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Abstract

Using state-of-the-art X-ray tomographic microscopy we can image lung tissue in three

dimensions in intact animals down to a micrometer precision. The structural complexity and

hierarchical branching scheme of the lung at this level of details, however, renders the

extraction of biologically relevant quantities particularly challenging. We have developed a

methodology for a detailed description of lung inflation patterns by measuring the size and

the local curvature of the parenchymal airspaces. These quantitative tools for morphological

and topological analyses were applied to high-resolution murine 3D lung image data,

inflated at different pressure levels under immediate post mortem conditions. We show for

the first time direct indications of heterogeneous intra-lobar and inter-lobar distension pat-

terns at the alveolar level. Furthermore, we did not find any indication that a cyclic opening-

and-collapse (recruitment) of a large number of alveoli takes place.

Introduction

Synchrotron-based lung imaging techniques with small animals (rats, mice, rabbits) have been

established in various studies and provided insights into some of the most interesting ques-

tions in lung physiology and development [1–3]. Broadly speaking, three complementary

approaches have been pursued with success: (i) static 3D imaging of fixed lung samples with

spatial resolutions down to one micrometer have been routinely used for characterizing in

high detail various aspects of individual rat lung acini and their developmental stages [4–7];

(ii) dynamic in vivo radiographic (2D) studies at pixel sizes down to 10 micrometers for inves-

tigating lung liquid clearance phenomena, effects of positive end-expiratory pressures (PEEP)

and improved ventilation strategies [8–10], with recent advances towards 3D [11] and with

Fourier space signature analysis [12]; (iii) in vivo low spatial resolutions (with pixel sizes of

30 μm and above) tomography [13, 14] has been applied to study various alterations to
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regional gas distributions in the lung, such as the effect of PEEP [15], tidal volume [16] or the

heterogeneity introduced by particular disease models [17, 18]. Recent advances in fast X-ray

tomographic microscopy [19] allow to anticipate that tomographic in vivo imaging of the lung

at the micrometer scale is within reach [20, 21]. In contrast to these experimental develop-

ments, little has been improved in the quantitative analysis of high-resolution 3D lung images.

The standard structural analysis of the lung is still mostly based on stereology, which may be

unsuitable for handling high-throughput data and for establishing an automated (computer-

guided) process [22, 23].

From a pure post-processing point of view, lung tissue comprises a binary structure of air

and tissue, analogous for instance to the one of solidified alloy materials [24, 25]. During lung

development, the continuous optimization process of increasing gas-exchange surface in

accordance with lung volume growth results in a very complex hierarchical structure with a

huge air-to-tissue surface area [26–28]. Hence, two intrinsic quantities are affected for the

most part, the air-to-tissue surface area with its shape and the air volume within the lung. To

investigate small structural changes in lung tissue at the micrometer scale, it is thus necessary

to assess these quantities with high fidelity in 3D, posing requirements for both experimental

realization as well as post-processing from segmentation to quantification. While the detailed

air recruitment mechanism is still under debate [29], a full quantitative characterization of

lung tissue could bring new facts to light, supporting either of the two currently discussed

hypotheses: (i) a heterogeneous distention pattern of different lung areas [30] or (ii) a homoge-

neous cyclic opening-and-collapse (recruitment) of all alveoli [31].

In this work we present a full route to quantitative analysis of high-resolution 3D lung

image data, starting from the image acquisition scheme for intact animals, how it particularly

affects the segmentation and by making the link to quantitative 3D characterization of lung tis-

sue. We employ local structural thickness analyses for assessing volumetric changes of air vol-

umes at various structural scales. For the topological analysis of the air-to-tissue surface in the

lung, we apply the theory from differential geometry to calculate localized surface curvatures.

We show for the first time the results of air volume thickness map and curvature analyses per-

formed on dose-efficient fast tomographic images of intact lungs. Great attention is paid to

keeping the methods as descriptive as possible as they are released as part of the manuscript

under General Public License and can easily be expanded and applied to a wide range of exam-

ples coming from different disciplines.

Materials and methods

Image acquisition

The experiment was carried out at the X02DA TOMCAT beamline of the Swiss Light Source

(SLS) at the Paul Scherrer Institute (Villigen, Switzerland). The experimental setup is adapted

from one of our previous works [20] and depicted in Fig 1: the X-ray beam, produced by a

2.9T bending magnet on a 2.4GeV storage ring (with ring current I = 400mA, top-up mode), is

monochromatized with a double-multilayer monochromator and tuned to 21keV. A sample-

to-source distance of 25m is used for producing an X-ray beam with appropriate spatial coher-

ence properties. We used a high-speed CMOS detector (pco.Dimax) coupled to visible-light

optics with a 150 μm and 20 μm thick scintillator for medium and high spatial resolutions,

respectively. The samples were probed with two different optics, yielding effective pixel sizes of

2.9 × 2.9 μm2 and 1.1 × 1.1 μm2, respectively. For these two optics the field of view was adjusted

with horizontal and vertical slits, located just before the sample, and producing beam sizes of

5.8 × 2.7 mm2 and 2.2 × 2.2 mm2, respectively. The sample-to-detector distance z was set to

100 mm, yielding an optimal trade-off between contrast-to-noise ratio and resolution at the
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respective experimental settings [20]. All scans were performed with 5 ms single-projection

exposure times and 901 tomographic projections, giving total scan times in the range of 5 s.

The photon flux on the sample position was measured using a high-precision passivated

implanted planar silicon (PIPS, Canberra Industries Inc.) diode coupled to a multi-gain low-

current amplifier that was previously calibrated by cryogenic radiometry, achieving precisions

with less than a few percent uncertainty [21]. From the flux measurement, the entrance dose

D is calculated according to the following formula [32]:

D ½Gy� ¼ 1:602� 10� 4 �
I0 ½photons=mm2� � hn ½eV�

m� 1 ½mm� � r ½g=cm3�
; ð1Þ

For all scans the entrance dose per projection (modeled for water) was 0.56 Gy for the respec-

tive field of view.

Animal preparation

The measurements were performed post mortem on adult mice (n = 2 / Balb-C, central animal

facility of the University of Bern) that were sacrificed before the experiment. The mice were

anesthetized with an injection of a mixture of Fentanyl, Midazolam and Medetomidine. Subse-

quently, a tracheotomy was performed and the animal was placed, together with the endotra-

cheal cannula, in an upright position into a custom-made sample holder. Immediately prior to

imaging, an overdose of pentobarbital was administered to the animal in order to prevent

motion artifacts caused by the heart beat. The lung was then inflated to different pressures

(10 cmH2O, 20 cmH2O and 30 cmH2O) using a small-animal ventilator (FlexiVent, SCIREQ

Inc.), and for each pressure level a separate tomographic scan was performed. Images were

taken no longer than 30 min after the lethal injection to preserve quasi-in vivo conditions. All

parts of the animal experiments were approved and supervised by the Swiss Agency for the

Environment, Forest and Landscape and the Veterinary Service of the Canton of Bern.

Post-processing

The aforementioned setup facilitates propagation-based phase-contrast images, which were

input to the single-image phase and intensity extraction algorithm by Paganin et al. [33] and

subsequently CT-reconstructed with the gridrec algorithm [34]. However, this acquisition

Fig 1. Experimental setup. Experimental setup at the X02DA TOMCAT beamline, with permission from [20].

https://doi.org/10.1371/journal.pone.0183979.g001
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scheme—coupled with the low-exposure and low number-of-projections setting—produces

CT reconstructions with various artifacts that make an automatic segmentation impossible.

The reason is that the single-image phase retrieval enhances edge-blurring, leading to an over-

all decrease in resolution as well as to a reduction of visibility of very thin structures [20].

Although this effect can be overcome by using a simple fusion algorithm that combines the

phase-retrieved images with the absorption ones to yield enhanced edge contrast, it reduces

the signal-to-noise ratio in the reconstructed images and thus makes an automatic segmenta-

tion in low-exposure images more challenging [35]. Therefore, in the present work we have

focused on an improved alternative post-processing approach. We first discuss the aforemen-

tioned image artifacts before describing our segmentation method in detail.

As shown in Fig 2, most dominantly, different regions in the lung produce varying segmen-

tation results, while other effects are not immediately obvious. For instance, in Fig 2a the thin

septal walls that separate single alveoli produce only a slightly stronger signal than the sur-

rounding background. Additionally, the region-of-interest (“local” or “truncated”) tomogra-

phy introduces a superimposed gradient in the grayscale images resulting in different

foreground (lung tissue) and background (air) gray values for different regions in the tomo-

graphic slices [36], leading to the fact that in Fig 2b the interalveolar septa are not correctly rec-

ognized for the two regions. Finally, the differentiation of foreground and background is

strongly dependent on the inspected lung region itself (not shown here), leading to an addi-

tional per-slice variation of background illumination gradients and tomographic slice histo-

grams. Thus, in the best case several steps are necessary for obtaining the binary segmented

images of lung tissue and air which in return serve as a basis for further quantitative analyses.

For addressing all the above issues we have developed a semi-automatic technique that is appli-

cable to any comparable problem in image segmentation. The method is automatized to the

full extent, except in one single step, where it requires user interaction in order to decide

which segmentation result is sufficient for further data processing.

The detailed post-processing flowchart is depicted in Fig 3 and the processing steps can be

summarized as follows:

1. First [Fig 3(A)], the datasets at different peak-inspiratory pressures are registered manually

with each other to compensate for shifts in the sample position and the irregular up-scaling

Fig 2. Threshold segmentation. Result of automatic threshold segmentation: (a) Original tomographic slice

(1.1 × 1.1 μm2 pixel size); (b) binary image after automatic Otsu segmentation. The background illumination

gradient produces different segmentation results for the two regions in the tomographic slice.

https://doi.org/10.1371/journal.pone.0183979.g002
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of the air volumes upon inflation. As a result, we obtain cropped gray-level images of

regions of interest of the lung tissue, which are related to each other under a Euclidean

transformation. This means, for all volumes the 3D fields of view have the same sizes.

2. In the next step [Fig 3(B)], background illumination correction is applied to correct the gra-

dient arising from the region-of-interest (local) tomography artifact, as discussed above.

This represents a common problem in image processing, and various morphological opera-

tions have been suggested, each adapted to particular problems [37]. In our case we assume

that the background is a plane (i. e. decribed by a linear gradient) and we perform a so-

called erosion (with a disk-shaped structuring element of 20 px). Erosion represents one of

the two fundamental operations in morphological image processing and can be thought as

follows: an image is probed, pixel by pixel, with a structuring element which defines a per-

pixel neighborhood; in the case of a disk-shaped structuring element, each pixel’s neighbor-

hood has a circular shape with a given radius; erosion of a given pixel then means that its

respective gray-scale value is exchanged with the smallest gray-scale value within the whole

neighborhood. In theory, when applied to all pixels in the image, the background gradient

is then clearly visible, but also strongly structure-dependent. For this reason, all extreme

values are removed from the histogram creating a so-called “masked” image. Subsequently

a plane is fitted by means of least-squares onto the masked image and in the last step sub-

tracted from the original one. For the choice of the (size of the) structuring element, it is

Fig 3. Segmentation flowchart for 3D lung data. Complete segmentation flowchart from image registration to final binary segmentation of the high-

resolution lung data. Image registration (A) is conducted by calculating a rotation matrix R and a translation vector t and by transforming all image voxels;

in (B) from each cropped tomographic slice an estimated linear gradient image is subtracted (B.5); the ridged image (C’) is obtained by means of line-

shaped profiles; the images are thresholded (E’) with the Otsu-value (D); finally the morphological operations (F) and the connected component analysis

(G) remove noise artifacts. The result is best visible by comparing image D’ to image G’.

https://doi.org/10.1371/journal.pone.0183979.g003
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important to be large enough in order to bring the background gradient into prominence,

however, a very large structuring element also increases computing speed. In our case, a

structuring element of 20 px was sufficient for “filtering out” thin structures (such as alveo-

lar septa) and at the same time for maintaining an adequate computation speed.

3. Automatic Otsu segmentation [38] is applied [Fig 3(D)] and the optimal gray value is stored

for latter usage. This step is only used for determining the threshold (gray value).

4. In parallel [Fig 3(C)], a so-called “ridged image” is created based on the idea of so-called

line-shaped profiles, originally introduced by Babin et al. [39]. The idea is motivated by the

following fact: In the original image thin septa are visible by eye as they slightly differ from

the background, but their signal is too weak to be recovered during an automatic (global)

segmentation step. If we now take a line profile through the image and extract all local max-

ima from this line profile, in theory we should be able to recover each septa. By introducing

further mathematical constraints, this step could be refined in order automatically “accept”

or “decline” a certain structure to be recognized as a septum. In practice, this step is the

only one that requires user interaction in order to let the user decide the margin for septa

discrimination from the background. In our algorithm we enable the discrimination of

septa by defining a minimal/maximal width, and minimal and maximal gray-value margin

in respect to the background. The line profiles are conducted in four directions in the

image: 0˚, 45˚, 90˚ and 135˚. Whenever a septum is detected, the respective pixel value in

the original image is set to the brightest value, making sure that from now the (alleged) sep-

tum will be always detected as tissue. However, as seen in Fig 3(C’), due to noise in the

background, new features (i. e. artifacts) are added as well.

5. In the next step [Fig 3(E)], binary threshold is conducted on the ridged image [Fig 3(C’)] by

using the Otsu parameter from (3).

6. Morphological operations [Fig 3(F)] are applied to remove free-standing pixels, since (4)

has produced (dependent on the explicit conditions) a significant number of artifacts. Here

we use four manually-defined simple structuring elements that are based on the following

assumption: a single free-standing pixel always represents an artifact because septa (being

very thin and sometimes occupying only single pixels) are connected with surrounding

lung tissue.

7. Finally [Fig 3(G)], a connected component analysis is conducted in 3D to remove artifacts

that are thicker than single pixels and that were not removed during the previous steps.

After this step the final binary segmented image is used for further processing.

Local air volume thickness analysis

The volumetric change of alveolar structures upon inflating the lung with increasing peak-

inspiratory pressures in intact animals has been measured by different means so far, either by

manual counting [40] or by detecting changes in the power spectral density of lung speckle

images [41]. These measures, however, provide only limited insight. Either they are acquired

at the lung periphery areas or they only give global volume changes without insight into the

detailed processes (i. e. with no direct observations). In Fig 4, only a small part of the lung is

illustrated to show how lung tissue stretches at two different pressures. Our aim in the follow-

ing is to automatically quantify these volumetric changes in 3D. Similar tasks are usually per-

formed in various other studies, such as bone [42] or materials science [43], for which a so-

called thickness map analysis has been developed to determine the thickness of trabecular

Computer-assisted quantitative analysis of lungs at the alveolar scale
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bone [44]. The local thickness τ is defined as follows:

tðpÞ ¼ 2�maxðfrjp 2 sphðx; rÞ � O; x 2 OgÞ; ð2Þ

where p is an arbitrary point of a set O, O� R3 defines the 3D structure under study, sph(x, r)
is a sphere with center x and radius r. As can be seen from that formula, τ simply gives the

maximum diameter of the spheres that fit inside an arbitrarily chosen object. In our case, in

order to get the diameter of the airspaces we define the air volume as the “object”, which must

not be confused with tissue thickness of the lung parenchyma. The detailed calculation steps

are then as follows: at first, the Euclidean distance map is calculated, from which a so-called

ridge (or skeleton) of the distance map is extracted; afterwards, the ridge is scanned in order to

find the largest possible sphere that the ridge belongs to; as a final step, a so-called cleanup is

applied on the surface voxels. A detailed description of all steps can be found in the original

source code [45]. As a result, one obtains a 3D dataset where the respective local air volume

thickness values τ are mapped onto the gray values of every voxel. A simple histogram then

yields the relative amount of structures with a certain size that exist in the 3D image data, i. e.

the distribution of structural size diameters [44].

Comparing thickness map histograms (distributions of structural size diameters) under dif-

ferent conditions with each other, in our case thickness maps of lung volumes that are inflated

at different pressures, can be problematic due to the fact that histogram bins can be chosen

arbitrarily and may be influenced by outliers and noise. In order to overcome this problem,

kernel density estimation comes in handy as an often used technique in non-parametric data

smoothing and quantitative density comparisons. In the following work we adapt the kernel

density estimator by Duong [46], implemented in the R statistics package [47].

Curvature analysis

The second part of the quantitative analysis was conducted on the air-to-tissue interfaces in

the lung. While the local air volume thickness gives a pure local volumetric representation, it

does not provide information on the topological properties of the material (such as surface

normals, surface facet areas etc.). Topology in the form of varying surface curvatures is com-

monly studied in the field of material science, in particular with alloy structures, where it rep-

resents an important factor providing indication of local variations in surface energy [24] or

gives the direction of diffusion-driven flux [25]. In biological materials such as plants structure

curvature has been found to be genetically controlled [48], along with other biophysical

Fig 4. Air volume thickness. Manual measure of air volume “thickness” on a 2D tomographic slice at two

different peak inspiratory pressures: (a) for 5 cmH2O; (b) for 10 cmH2O.

https://doi.org/10.1371/journal.pone.0183979.g004
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perspectives of this quantity. Recently, the potential in medical image analysis has been recog-

nized, but the full application remains still in its beginning phase [49, 50].

The mathematical background originates from the theory of differential geometry, for

which we mainly follow the descriptions in [51]. In brief, to study the properties of regular sur-

faces in 3D it is convenient to define the so-called shape operator at a point p 2M, where M
represents a regular surface in R3. It is defined as the linear transformation S of the tangent

space Mp that measures how M bends in different directions. In practice, this is achieved by

further defining a nonzero vector vp 2Mp to determine the direction of the surface bending

while the real-valued function for doing so is called the normal curvature. The minimum and

maximum values of the normal curvature, κ1 and κ2, are then called the principal curvatures
and, by further mathematical treatment, it can be shown that these correspond to the eigenval-

ues of the aforementioned shape operator. Additionally, the principle curvatures are directly

linked to the mean curvature H and the Gaussian curvature K by

k1 ¼ H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K
p

and k2 ¼ H þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K
p

; ð3Þ

following the intrinsic algebraic properties of the shape operator.

From a computational point of view, surfaces are represented by (polygonal) meshes, which

are described by a collection of vertices, edges and faces that define the surface shape in 3D.

While there exist many different representations of polygon meshes, usually the simplest one

is the so-called face-vertex mesh representation which consists of a list of vertices (3D position

vectors) and a set of polygons (commonly: triangles) that point to the vertices they encompass.

Since any polygonal mesh represents a discretization (and thus approximation) of a smooth

surface, a number of methods have been proposed to yield curvature estimations on such

objects [52]. In the present work, we employ a curvature estimator based upon the theory of

normal cycles [53] to associate a curvature tensor with each region on the polyhedral surface.

This approach is particularly useful when dealing with sampled smooth surfaces, because it is

possible to define a small neighborhood for a given vertex which provides the curvature tensor

in the smooth case at the same vertex [53]. We explain this aspect below in more detail and

note at this point that in practice the method yields fast and very precise curvature estimations

of large datasets.

Based on the per-vertex curvature calculations of the whole 3D dataset, we introduce the

so-called ISD (interface shape distribution) plots, which are two-dimensional probability

density functions in dependence on the two principal curvatures κ1 and κ2. We adopt here the

κ1–κ2 representation from [54], for which an example is shown in Fig 5. As can be seen, the

ISD plot gives a graphical representation of the overall curvature information within the

investigated 3D dataset. In terms of mesh orientation, it means that we demand the surface

normals on the polygon mesh to point from the air volume toward the lungs tissue. Thus, fol-

lowing regions can be identified: κ1 = κ2 > 0 represent spherical shapes of the air volume while

κ1 = κ2 < 0 indicate spherical shapes of the lung tissue; cylindrical shapes are characterized by

κ1 = 0 or κ2 = 0; κ1, κ2 > 0 (region 1) represent ellipsoidal surfaces (being convex toward the

lung tissue) while κ1, κ2 < 0 (region 4) indicate concave ones; finally, regions 2 and 3 represent

so-called hyperbolic (or saddle) surfaces.

We end the section by describing the detailed processing pipeline, as displayed schemati-

cally Fig 6:

1. Starting from the 3D segmented data, the air-to-tissue surface mesh is first created with the

so-called marching-cubes algorithm, implemented in VTK [55]. The produced triangulated

mesh, depending on the original data size, can have up to 30 millions of vertices.
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2. High-frequency noise originating from discrete data is then removed by Laplacian smooth-

ing [56], implemented in the open-source MEPP platform [57]. The noise occurs due to

sharp borders of single pixels.

3. The principle curvatures are then calculated on the smoothed surface mesh from a curva-

ture estimator algorithm based on normal cycles [53], also implemented in the MEPP plat-

form [57]. The aforementioned vertex neighborhood is set by means of a geodesic radius.

4. Finally the data is further processed to create either 3D renderings according to the princi-

pal curvatures or calculate 2D probability densities, the so-called ISD plots. For the latter

ones we apply the aforementioned kernel density estimator [46].

Results

The quality of binarized images

Tomographic slices of the lung tissue of two post mortem (intact) animals imaged with both

the 2.9 μm-pixel-size and the 1.1 μm-pixel-size optics are plotted in Fig 7. The slices are both

cropped to cover an area of 0.8 × 0.8 mm2. In the lower-resolution raw images in Fig 7a the

thin walls between the alveoli (septa) are visible, but are lost in the segmentation step [as indi-

cated by the green arrows in Fig 7b]. With the high-resolution optics, the septa can be

Fig 5. Interface shape distributions map. Interface shape distributions (ISD-plot) schematic, adapted with

permission from J.L. Fife [25]. It represents a 2D probability density plot in dependence on the the minimum

curvature κ1 and the maximum one κ2 for each vertex on the mesh. It gives a graphical representation of how

interfaces are shaped within the investigated 3D volume. The four regions (1–4) are explained as follows: κ1,

κ2 > 0 (region 1) represent ellipsoidal surfaces (being convex toward the lung tissue); κ1, κ2 < 0 (region 4)

indicate concave ones; and regions 2 and 3 represent so-called hyperbolic (or saddle) surfaces. The color

code (blue = concave, red = convex) of regions 1 and 4 is the same as in Fig 13, while “A” and “T” denote

cylindrical/spherical surface shapes of “air” and (lung) “tissue”, respectively.

https://doi.org/10.1371/journal.pone.0183979.g005
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recovered in the binary segmented image [as shown in Fig 7d] by applying our segmentation

technique. However, small artifacts are introduced when conducting the “ridged-image” step

in the segmentation method (step C in Fig 3), which are indicated with the red arrows in the

segmented image [see Fig 7d]. Since both the high- and low-resolution optics under low-

exposure conditions produce image segmentation artifacts, we need to shortly discuss their

implications in view of the subsequent quantitative analysis.

For the lower-resolution images [Fig 7a and 7b], the almost complete vanishing of septal

surfaces during the segmentation step leads to the fact that for a topological analysis of the gas-

exchange surface area (the alveoli) crucial data is missing. Thus, the low-resolution data appear

unsuitable for a quantitative curvature analysis. For the air volume thickness map analysis,

however, we hypothesize that the artifacts will only play a marginal role since they are expected

to produce only single-pixel alterations in the localized airspace volumes. Hence, the only

remaining part is the one of finding a “sufficiently” well-segmented volume before inputting

the data to further analysis. Distinguishing between a “good” and “bad” segmentation can

sometimes be ambiguous, as the distinction can be made by different criteria (biological fea-

tures, SNR, etc.). To overcome this problem, we first produced an automatized binarized 3D

dataset [38] and independently applied a morphological “opening” and “closing” operation

ending up with a total of three datasets per peak-inspiratory pressure. By this means, the fol-

lowing quantitative results become independent on the segmentation step because we only

need to define a range of different segmented volumes that we consider valuable in terms of

preserving the main biological features. As we describe in the next section, the results of the

quantitative analysis then possess quantifiable uncertainties originating from possible segmen-

tation errors.

The higher-resolution images, as seen upon visual inspection from Fig 7c and 7d, appear

suitable for both the air volume thickness map as well as the curvature analysis. Again, the visi-

ble artifacts are expected to play only a marginal role on the air volume thickness map analysis

while topologically they represent “sharp” surfaces (with small radii) which can be easily

Fig 6. Curvature analysis flowchart. Processing flowchart for the curvature analysis. From the segmented volume the surface is first

extracted [55], creating a surface mesh of about 30 million vertices. Subsequently Laplacian smoothing [56] is applied to reduce high-frequency

noise, and curvature calculation is performed [53] to extract the two principal curvatures for all vertices. These are then used to create the ISD-

plots and the 3D renderings.

https://doi.org/10.1371/journal.pone.0183979.g006
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filtered upon topological (curvature) evaluation. To investigate the influence of different

binary image segmentations, the parameters that require user interaction in our segmentation

method (i. e. the ones that specify the detection of local maxima in the line-shaped profile algo-

rithm—step “C” in Fig 3) were manually varied to produce 9 datasets for each peak-inspiratory

pressure, resulting in datasets which have varying degrees of visible artifacts. In particular,

these were the minimum/maximum width for discriminating alveolar septa in the respective

line profile as well as the minimum gray-value threshold that defines alveolar septa in respect

Fig 7. Low-resolution vs. high-resolution optics. Comparison between the low-resolution and high-resolution optics for a

0.8 × 0.8 mm2 field of view on two randomly chosen regions: (a) shows the tomographic slice of the 2.9 μm-pixel-size optics; (b)

the corresponding binary segmented image; (c) shows the tomographic slice of the 1.1 μm-pixel-size optics; and (d) shows its

corresponding segmented image. The arrows display artifacts introduced by the segmentation.

https://doi.org/10.1371/journal.pone.0183979.g007
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to the background. Subsequently, all datasets were input to the quantitative analysis

algorithms.

Air volume thickness map results

As mentioned before, multiple binarized 3D datasets per peak-inspiratory pressure (3 different

segmentations for the low-resolution optics and 9 different segmentations for the high-resolu-

tion one) were created for both optics in order to investigate the influence of the segmentation

step on the quantitative results. This is reflected in Fig 8 and Table 1, while the air volume

thickness map visualizations (both 2D and 3D) were conducted only on one selected segmen-

tation per inflation pressure. One such example is shown in Fig 9 for small regions of interest,

where the air volume thickness maps for every single peak-inspiratory pressure are superim-

posed on the original data. The colors are mapped in respect to the structural diameters. As it

can be seen, with increasing pressure, there is an increase of orange-to-yellow structures corre-

sponding to structural diameters of approximately 70 μm and a decrease of red structures, cor-

responding to structural diameters of about 40 μm.

In Fig 8 the probability density functions (PDF) of the air volume thickness maps are plot-

ted in dependence on the structure diameters for the two different optics. The plots have been

Fig 8. Local air volume thickness PDF. Probability density functions (PDF) of the local air volume thicknesses for the two different optics: (a) shows

the air volume thickness-map PDF for the 2.9 μm-pixel-size optics; (b) shows the one for the 1.1 μm-pixel-size optics. The uncertainty intervals arise

from the different sets of segmentations.

https://doi.org/10.1371/journal.pone.0183979.g008

Table 1. Volumetric distributions of the thicknesses at different ranges and magnifications. The results are obtained by integrating the PDF-s from Fig

8 according to the corresponding ranges.

Pressure Range 1

(20 − 50) μm

Range 2

(50 − 80) μm

Range 3

(80 − 110) μm

Range 4

� 110 μm

10 cmH2O (2.9 μm) (28.7 ± 6.4)% (37.2 ± 3.0)% (21.0 ± 2.3)% (10.2 ± 1.8)%

20 cmH2O (2.9 μm) (16.4 ± 5.5)% (40.2 ± 3.1)% (25.5 ± 2.8)% (15.8 ± 2.6)%

30 cmH2O (2.9 μm) (12.3 ± 5.8)% (46.3 ± 5.9)% (25.3 ± 4.0)% (14.4 ± 2.3)%

10 cmH2O (1.1 μm) (25.4 ± 4.0)% (35.8 ± 1.5)% (23.6 ± 2.4)% (11.7 ± 3.7)%

20 cmH2O (1.1 μm) (11.8 ± 0.6)% (36.0 ± 0.7)% (29.6 ± 0.7)% (20.4 ± 1.2)%

30 cmH2O (1.1 μm) (13.5 ± 1.3)% (43.9 ± 1.1)% (25.6 ± 1.0)% (14.7 ± 2.0)%

https://doi.org/10.1371/journal.pone.0183979.t001
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limited to structural air volume thicknesses of up to 170 μm due to the simple fact that big vol-

umes can alter the results when the lungs inflate as they move in/out of the region of interest.

The colored areas behind each function display the standard deviations of the quantitative

results in respect to the different segmentation parameters used for the calculations. From the

curves, we observe a shift from small diameters (around 40 μm) at a peak-inspiratory pressure

of 10cmH2O towards bigger diameters (around 70 μm) with increasing pressure. This result is

observable with both optics, and there appears to be no significant change in the calculated

local air volume thickness distributions between the two optics. However, the data that was

acquired with the higher magnifying optics [see Fig 8b] yields significantly more precise (with

smaller standard deviations) results than the lower magnifying one [as seen in Fig 8a]. Further-

more, the increase of the interpulmonary pressure from 10 cmH2O to 20 cmH2O results in a

distinct enlargement of the parenchymal airspace, but the further increase from 20 cmH2O to

30 cmH2O shows only a minimal enlargement. The latter might indicate that the total lung

capacity is reached at an interpulmonary pressure of roughly 20 cmH2O.

In Table 1, the volumetric distributions at four different ranges (20 − 50 μm, 50 − 80 μm,

80 − 110 μm and 110–rest μm) are summarized. They are obtained by integrating the respec-

tive distributions over the given intervals and show the same trends in a quantitative manner:

with increasing peak-inspiratory pressure the volumetric increase happens at Range 2 with a

simultaneous decrease at Range 1.

As can be seen both from Fig 8 and Table 1, the results from both optics exhibit matching

trends for the two smaller ranges Range 1 and Range 2. The structural diameters above 80 μm,

on the other hand, produce probability densities that do not follow an unambiguous trend

with increasing peak-inspiratory pressures. We explain this effect later in more detail, but note

at this point that this is due to the small volumetric regions of interest that introduce additional

biases. Structural diameters of less than 20 μm are not regarded in the evaluation process as

they are much smaller than the smallest expected diameters of the alveoli.

Finally, in Fig 10 we show 3D representations of the air volume thickness maps for the

three different pressures and the two optics. In the low-resolution optics (bigger field-of view)

the big airways have been excluded by being transparent (visible by the holes). The line run-

ning roughly from the lower left to the upper right corner of the block represents the border

between the right middle and right caudal lobe, and it appears that the middle lobe increases

more in volume than the caudal one, following the color representation. This is noticeable

Fig 9. Structure diameters. Structure diameters obtained by air volume thickness map calculation with the 1.1 μm-pixel-size optics for three different peak

inspiritory pressures: (a) 5 cmH2O; (b) 10 cmH2O; (c) 25 cmH2O.

https://doi.org/10.1371/journal.pone.0183979.g009

Computer-assisted quantitative analysis of lungs at the alveolar scale

PLOS ONE | https://doi.org/10.1371/journal.pone.0183979 September 21, 2017 13 / 23

https://doi.org/10.1371/journal.pone.0183979.g009
https://doi.org/10.1371/journal.pone.0183979


Fig 10. 3D air volume thickness maps. Visualization of the air volume thickness maps in 3D: (a),(c) and (e) show the 10, 20 and 30 cmH2O pressures for

the 2.9 μm-pixel-size optics; (b),(d) and (f) show the ones for the 1.1 μm-pixel-size optics. RML: right middle lobe; RCaL: right caudal lobe; the red circles

indicate areas which at the same air pressures exhibit a smaller expansion of the individual airspaces. With higher pressures more orange-to-red colored

volumes are visible, i. e. air volumes with structural thicknesses of 50 − 80 μm.

https://doi.org/10.1371/journal.pone.0183979.g010

Computer-assisted quantitative analysis of lungs at the alveolar scale

PLOS ONE | https://doi.org/10.1371/journal.pone.0183979 September 21, 2017 14 / 23

https://doi.org/10.1371/journal.pone.0183979.g010
https://doi.org/10.1371/journal.pone.0183979


through the fact that the middle lobe adopts a more “reddish” color with bigger inflation.

Therefore, a heterogeneous inflation was observed both inter- and intra-lobular.

Curvature results

The interface shape distributions (ISD) for the three different pressures are shown in Fig 11.

Since for each peak-inspiratory pressure multiple ISD-s are calculated in respect to the differ-

ent binarized datasets obtained using nine different sets of parameters for the segmentation,

here the mean ISD-s are plotted. As expected, the highest density lies in “region 1”, compared

to the ISD-definition plot in Fig 6 and indicates that lungs are largely ellipsoidaly shaped (i. e.

convex toward the lung tissue), similar to the ideal shape of alveoli [58]. It is further visible

Fig 11. ISD plots. Interface shape distributions (ISD) for the free different pressures: (a) 10 cmH2O; (b) 20 cmH2O; (c) 30 cmH2O. The arrows indicate the

shift towards smaller principle curvatures (larger radii).

https://doi.org/10.1371/journal.pone.0183979.g011

Fig 12. Gaussian and mean curvatures PDF. Probability density functions (PDF) of Gaussian (a) and mean (b) curvatures. Like before, the

uncertainty intervals arise from the different segmentation parameters.

https://doi.org/10.1371/journal.pone.0183979.g012
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that with increasing pressures a transformation from a diverse to a more uniform distribution

of curvatures on the air-to-tissue surface takes place. This is visible with the emergence of the

bright (red) peak after the increase of the interpulmonary pressure from 10 to 20 cmH2O. The

last step (from 20cmH2O to 30cmH2O) becomes even more localized in “region 1”. However,

the increase from 10cmH2O to 20cmH2O produces a much larger difference than the increase

from 20cmH2O to 30cmH2O. Again this is due to the fact that the total lung capacity is reached

at roughly 20cmH2O. At the same time, the blue tail (density * 90) from “region 2” and

“region 3” (Fig 11) slightly shifts toward the central peak (right direction). In total, however,

the highest-density peak moves towards smaller principal curvatures (as indicated by the

arrow in Fig 11) or larger radii, respectively. This is slightly visible by the move of the upper

“blue-violet tail” (density * 70) toward the center.

To better clarify these results, in addition both the Gaussian and the mean curvatures for

the different pressures are plotted in Fig 12. As before, the colored areas behind each function

display the standard deviations of the quantitative results in respect to the different segmenta-

tion parameters. As can be seen from Fig 12, the error margins are very small indicating that

the different segmentation parameters have very little influence on the overall curvature

results.

The Gaussian curvature is best illustrated by a flat surface such as an expanding disk that

grows isotropically [48]: if the expansion is uniform (i. e. the overall shape remains the same) it

will have zero Gaussian curvature; if the marginal regions grow slower than the central ones,

the disk will exhibit a parabolic shape and the Gaussian curvature will be positive; and if the

central region grows slower than the marginal ones, the disk will buckle and form a shape with

a wavy edge (e. g. a saddle surface), rendering a negative Gaussian curvature. In our case, we

observe an increase around zero, indicating that the existing surfaces within the lung only
become more flat, as can be seen in Fig 12a. On the other hand, a slightly higher density is visi-

ble for positive Gaussian curvatures, indicating again the presence of ellipsoidal (convex

toward the lung tissue) surfaces.

The mean curvature as shown in Fig 12b indicates the aforementioned trend (with increas-

ing peak-inspiratory pressures) towards smaller principle curvatures in “region 1”, meaning

that positive mean curvatures in the outer right regions become flatter. The fact that the peak

in Fig 12b shows an inverted trend from 20cmH2O to 30cmH2O can be attributed to the same

effect that was observed already in the air volume thickness map analysis. Namely, since we are

considering only small partial volumes of intact lungs, big airways can move out of the volu-

metric field-of-view upon higher peak-inspiratory pressures, which is why the results for low

mean curvatures (i. e. flat surfaces, big airways) have to be considered with care.

Discussion

The presented analyses were performed on tomographic volumes acquired in rapid scanning

mode optimized for dose versus image contrast. Our purpose was to keep the total exposure

time and radiation dose at minimum in order to render the analyses relevant also for potential

future in vivo measurements. Under these conditions, the produced volumes require more

effort for being transformed into binarized datasets, which on the other hand represents the

starting point for any further quantitative analysis. Therefore, under these conditions, it can

hardly be determined whether a segmentation is unambiguously “correct”, especially in the

presence of obvious image artifacts. This fact was addressed by performing the quantitative

analyses on multiple binarized images per each original dataset (three datasets for each lower-

resolution image set and 9 datasets for each higher-resolution image set). The margin for pro-

ducing these different binary segmentations was defined by visual inspection so that apparent
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“under”- and “over”-segmented volumes where created. These were then all input to the quan-

titative analysis. By doing so, single-pixel errors originating from the binary segmentation

were directly translated to the uncertainty of the quantitative results.

From the results of the air volume thickness maps we identify structural diameters of 50–80

μm to increase in density when increasing the peak-inspiratory pressure in the lung. The

results are comparable at both scales, meaning for both the low-resolution and the high-resolu-

tion optics and indicate that the existing structures (20 − 50 μm) increase their volume, which

is why they vanish with higher peak-inspiratory pressures (visible in Figs 8 and 9 and Table 1).

The observed sizes are similar to the ones reported in other studies [59, 60], even if a compari-

son to the alveolar size is not directly possible, because the thickness map measures airspaces

which contain both alveolar airspaces and parts of the alveolar ducts. In the 3D visualizations

of the air volume thickness maps (Fig 10), two observations were made. First, the airspaces do

not increase in their size evenly in all areas of the lung parenchyma. For instance, the encircled

regions in Fig 10 at the same pressures depict smaller enlargements of the individual airspace

volumes when compared to the neighboring ones. Secondly, comparing two lobes (right mid-

dle and caudal lobe) it appears that their inflation requires different pressures, too. Therefore,

we conclude that the pulmonary inflation follows an intra- and interlobar heterogeneous dis-

tension pattern. The probability density function of the air volume thicknesses obeys the same

distribution and mostly describes an isometric up-scaling of alveolar structures (visible by the

shift to the right direction upon increasing inflation pressures). A homogeneous cyclic open-

ing-and-collapse of all alveoli was postulated as part of the normal ventilation of the lungs

[31]. If, however, a large number of alveoli would open during inhalation, a non-isometric up-

scaling of the alveolar structure should be visible in the probability density function of the air

volume thickness maps. This would mean an increase of alveolar structures of low volumes

and hence smaller structural size diameters (as they just popped-up), in difference to a homo-

geneous right deviation of the density curve towards higher volumes. Because these morpho-

logical observations have only been conducted on partial volumes of the whole lung, we

cannot exclude a smaller amount of alveoli (1–20%) showing “opening-and-collapse” behavior

during the breathing cycle. Therefore, we propose that a cyclic opening-and-collapse of the

alveoli does not take place to a larger extend.

As mentioned earlier, for structural diameters above 80 μm the results increasingly differ

between the two optics. This is mainly attributed to the fact that with higher magnifications a

smaller fraction of the lung volume is analyzed. Hence, airways outreaching the borders of the

field of view seemingly produce densities with smaller structural diameters in the air volume

thickness map analysis. This bias is even more pronounced for smaller fields of view and when

bigger airways are being analyzed. For a truly valid analysis it would thus be necessary to con-

duct the analysis on individually anatomical features encompassing complete acini and/or

lung lobes.

The findings from the curvature analysis are complementary, namely that lungs are mostly

described by ellipsoidal (convex toward the lung tissue) shapes (κ1, κ2> 0) that grow in diame-

ter with increasing pressure. This fact is best seen by looking at the interface shape distribution

(ISD) plots in Fig 11, where the highest-density peak is located in “region 1” (κ1, κ2 > 0), as

well as by looking at the positive mean curvature values in Fig 12b. Interestingly, from Fig 12b

it can also be seen that the density of high negative mean curvature values (−0.20 ⩽H ⩽ −0.07

μm−1) increases with increasing pressure while the one of low negative mean curvature values

(−0.07 ⩽H ⩽ 0 μm−1) decreases, which is attributed to the behavior of saddle surfaces within

the lungs. The Gaussian curvature from Fig 12a clearly suggests that all surfaces are becoming

more flat towards higher pressures, which would not have been the case if a larger number of

new small alveoli would open upon inflation. In terms of lung anatomy, Gaussian curvature
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can also be interpreted as follows: in the case of a broad distribution we have saddle-surfaces

and sharp edges (free septal edges or alveolar mouths, respectively), ellipsoidal (alveoli) and

spherical shapes etc. If the distribution becomes sharper around zero it means that there is a

trend in all these surfaces towards a more flat shape, which obviously can only be the case for

alveoli.

The curvature per se also plays a further role. The alveolar surface tension is not only regu-

lated by pulmonary surfactant but also dependent on the local curvature, where a higher curva-

ture results in a higher surface tension. For instance, surface tension is expected to be greater

in smaller alveoli and directly related to dissipative energy [61]. Therefore, a measurement of

the local curvatures may contribute to a better understanding of differences in local surface

tensions during any alteration of the size of the alveoli, be it during breathing or during lung

development [62].

Since we found that the predominant part of the lung air-to-tissue surface is described by

ellipsoidal shapes (convex toward the lung tissue), we shortly address the question whether a

curvature analysis is enough to uniquely identify alveolar surfaces within the lung. This ques-

tion is relevant because it could help defining a unique anatomical and topological model for

alveoli, which usually exhibit very diverse geometric shapes [63]. For this purpose, the four

regions of the ISD-plot (Fig 5) are visualized in 3D in Fig 13a. As it can be seen, the red sur-

faces (corresponding to “region 1”) are indeed shown to lie on alveolar surfaces, however there

are small surface areas that have different shapes (non-ellipsoidal) in between, which again

corresponds to previous findings in lung anatomy indicating that the overall shape of the alve-

oli is very irregular [61, 64]. The apparent question is now, how could non-ellipsoidal surfaces

that are part of alveolar surfaces be distinguished from others that are not (septal edges or alve-

olar mouths). This can be achieved by making use of a simple assumption when applying the

normal cycle algorithm for calculating curvatures. Namely if we set a big geodesic radius at

each surface vertex small areas lying in the middle of the alveoli which do not have a strict

ellipsoidal surface will be interpreted as ellipsoidal due to their surroundings. This fact is illus-

trated in Fig 14: first (on the left side), the curvatures are mimicked to be calculated with small

geodesic radii; then (once the geodesic radius increases) small deviations in the alveolar surface

area are still recognized as being part of an alveolus. The result is plotted in Fig 13b and its cor-

responding 2D tomographic slice is shown in Fig 13c. The detailed treatment of whether this

Fig 13. Different geodesic radii. 3D visualization of the four regions from the ISD-plot with different geodesic radii: (a) depicts the calculation with radius

R = 3.5 and (b) with R = 15. In (c) a 2D slice is shown from (b) where the mesh vertices are mapped back to the gray-level image.

https://doi.org/10.1371/journal.pone.0183979.g013

Computer-assisted quantitative analysis of lungs at the alveolar scale

PLOS ONE | https://doi.org/10.1371/journal.pone.0183979 September 21, 2017 18 / 23

https://doi.org/10.1371/journal.pone.0183979.g013
https://doi.org/10.1371/journal.pone.0183979


approach alone suffices the unique identification of alveolar surfaces, however, goes beyond

the scope of the present work which is why we note it here for discussion.

Conclusion

We have presented a technique for the fast acquisition of 3D lung image data from intact post
mortem animals, followed by a detailed post-processing scheme ranging from segmentation to

quantitative analysis. In doing so, we applied two established quantitative measures to charac-

terize fresh lung tissue at high resolutions and in 3D, in particular the air volume thickness

map [44] and curvature analysis [25], which to the best of our knowledge represents the first

evaluation of high-resolution lung data of this kind. All presented tools are published as a com-

plete package under the GNU General Public License and available for download at the TOM-

CAT homepage [65]. Hence, our post-processing and evaluation technique can serve as a

complete toolbox for characterizing and analyzing lung data at the alveolar and acinar scale.

Applied to the lung samples, we found first indications for a heterogeneous intra-lobar and

inter-lobar distension pattern, although still only observed post mortem in intact animals. The

results further indicate that a cyclic opening-and-collapse of alveoli (a recruitment of alveoli

during inhalation) does not take place at a large extend during breathing. First indicative

results are presented showing that the curvature analysis might serve as a tool for automatically

identifying alveolar surfaces in high-resolution 3D lung image data. This could play a role in

finding a unique geometrical description of an alveolus, which in return could be applied for

an automatic counting of alveoli. Finally, since our tools are completely based on open-source

tools/algorithms, they can easily be expanded and applied to a wide range of other disciplines,

materials and studies.

Acknowledgments

We would like to acknowledge F. Arcadu, D. Pelt, S.F. Barre and G. Mikuljan for their help at

the experiment, J. Fife, M. Kagias and K. Mader for fruitful discussions. This study was sup-

ported by the National Competence Center in Biomedical Imaging (NCCBI), grant No.

Fig 14. Sketch of alveolar areas. Sketch for depicting how small areas within the alveoli can be “forced” to

be recognized as alveolar area, despite having a different shape. On the left side, the red circle

(corresponding to the geodesic radius) identifies an ellipsoidal shape, while the green ones identify negative

ellipsoidal shapes. If the geodesic radius is increased, the vertex area in the lower right alveolus will be

recognized as belonging to the alveolar surface.

https://doi.org/10.1371/journal.pone.0183979.g014

Computer-assisted quantitative analysis of lungs at the alveolar scale

PLOS ONE | https://doi.org/10.1371/journal.pone.0183979 September 21, 2017 19 / 23

https://doi.org/10.1371/journal.pone.0183979.g014
https://doi.org/10.1371/journal.pone.0183979


1126.0076, and the Swiss National Science Foundation (SNF), grant No. CR23I2-135550 with

partial contribution from grant No. 310030-153468.

Author Contributions

Conceptualization: Goran Lovric, Rajmund Mokso.

Data curation: Goran Lovric.

Formal analysis: Goran Lovric.

Funding acquisition: Marco Stampanoni, Matthias Roth-Kleiner, Johannes C. Schittny.

Investigation: Goran Lovric, Johannes C. Schittny.

Methodology: Goran Lovric, Rajmund Mokso.

Project administration: Goran Lovric, Marco Stampanoni, Johannes C. Schittny.

Resources: Marco Stampanoni, Matthias Roth-Kleiner, Johannes C. Schittny.

Software: Goran Lovric, Ioannis Vogiatzis Oikonomidis.

Supervision: Rajmund Mokso, Marco Stampanoni, Johannes C. Schittny.

Validation: Goran Lovric.

Visualization: Goran Lovric, Ioannis Vogiatzis Oikonomidis.

Writing – original draft: Goran Lovric.

Writing – review & editing: Goran Lovric, Ioannis Vogiatzis Oikonomidis, Rajmund Mokso,

Marco Stampanoni, Matthias Roth-Kleiner, Johannes C. Schittny.

References
1. Schittny JC, Mund SI, Stampanoni M. Evidence and structural mechanism for late lung alveolarization.

American Journal of Physiology Lung Cellular and Molecular Physiology. 2008; 294(2):L246–54.

https://doi.org/10.1152/ajplung.00296.2007 PMID: 18032698

2. Hooper SB, Kitchen MJ, Siew ML, Lewis RA, Fouras A, B te Pas A, et al. Imaging Lung Aeration and

Lung Liquid Clearance At Birth Using Phase Contrast X-Ray Imaging. Clinical and Experimental Phar-

macology and Physiology. 2009; 36(1):117–125. https://doi.org/10.1111/j.1440-1681.2008.05109.x

PMID: 19205087

3. Adam JF, Bayat S, Porra L, Elleaume H, Estève F, Suortti P. Quantitative functional imaging and kinetic

studies with high-Z contrast agents using synchrotron radiation computed tomography. Clinical and

Experimental Pharmacology and Physiology. 2009; 36(1):95–106. https://doi.org/10.1111/j.1440-1681.

2008.05043.x PMID: 18986338

4. Haberthür D, Hintermüller C, Marone F, Schittny JC, Stampanoni M. Radiation dose optimized lateral

expansion of the field of view in synchrotron radiation X-ray tomographic microscopy. Journal of Syn-

chrotron Radiation. 2010; 17(5):590–9. https://doi.org/10.1107/S0909049510019618 PMID: 20724780

5. Vasilescu DM, Gao Z, Saha PK, Yin L, Wang G, Haefeli-Bleuer B, et al. Assessment of morphometry of

pulmonary acini in mouse lungs by nondestructive imaging using multiscale microcomputed tomogra-

phy. Proceedings of the National Academy of Sciences of the United States of America. 2012; p. 1–6.
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