ABSTRACT

Problem: The challenge of infrastructure-less communication model in vehicular ad-hoc networks.
Contribution: Employing Floating Content (FC) parametrization by mapping traffic mobility features into the proposed model (Random Waypoint extension).
Results: Analysis and simulations proved the feasibility of the FC paradigm in realistic urban settings over a wide range of traffic conditions.

FLOATING CONTENT BASICS

Probabilistic content storing in geographically constrained conditions ${ }^{[1]}$

- Success Probability,
the probability for a node entering the AZ to get the content item during its sojourn in the AZ.
Availability,
the fraction of users inside the AZ holding a copy of that content item.

MODELING OF FC IN VEHICULAR

 SETTINGMobility features mapping into RWP with pause model

NUMERICAL EVALUATION

Boston park scenario

- Arrival rate $=0.1 / \mathrm{s}$
- AZ radius $=50 \mathrm{~m}$
- Simulation time $=2 h$
- Node speed $=1 \mathrm{~m} / \mathrm{s}$
- Stopping time $=1 \mathrm{~s}, 4 \mathrm{~s}, 11 \mathrm{~s}$
- Moving time =9s

Although (i) clustering of nodes with content and (ii) border effects are not included in the model, the simulations show a good model's accuracy.

Luxembourg SUMO traffic scenario ${ }^{[2]}$

Industrial; City center; Residential; Simulation time 3h, AZ radius=250m
Even in scenarios with realistic mobility patterns, simulation results are in good agreement with analytical values of success probability.

PRACTICAL APPLICATIONS

GPS estimation through other vehicles

AZ dynamic reshape

Indoor localization

