Pulmonary Delivery of Virosome-Bound Antigen Enhances Antigen-Specific CD4(+) T Cell Proliferation Compared to Liposome-Bound or Soluble Antigen.

Blom, Rebecca Agaatha Maria; Amacker, Mario; van Dijk, R Maarten; Moser, Christian; Stumbles, Philip A; Blank, Fabian; von Garnier, Christophe (2017). Pulmonary Delivery of Virosome-Bound Antigen Enhances Antigen-Specific CD4(+) T Cell Proliferation Compared to Liposome-Bound or Soluble Antigen. Frontiers in immunology, 8(359), p. 359. Frontiers Research Foundation 10.3389/fimmu.2017.00359

[img]
Preview
Text
fimmu-08-00359.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (7MB) | Preview

Pulmonary administration of biomimetic nanoparticles loaded with antigen may represent an effective strategy to directly modulate adaptive immune responses in the respiratory tract. Depending on the design, virosomes may not only serve as biomimetic antigen carriers but are also endowed with intrinsic immune-stimulatory properties. We designed fluorescently labeled influenza-derived virosomes and liposome controls coupled to the model antigen ovalbumin to investigate uptake, phenotype changes, and antigen processing by antigen-presenting cells exposed to such particles in different respiratory tract compartments. Both virosomes and liposomes were captured by pulmonary macrophages and dendritic cells alike and induced activation in particle-bearing cells by upregulation of costimulatory markers such as CD40, CD80, CD86, PD-L1, PD-L2, and ICOS-L. Though antigen processing and accumulation of both coupled and soluble antigen was similar between virosomes and liposomes, only ovalbumin-coupled virosomes generated a strong antigen-specific CD4(+) T cell proliferation. Pulmonary administrated antigen-coupled virosomes therefore effectively induced adaptive immune responses and may be utilized in novel preventive or therapeutic approaches in the respiratory tract.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Gastro-intestinal, Liver and Lung Disorders (DMLL) > Clinic of Pneumology
04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > Forschungsbereich Mu50 > Forschungsgruppe Pneumologie (Erwachsene)
09 Interdisciplinary Units > Microscopy Imaging Center (MIC)
04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > DCR Services > Core Facility Live Cell Imaging (LCI)

UniBE Contributor:

Blom, Rebecca Agaatha Maria, Amacker, Mario, Blank, Fabian, von Garnier, Christophe

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1664-3224

Publisher:

Frontiers Research Foundation

Language:

English

Submitter:

Rahel Holderegger

Date Deposited:

27 Nov 2017 08:02

Last Modified:

05 Dec 2022 15:08

Publisher DOI:

10.3389/fimmu.2017.00359

PubMed ID:

28439267

Uncontrolled Keywords:

dendritic cell immune modulation liposomes macrophage respiratory tract virosomes virus-like particle

BORIS DOI:

10.7892/boris.106605

URI:

https://boris.unibe.ch/id/eprint/106605

Actions (login required)

Edit item Edit item
Provide Feedback