-adrenergic receptor agonist phenylephrine (PE) increased Ca\(^{2+}\) spark frequency per confocal recording area by 152% from 3.4 (4.0 SD) to 5.1 (3.6 SD) 10\(^{3}\) μm\(^{-2}\) s\(^{-1}\) (n = 8; Figure 2C). In the presence of 1 μmol/L U-73122 (PLC inhibitor), the observed PE increased Ca\(^{2+}\) spark frequency was absent. The inactive PLC inhibitor analogue U-73343 (1 μmol/L) failed to alter the PE effect with an increased Ca\(^{2+}\) spark frequency by 283% upon PE administration from 1.8 (1.9 SD) to 5.1 (4.0 SD) 10\(^{3}\) μm\(^{-2}\) s\(^{-1}\). The frequency of Ca\(^{2+}\) mini-waves increased from 1.5 (2.3 SD) to 2.4 (4.8 SD) events 10\(^{3}\) μm\(^{-2}\) s\(^{-1}\), whereas the Ca\(^{2+}\) wave occurrence decreased from 0.3 (0.3 SD) to 0.0 (0.0 SD) events cell\(^{-1}\) s\(^{-1}\). Concomitant inhibition of PLC (1 μmol/L U-73122) and in combination with RyR2 inhibition (1 mmol/L tetracaine) led to the absence of any event while in the presence of both 1 μmol/L U-73343 and 1 mmol/L tetracaine, Ca\(^{2+}\) sparks and Ca\(^{2+}\) mini-waves were reduced to a frequency with very rare events (Figure 2D).

Taken together, these observations support that in atrial myocytes ET-1 receptor stimulation subsequently triggered Ca\(^{2+}\) release events which may be caused, at least in part, by IP3ICR. In addition, intracellular provision of InsP\(_{3}\) in terms of PLC activation (e.g. induced by a humoral agonist) appears to be a precondition for IP3ICR. An increased number of InsP\(_{3}\) dependent Ca\(^{2+}\) events in cells from TGs may facilitate the probability of potential crosstalk events between InsP\(_{3}\)Rs and RyRs. These interactions can accurately be examined on a local scale exclusively with an appropriate basal InsP\(_{3}\)Rs activity.

As illustrated in Figure 3, we analysed the amplitude (ΔF/Δt), FWHM\(_{x,y}\), and FWHM\(_{x}\) of individual Ca\(^{2+}\) events by using conventional two-dimensional Ca\(^{2+}\) spark analysis tools. The spatio-temporal characterization of ET-1 triggered Ca\(^{2+}\) events in atrial myocytes isolated from FVB and TG mice did not reveal distinct classes of events (i.e. Ca\(^{2+}\) sparks and Ca\(^{2+}\) puffs), even though we would have expected for one group increased FWHM\(_{x,y}\) and smaller ΔF/Δt due to “Ca\(^{2+}\) puffs”. Nevertheless, in the presence of RyR inhibition by tetracaine the remaining Ca\(^{2+}\) release events showed a smaller amplitude, suggesting a small proportion of possibly InsP\(_{3}\) induced Ca\(^{2+}\) release events in atrial myocytes. Local Ca\(^{2+}\) release events were also assessed in permeabilized atrial myocytes using classical confocal linescan mode (see Supplementary material online, Figure S2). Compared to control condition, superfusion with the RyR antagonist tetracaine (1 mmol/L) abolished detectable Ca\(^{2+}\) release events, whereas subsequent selective stimulation of InsP\(_{3}\)Rs (20 μmol/L InsP\(_{3}\)-salt, 1 mmol/L tetracaine) partially recovered Ca\(^{2+}\) release event activity. This persistent Ca\(^{2+}\) event activity was sensitive to the InsP\(_{3}\)R antagonist 2-APB (2 μmol/L) with previously triggered Ca\(^{2+}\) release events being suppressed. Spatio-temporal characterization of these events showed overlap with control, but a fraction of events was found to be lower in amplitude and longer in FWHM, supporting that IP3ICR contributes at least in part to the total number of Ca\(^{2+}\) events (see supplementary material online).

Taken together and based on the pharmacological interventions, IP3ICR appears to contribute to the constitution of local Ca\(^{2+}\) release events, although their spatio-temporal characterization by using conventional two-dimensional or one-dimensional Ca\(^{2+}\) spark analysis fails to

Figure 1 ET-1 increases Ca\(^{2+}\) release event occurrence. (A) Ca\(^{2+}\) event frequency normalized to spontaneous Ca\(^{2+}\) event frequencies in atrial myocytes obtained from FVB and TGs. Event frequency measured as Ca\(^{2+}\) sparks 10\(^{3}\) μm\(^{-2}\) s\(^{-1}\) in the presence of ET-1: FVB = 1.3 (P = 0.102), n = 15, N = 4; TGS = 9.0 (P = 0.039), n = 8, N = 2; ET-1 + xestospongion C: FVB = 2.6 (P = 0.023), n = 15, N = 2; TGS = 2.5 (P = 0.255), n = 10, N = 2; ET-1 + tetracaine: FVB = 0.2 (P < 0.001), n = 33, N = 5; TGS = 0.05 (P = 0.016) n = 13, N = 2. Histogram shows mean (SD) values. Groups were compared with a paired Student’s t-test (*P < 0.05, **P < 0.010, ***P < 0.001). (B and C) Examples for spontaneous local Ca\(^{2+}\) events. Two framescan series were recorded from each cell (control vs. pharmacological intervention).

Figure 2 ET-1 increases Ca\(^{2+}\) release event occurrence. (A) Ca\(^{2+}\) event frequency normalized to spontaneous Ca\(^{2+}\) event frequencies in atrial myocytes obtained from FVB and TGS. Event frequency measured as Ca\(^{2+}\) sparks 10\(^{3}\) μm\(^{-2}\) s\(^{-1}\) in the presence of ET-1: FVB = 1.3 (P = 0.102), n = 15, N = 4; TGS = 9.0 (P = 0.039), n = 8, N = 2; ET-1 + xestospongion C: FVB = 2.6 (P = 0.023), n = 15, N = 2; TGS = 2.5 (P = 0.255), n = 10, N = 2; ET-1 + tetracaine: FVB = 0.2 (P < 0.001), n = 33, N = 5; TGS = 0.05 (P = 0.016) n = 13, N = 2. Histogram shows mean (SD) values. Groups were compared with a paired Student’s t-test (*P < 0.05, **P < 0.010, ***P < 0.001). (B and C) Examples for spontaneous local Ca\(^{2+}\) events. Two framescan series were recorded from each cell (control vs. pharmacological intervention).
clearly identify the expected two distinct classes of events corresponding to Ca^{2+} sparks and Ca^{2+} puffs.

The discrepancy between pharmacological identification and separation of events (e.g. Ca^{2+} sparks/Ca^{2+} puffs) on an individual pixel scale using their spatio-temporal profile was unexpected and limits future detailed mechanistic studies of functional crosstalk between RyRs and InSP$_3$Rs.

Identification and separation of individual Ca^{2+} puffs and Ca^{2+} sparks

To overcome the limitations mentioned above, we applied a custom-made mathematical tool to analyse local Ca^{2+} release events with an individual pixel basis applied on mapped regions of interest (ROIs) of two-dimensional full-frame confocal image stacks (Figure 4).

Each pixel is characterized by various individual parameters (amplitude, duration, $\tau_{\text{rise}}, \tau_{\text{decay}}$) which together determine the shape of each Ca^{2+} release event. In order to characterize a pixel event, the pixel's location in space and time should be known as well. In other words, a pixel event can be completely defined by two vectors: the shape vector and the position vector. If done, a new 'denoised' event-image can be reconstructed. However, a prior two-step clustering procedure of pixels needs to be performed (density-based spatial clustering of applications with noise).

A first clustering of pixels according to their shape is then followed by a spatio-temporal clustering within that group. The outcome then allows the extraction of desired parameters from the cluster such as amplitude, FDHM, FWHM$_{xy}$, rise and decay times and separation into physiologically relevant Ca^{2+} signalling events (e.g. Ca^{2+} sparks/Ca^{2+} puffs).

As aforementioned, the procedure started with a conventional Ca^{2+} spark analysis where local Ca^{2+} release events were first detected.

Selected single Ca^{2+} release events were further processed for a detailed analysis using our pixel-wise fitting algorithm, whereby the fitted fluorescence intensity fluctuation within each pixel, belonging to the ROI and a selected time window, were clustered according to the combined spatio-temporal characteristics: amplitude, $\tau_{\text{rise}}, \text{FDHM}, \tau_{\text{decay}}, \text{FWHM}_x$ and FWHM$_y$, (level 'Ca$^{2+}$ release event'). Pixel intensities for each ROI were calculated to establish threshold values for Ca^{2+} puffs (FDHM \leq 180 ms and $(\Delta F/F_0)_{\text{FDHM}}$ [ms] \leq 3) and thus provide the basis for analysis of the two-dimensional full-frame image stacks.

One advantage of this procedure is, that even though the spatio-temporal characteristics of pixels (individual parameters) within the ROI are not statistically different, the combination of all the obtained parameters will ensure the success in providing an optimal event separation. The core of local Ca^{2+} release events can thus be precisely determined, facilitating the exclusion of Ca^{2+} mini-waves and fuzzy signals due to Ca^{2+} diffusion. Figure 4A–C shows a confocal frame-scan image of an atrial myocyte exhibiting a Ca^{2+} spark and a Ca^{2+} puff. In this example,
Figure 3 ET-1 induced SR-Ca$^{2+}$ release in atrial myocytes. Spatio-temporal characterization of local Ca$^{2+}$ events by using conventional two-dimensional Ca$^{2+}$ spark analysis fails to identify two distinct classes of events such as Ca$^{2+}$ sparks and Ca$^{2+}$ puffs. (A) ET-1 (100 nmol/L; $n_c=15$, $N=4$): Ca$^{2+}$ spark frequency (1.34 Ca$^{2+}$ sparks $1000 \mu m^{-2} s^{-1}$, $P=0.104$), $\Delta F/F_0$ ($P=0.828$), FWHM$_x$ ($P=0.600$), FWHM$_y$ ($P=0.561$); (B) ET-1 + xestospongin C (5 µmol/L; $n_c=15$, $N=2$): Ca$^{2+}$ spark frequency ($P=0.023$), $\Delta F/F_0$ ($P=0.092$), FWHM$_x$ ($P=0.561$), and FWHM$_y$ ($P=0.720$); (C) ET-1 + tetracaine (1 mmol/L; $n_c=33$, $N=5$): Ca$^{2+}$ event frequency ($P<0.001$), $\Delta F/F_0$ ($P<0.001$), FWHM$_x$ ($P<0.001$) and FWHM$_y$ ($P<0.001$); (D) ET-1 ($n_c=8$, $N=2$): Ca$^{2+}$ spark frequency ($P=0.039$), $\Delta F/F_0$ ($P=0.251$), FWHM$_x$ ($P=0.358$), and FWHM$_y$ ($P=0.055$); (E) ET-1 + xestospongin C ($n_c=10$, $N=2$): Ca$^{2+}$ spark frequency ($P=0.266$), $\Delta F/F_0$ ($P=0.618$), FWHM$_x$ ($P=0.220$), and FWHM$_y$ ($P=0.292$); (F) ET-1 + tetracaine ($n_c=13$, $N=2$) is followed by an almost complete elimination of detected Ca$^{2+}$ release events ($P=0.016$). Data are presented as Tukey boxplots with median values. For normally distributed data a two-tailed, paired Student’s t-test was applied. Non-normally distributed samples were evaluated with the Wilcoxon matched-pairs signed rank test. Analysis of variance was used for samples with unequal numbers of data records.
the time course of averaged FF_o fluorescence intensity is taken from pseudo-line scan (linescan-type x-t plot from a x-y time course) analysis. The ROIs show a Ca²⁺ spark and a Ca²⁺ puff. The maximal signal of each pixel in the ROI illustrated in Figure 4C allows the clustering of events (Figure 4D). Even though, pixels exhibit some overlap in the cluster of FF_o fluorescence and/or other parameters (e.g. FDHM). Ca²⁺ sparks and Ca²⁺ puffs can be distinguished. The threshold used for Ca²⁺ puff classification is illustrated in Figure 4E. Figure 4F and G shows a typical Ca²⁺ spark and Ca²⁺ puff - separation and classification based on the spatio-temporal parameters. Numerical data of the same example are given in the supplements (see Supplementary material online, Table S1). Spatio-temporal parameters were found to be statistically significant with the exception of FWHM_o and FWHM_c.

Figure 5 shows representative spatio-temporal parameters obtained for Ca²⁺ puffs (n_s = 95; Figure 4F and G) from atrial myocytes isolated from FVB and TG mice. No significant differences in the Ca²⁺ event characteristics were observed. In addition, no differences were found in classified Ca²⁺ puffs from C57BL6 atrial myocytes. Figure 5 shows, as well, that the spatio-temporal profile of Ca²⁺ puffs are independent from their trigger (e.g. ET-1, InsP3AM). Of importance, the spatio-temporal profile of the classified Ca²⁺ puffs is not significantly affected by tetracaine RyR inhibition. This supports the robustness of our approach.

In conclusion, the pixel-wise fitting algorithm approach in combination with a Ca²⁺ puff thresholding and appropriate selective pharmacology allows a successful separation and classification of local Ca²⁺ release events.

RyR-Ca²⁺ release can be directly provoked by InsP₃R-Ca²⁺ release (Ca²⁺ puff vs. Ca²⁺ spark)

Because of the limited experimental accessibility on a local scale, the functional crosstalk of RyR and InsP₃R in cardiac myocytes was considered elusive. The approach described above enables a detailed functional characterization of local interactions between IP3ICR and CICR.

Although we are expecting a constitutive crosstalk between RyRs and InsP₃Rs (e.g. in FVB mice), the probability of interaction may be rather limited in control condition where the expression of InsP₃Rs is low. For this reason, our functional crosstalk studies were performed on cells isolated from TG mice where the IP3ICR event probability is higher.

IP3ICR is sensitive to CICR

The open probability of the InsP₃R2 is known to be modulated by cytosolic and luminal [Ca²⁺]_i. Because of the spatial proximity of RyR2 and InsP₃R2 in atrial myocytes, we hypothesized that CICR may also directly affect the open probability of the InsP₃R2. For this reason, we transiently increased the Ca²⁺ spark frequency by ultraviolet (UV)-flash photolysis of caged Ca²⁺ (50 μmol/L DM-nitrophen AM) in the presence of high-intracellular InsP₃ (50 μmol/L InsP₃AM).

Cells were conditioned by field stimulation. The frequency and local sequence of Ca²⁺ puffs as well as spontaneous Ca²⁺ sparks were examined (Figure 7A–C). In control conditions (high [InsP₃]), a Ca²⁺ puff/Ca²⁺ spark frequency ratio (f_{SP}/f_{SP}) of 0.022 was determined ([f_{SP}/f_{SP} 0.2 Ca²⁺ puffs 10³ μm⁻²s⁻¹; 9.2 Ca²⁺ sparks 10⁵ μm⁻²s⁻¹; n_c = 8). Before UV-flash photolysis of caged Ca²⁺ f/f_{SP} ratio was 0.017 (0.1 Ca²⁺ puffs 10³ μm⁻²s⁻¹; 5.8 Ca²⁺ sparks 10⁵ μm⁻²s⁻¹; n_c = 56). The reduced Ca²⁺ spark frequency prior to photolytic Ca²⁺ release may be explained by a Ca²⁺ buffering action of DM-nitrophen. After a moderate but rapid photolytic [Ca²⁺]_i jump, the frequency of spontaneous Ca²⁺ sparks increased to 186%. This manoeuvre also increased the f_{SP}/f_{SP} ratio about two-fold ([f_{SP}/f_{SP} 0.037; 0.4 Ca²⁺ puffs 10³ μm⁻²s⁻¹; 10.8 Ca²⁺ sparks 10⁵ μm⁻²s⁻¹; n_c = 56, Figure 7D) suggesting that the Ca²⁺ puff frequency was affected by local CICR. Sequence analysis at a local scale revealed that IP3ICR events occurred subsequently to Ca²⁺ spark initiation with a delay of 49 ms (12 SD; Figure 7E) and with a probability of 9% (S/56). The probability of misclassification of the sequence (e.g. Ca²⁺ puffs arising randomly at the time of photolytic intracellular Ca²⁺ release) was found to be lower than 2% within a time window of 500 ms following [Ca²⁺]_i, increase. The CICR to IP3ICR event sequence was not observed in the presence of 5 μmol/L xestospongin C (n_c = 9) and/or in combination with the RyR2 blocker tetracaine (1 mmol/L; n_c = 6).

Ca²⁺ release events occurring after rapid [Ca²⁺]_i increase are spatio-temporally identical to IP3ICR events under control conditions (see Figure 7F, see Supplementary material online, Table S2). Although, τ_{lime}, FDHM, t_{decay}, ΔF/F₀ and FWHM_o were in the same order of magnitude, the mean FDHM (241 ms, 116 SD) was found to be shorter than the internal reference for FDHM (403 ms, 196 SD) for Ca²⁺ puffs. FDHM was longer than the typical range of Ca²⁺ sparks which averaged 61 ms (25 SD). With 0.3 (0.2 SD) ΔF/F₀ amplitude was in the lower range compared to previous data obtained, i.e. 0.4 (0.2 SD).

Discussion

The current observations unmask the existence of previously unrecognized functional bi-directional crosstalk of InsP₃R2 and RyR2 in atrial cardiomyocytes. Although this interaction has been suggested, the mechanisms have not yet been directly examined at a local subcellular scale.2,21,22

Identification of CICR and IP3ICR events in atrial myocytes

Recent studies have focused on the IP3ICR mechanism and its regulatory functions on CICR and excitation–transcription coupling (ETC) in cardiomyocytes.15,23 In atrial myocytes, the central mechanism for ECC is the CICR. However, the significance of IP3ICR in initiation, propagation, and amplification of local and global SR-Ca²⁺ release in atrial myocytes remains open.3 A direct impact of IP3ICR on ECC and ETC has been suggested. This idea was based on indirect functional studies including global
Figure 4 Identification of Ca\(^{2+}\) puffs and Ca\(^{2+}\) sparks. InsP\(_3\)R\(_2\)s in intact atrial myocytes were stimulated by ET-1 (100 nmol/L), PE (10 μmol/L), or directly with 50 μmol/L InsP\(_3\) AM. RyRs were inhibited with tetracaine (1 mmol/L) in some measurements (for specification according pharmacological intervention/animal type (see Figure 5 and see Supplementary material online, Table S2)). (A) Spontaneous Ca\(^{2+}\) spark (single arrow) and Ca\(^{2+}\) puff (double arrow). (B) Time course of F/F\(_0\) fluorescence of a Ca\(^{2+}\) spark (blue) and a Ca\(^{2+}\) puff (red) based on pseudo-linescans extracted from the image sequence. (C) Ca\(^{2+}\) puff and Ca\(^{2+}\) spark in the x-y-ROI can be identified (same events as shown in B). (D) Maximum fluorescence amplitude and FDHM for each pixel within the ROI are shown. The blue cloud refers to the Ca\(^{2+}\) spark, the red one to the Ca\(^{2+}\) puff. The overlap within the Ca\(^{2+}\) spark cloud is due to peripheral pixels of the Ca\(^{2+}\) puff showing similar values for amplitude and FDHM. (E) Boundary conditions for Ca\(^{2+}\) puff classification (n\(_p\) = 95). (F) Ca\(^{2+}\) puff (P; n\(_p\) = 95, n\(_S\) = 74, N = 34) and Ca\(^{2+}\) spark (S, n\(_S\) = 95, n\(_S\) = 88, N = 30) characteristics. Equal numbers of randomly selected Ca\(^{2+}\) sparks were used for comparison. Differences between Ca\(^{2+}\) puffs and Ca\(^{2+}\) sparks were statistically significant for amplitude (P < 0.001), T\(_{rise}\) (P < 0.001), FDHM (P < 0.001), T\(_{decay}\) (P < 0.001), and FWHM\(_x\) (P < 0.001). FWHM\(_y\) (P = 0.679) was not significant. (G) Distribution of Ca\(^{2+}\) puffs (red dots) and Ca\(^{2+}\) sparks (blue dots). Data are given as Tukey boxplots with median values, groups were compared by unpaired Student’s t-test or a Mann–Whitney U test (non-normal distribution).
and local SR-Ca\(^{2+}\) release, InsP\(_3\)R expression, and immunohistochemistry.\(^2\)\(^{,}\)\(^3\)\(^{,}\)\(^4\) TG mouse models have been rarely used because in mouse cardiomyocytes the direct detection of IP3ICR events was considered to be limited.\(^8\)\(^,\)\(^2\)\(^4\)

We hypothesized that conventional Ca\(^{2+}\) spark analysis tools are not sensitive enough to allow the identification of Ca\(^{2+}\) puffs in cardiomyocytes with a sufficient precision, a statement based on one-dimensional confocal linescan analysis. The reason is that the probability of IP3ICR events is generally low in cardiac preparations.\(^5\) In addition, Ca\(^{2+}\) puffs may not differ significantly in terms of their spatio-temporal profiles from other elementary Ca\(^{2+}\) release events. Importantly, pharmacological separation between Ca\(^{2+}\) puffs and Ca\(^{2+}\) sparks has some limitations due to incomplete specificity.\(^2\)\(^5\) In our approach, full frame raw data were partitioned into specific ROIs and SOIs (sequences of interest, e.g. for the full duration of Ca\(^{2+}\) release events). ROI framescan series were subsequently processed by cluster analysis of Ca\(^{2+}\) events: density-based spatial clustering of applications with noise.\(^\text{18}\) This multi-parametric approach enabled us to extract parameters such as amplitude, FDHM, FWHM, rise-, decay-times etc. from local events classified as ‘Ca\(^{2+}\) puffs’ (Figure 4D). This approach is comparable to a multi-dimensional vector rotating in a data cloud, where the vector length and orientation depend on the value of each individual data point within the data cloud. It should be pointed out that even individual spatio-temporal parameters of pixels within the ROI may not be significantly different, but by combining different pixel parameters, the procedure may successfully find an optimum for event separation. In other words, by using a combination of all spatio-temporal event parameters, a differentiation and classification of events can be made. Even though parameters (e.g., FFWHM,) from both event types strongly overlapped when taken as individual parameter, in combination with others (e.g., \(\Delta F/F_{0}\), \(\tau_{\text{rise}}\), \(\tau_{\text{decay}}\), FDHM) they were sufficient for event discrimination. For \(\Delta F/F_{0}\) thresholds, 75% of Ca\(^{2+}\) puffs were found to be equal or below 0.5 (\(\Delta F/F_{0}\)) and about 25% of Ca\(^{2+}\) sparks were also found in this range. \(\tau_{\text{rise}}\) and \(\tau_{\text{decay}}\) were similar between Ca\(^{2+}\) puffs and sparks with values in the range of 70–110 ms. In case of Ca\(^{2+}\) puff separation, a discrimination threshold of 180 ms for FDHM was validated. Compared to Ca\(^{2+}\) sparks elicited by RyR2s, Ca\(^{2+}\) puffs have slower kinetics and show smaller amplitudes.\(^2\)\(^,\)\(^5\)

The obtained spatio-temporal profiles of Ca\(^{2+}\) sparks and Ca\(^{2+}\) puffs were comparable with previously published studies with different animal preparations (see Supplementary material online, Table S1).\(^5\)\(^,\)\(^2\)\(^6\) The robustness of the applied approach was underscored by the key observation that the extraction of parameters (e.g. amplitude, FDHM, FWHM, rise-, decay-times etc.) from local events classified as ‘Ca\(^{2+}\) puffs’ were (i) independent from the source of preparation (FVB, TG’s, C57BL6), (ii) not affected by the nature of the trigger inducing IP3ICR, and (iii) not affected by the RyR inhibitor tetracaine. Hence, the present study substantiates simultaneously occurring Ca\(^{2+}\) sparks and Ca\(^{2+}\) puffs in atrial cardiomyocytes.

Functional crosstalk between InsP\(_3\)R2 and RyR2

Functional modulation of RyR2s open probability and Ca\(^{2+}\) sensitivity by co-localized IP3ICR was originally conceptualized for smooth muscle cells. An increase in [Ca\(^{2+}\)]\(_i\) through activity of InsP\(_3\)Rs has been suggested to recruit neighbouring RyRs domains through increased [Ca\(^{2+}\)]\(_i\) in the vicinity of RyRs. Such an effect triggers CICR as well as saltatory propagation of Ca\(^{2+}\) waves in the myocytes of the portal vein.\(^2\)\(^7\) This concept is also in accordance with previous reports in adult cat

Figure 5 Spatio-temporal characterization of Ca\(^{2+}\) puffs under various pharmacological interventions and animal type. No significant differences for Ca\(^{2+}\) puffs under various conditions (n= 95, shown in Figure 4) and mouse models (FVB (WT), InsP\(_3\)R TGs, C57BL6) were observed. Stimulation of InsP\(_3\)Rs and/or inhibition of RyRs was provoked by endothelin-1 (ET-1; 100 nmol/L), phenylephrine hydrochloride (PE; 10 \(\mu\)mol/L), InsP\(_3\) AM (IP3 AM; 50 \(\mu\)mol/L), and tetracaine (Tet; 1 mmol/L). Multiple comparisons (with FVB samples as control) did not show statistically significant differences except for TGs (PE + Tet) for amplitude (\(P = 0.023\), FWHM, \(P = 0.005\), FWHM, \(P = 0.001\)) and for TG (IP3 AM) for FWHM, \(P = 0.026\). Data are presented as Tukey boxplot with median values. For multiple comparison, a Kruskal–Wallis test was applied. Corresponding mean (SD) data are given in Supplementary material online, Table S2.
Figure 6 (A) Local IP3ICR with subsequently triggered Ca\(^{2+}\) sparks (CICR). The x-y-ROI shows an IP3ICR event with an adjacent Ca\(^{2+}\) spark. The corresponding time courses of fluorescence are given below, red: Ca\(^{2+}\) puff, blue: Ca\(^{2+}\) spark, green marks (I) correspond to the surface plots shown in B. (B) Time-coded mapping of a ROI (colour codes for the time-point of the Ca\(^{2+}\) release event maxima). The Ca\(^{2+}\) puff (dark blue area) occurred 584 ms after starting the SOI. The Ca\(^{2+}\) spark (green area) followed after another 210 ms, a second Ca\(^{2+}\) spark (lime area) after 869 ms from starting the SOI. Surface plot series of a Ca\(^{2+}\) puff triggering a Ca\(^{2+}\) spark. (C) The mean delay between the onsets of the Ca\(^{2+}\) puff and the Ca\(^{2+}\) spark was 266 ms (164 SD). Cells were treated either with InsP\(_3\) AM (50 μmol/L), ET-1 (100 nmol/L), or PE (10 μmol/L). \(n_1 = 10, n_2 = 9, N = 6\). Data are presented as Tukey boxplot with median value.

Physiological and pathophysiological implications

In atrial tissue collected from patients with atrial fibrillation, it has been reported that chronic pressure overload of the atrial wall is associated with increased InsP\(_3\)R expression. Such an increase may be a likely contributor for the initiation or perpetuation of atrial fibrillation. In functional studies performed in atrial cells from rabbit HF model, increased Ca\(^{2+}\) transients related to enhanced IP3ICR expression have been identified. The TG model used in our study shows a mild up-regulation of InsP\(_3\)R2 expression with similarities in terms of cellular remodelling reported for human dilated cardiomyopathy with arrhythmogenic substrate. The need for synergistic binding of InsP\(_3\) and Ca\(^{2+}\) on the InsP\(_3\)R for subsequent activation was supported by our Ca\(^{2+}\) uncaging experiments, where increased [Ca\(^{2+}\)]\(_i\) was associated with an upregulated IP3ICR/CICR event ratio. With increased intracellular InsP\(_3\) concentrations, InsP\(_3\)R2s might become activated at normal diastolic Ca\(^{2+}\) levels and therefore may promote arrhythmogenic Ca\(^{2+}\) transients in cardiac diseases with increased InsP\(_3\)R expression. In addition, functional InsP\(_3\)R up-regulation may have positive inotropic consequences. Although the number of directly observed InsP\(_3\)R/RyR crosstalk events was rather low in our hands, a significant impact on CICR/ECC is possible. The present study supports a modulatory role of InsP\(_3\)R/RyR crosstalk mechanisms for ECC and suggests IP3ICR as a potential target for treating Ca\(^{2+}\)-dependent cardiac disorders.
Figure 7 IP3ICR facilitated by local CICR. (A) Experimental protocol, cells incubated with 50 μmol/L InsP3 AM and 50 μmol/L DM-nitrophen AM. (B) Time series of full-frame images with a Ca2+ spark and a Ca2+ puff, the red box and lines indicate the ROI and the position for pseudo-linescans extracted from image-series. The pseudo-linescans showing a coincidentally occurring Ca2+ puff (red) and Ca2+ spark (blue). (C) The ROI (red asterisk) is shown as a x-y-t projection of the SOI. The two Ca2+ release events are classified based on F/F0 fluorescence of selected pixels from the ROI (green marks correspond to the surface plots). (D) Frequency ratio of Ca2+ puffs (fP) and Ca2+ sparks (fS) before and after photolytic [Ca2+]i increase (50 μmol/L InsP3 AM, 50 μmol/L DM-nitrophen AM). The ratio fP/fS raised from 0.02 to 0.04 due to CICR activity. (E) Time window between UV-flash photolysis and Ca2+ puff occurrence (49 ms, 12 SD). (F) Kinetic parameters from classified Ca2+ puffs (nE = 5, nC = 5, N = 4) with mean values (marked in red) were compared to previously obtained data for Ca2+ puffs (nE = 95, marked in green; data extracted from Figure 2 and Supplementary material online, Table S1). Selected data are presented as Tukey boxplot with median value.

Supplementary material

Supplementary material is available at Cardiovascular Research online.

Acknowledgements

The authors thank Ernst Niggli, Radoslav Janicek, Miguel Fernandez-Tenorio, and Ange Maguy for their helpful comments on the manuscript, Marianne Courtehoux for her expertise in immunocytochemistry and Ardo Illaste for software development.

Funding

This work was supported by the Swiss National Science Foundation (31003A-149301) and Novartis Res. Foundation to M.E. Funding to pay the Open Access publication charges for this article was provided by SNF.

Conflict of interest: none declared.

REFERENCES

Crosstalk of calcium sparks and calcium puffs

4. Harzheim D, Movassagh M, Foo RS-Y, Ritter O, Tashfeen A, Conway SJ, Bootman MD, Roderick HL. Increased InsP₃Rs in the functional sarcoplasmic reticulum aug-
ment Ca²⁺ transients and arrhythmias associated with cardiac hypertrophy. PNAS 2009;106:11406–11411.

11. Li X, Zima AV, Sheikh F, Blatter LA, Chen J. Endothelin-1-induced arrhythmogenic Ca²⁺ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP₃)-re-

18. Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA. IP₃ receptor-Ca²⁺ release modulates excitation-contraction coupling in rabbit vent-

30. Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA. IP₃ receptor-Ca²⁺ release modulates excitation-contraction coupling in rabbit vent-

