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Simultaneous Transplantation of Fetal
Ventral Mesencephalic Tissue and
Encapsulated Genetically Modified Cells
Releasing GDNF in a Hemi-Parkinsonian
Rat Model of Parkinson’s Disease

Alberto Perez-Bouza1, Stefano Di Santo1, Stefanie Seiler1,
Morten Meyer2, Lukas Andereggen1, Alexander Huber1,
Raphael Guzman1,3, and Hans R. Widmer, PhD1

Abstract
Transplantation of fetal ventral mesencephalic (VM) neurons for Parkinson’s disease (PD) is limited by poor survival and
suboptimal integration of grafted tissue into the host brain. In a 6-hydroxydopamine rat model of PD, we investigated the
feasibility of simultaneous transplantation of rat fetal VM tissue and polymer-encapsulated C2C12 myoblasts genetically
modified to produce glial cell line-derived neurotrophic factor (GDNF) or mock-transfected myoblasts on graft function.
Amphetamine-induced rotations were assessed prior to transplantation and 2, 4, 6 and 9 wk posttransplantation. We found
that rats grafted with VM transplants and GDNF capsules showed a significant functional recovery 4 wk after implantation. In
contrast, rats from the VM transplant and mock-capsule group did not improve at any time point analyzed. Moreover, we
detected a significantly higher number of tyrosine hydroxylase immunoreactive (TH-ir) cells per graft (2-fold), a tendency for a
larger graft volume and an overall higher TH-ir fiber outgrowth into the host brain (1.7-fold) in the group with VM transplants
and GDNF capsules as compared to the VM transplant and mock-capsule group. Most prominent was the TH-ir fiber out-
growth toward the capsule (9-fold). Grafting of GDNF-pretreated VM transplants in combination with the implantation of
GDNF capsules resulted in a tendency for a higher TH-ir fiber outgrowth into the host brain (1.7-fold) as compared to the
group transplanted with untreated VM transplants and GDNF capsules. No differences between groups were observed for the
number of surviving TH-ir neurons or graft volume. In conclusion, our findings demonstrate that simultaneous transplantation
of fetal VM tissue and encapsulated GDNF-releasing cells is feasible and support the graft survival and function. Pretreatment
of donor tissue with GDNF may offer a way to further improve cell transplantation approaches for PD.
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Introduction

Parkinson’s disease (PD) is mainly characterized by the pro-

gressive loss of dopaminergic (DAergic) neurons in the

nigrostriatal system leading to a depletion of dopamine in

the striatum, which in turn is responsible for severe motor

disturbances. Current pharmacological treatments can alle-

viate these motor symptoms1 but have limitations as they

become less effective with time and are associated with side

effects .2 So far, strategies based on the application of

neurotrophic factors and the transplantation of DAergic neu-

rons have displayed promising results to tackle the disease

progression or restore sufficient dopamine supply to the
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striatum (for review, see the study by Athauda and Foltynie,

Kalia et al., Li et al.3–5). Fetal nigral tissue can be trans-

planted bilaterally into the caudate and putamen with few

postoperative complications.6 This procedure has been

shown to be safe in the long term and to confer clinical

benefits in PD patients.7,8 Indeed, follow-up assessment of

2 cases with bilateral intrastriatal transplantation proved that

this intervention can substantially improve the quality of life

of PD patients.9 Nevertheless, it became clear from clinical

trials that patient selection and handling of the fetal donor

tissue need to be optimized.7,10–12 In the pregrafting phase,

the organotypic ventral mesencephalic (VM) cultures offer

the possibility of effective in vitro storage and treatment of

the cells prior to transplantation.13 Of particular importance

is the still suboptimal survival and poor innervation of the

host brain by grafted DAergic neurons.14 Moreover, Collier

et al. reported that survival, growth, and function of trans-

planted DAergic neurons are reduced in aged rats and they

suggested that this is due to less trophic support from the host

brain.15 Among these trophic factors, glial cell line-derived

neurotrophic factor (GDNF) has gained most attention due to

its compelling neuroprotective actions and promotion of sur-

vival and morphological differentiation of DAergic neu-

rons.12,16,17 Hence, the combination of neurotrophic factors

and cell transplantation may offer ways to improve graft

function.18–20 However, some studies reported that geneti-

cally modified cells releasing the neurotrophic factor fibro-

blast growth factor 2 (FGF2) need to be in direct contact with

dopaminergic transplanted cells in order to improve graft

function.21 It has been shown that treating the cells with

GDNF prior to transplantation improved engraftment of

DAergic neurons in animal models of PD22,23 and in a pilot

human clinical trial.24 Clinical trials investigating delivery

of GDNF to treat PD patients, however, showed so far an

equivocal outcome (for review see Lindholm et al., Domans-

kyi et al.12,25), possibly due to a number of technical as well

as disease-related aspects, for example, the activity of neu-

rotrophic factors in pathological settings.4 Accordingly, the

inability of neurotrophic factors to cross the blood-brain

barrier (BBB) and the potential induction of side effects due

to the widespread distribution of their cognate receptors

throughout the brain17 are challenging hurdles. Thus, selec-

tive targeting of the transplanted cells without affecting

larger parts of the host brain is crucial. In this respect, cell

bioengineering offers the possibility of delivering specific

neurotrophic factors into the brain parenchyma. It has been

reported that co-transplantation of DAergic grafts with engi-

neered cells continuously releasing GDNF led to signifi-

cantly increased survival and sprouting of grafted DAergic

neurons and to functional recovery in an animal model of

PD.26–28 Such approaches, however, are still associated with

the potential risk of rejection of transplanted cells and tumor

formation.27 In contrast, the use of cell lines engineered to

produce neurotrophic factors and encapsulated in a porous

polymer membrane is immunocompatible and can be with-

drawn.29 Furthermore, polymer capsules were well tolerated

after intraventricular implantation in human subjects for up

to 2 y, supporting the safety and feasibility of this therapeutic

intervention.30

Although we have previously shown that implanted

GDNF-releasing capsules 1 wk prior to transplantation of

VM tissue demonstrated a significantly improved graft

function as assessed over a period of 6-wk posttransplanta-

tion, several critical aspects remained unsolved.27 Hence,

in the present study, we first investigated the feasibility of a

simultaneous transplantation of rat fetal nigral tissue and

polymer-encapsulated myoblasts genetically modified to

produce GDNF on graft function in the time frame of 9

wk posttransplantation. Secondly, we assessed whether a

further improved survival and function of transplants can

be achieved with the combination of GDNF-releasing

implants and GDNF-pretreated VM donor tissue.

Materials and Methods

Animals

Female Sprague-Dawley rats (Janvier Labs, Le Genest-Saint-

Isle, France) were housed at 12-h light-dark cycle with food

and water ad libitum. For the preparation of the transplants,

pregnant Sprague-Dawley rats were purchased from Janvier

Labs. All experiments were carried out in the light phase and

in accordance with the guidelines of the Animal Research

Ethics Committee of the Canton Berne, Switzerland, and the

University of Bern Animal Care and Use Committee,

Switzerland.

Experimental Design

The present work was split into 3 experimental parts: experi-

ment I, II, and III (Fig. 1). Initially, we explored the asym-

metrical rotation behavior of hemi-parkinsonian rats in

response to amphetamine and treatment with either half a

fetal VM tissue alone or GDNF-releasing capsules alone

(experiment I). Thereafter, we analyzed the asymmetrical

rotation behavior in response to amphetamine of hemi-

parkinsonian rats treated with either half a fetal VM tissue

and a mock capsule or half a fetal VM tissue and GDNF-

releasing capsule (experiment II). Moreover, histological

analyses were conducted for TH-ir cell number per graft,

TH-ir fiber outgrowth into the host striatum and for graft

volume. In experiment III, we analyzed the same parameters

as in experiment II but in hemi-parkinsonian rats implanted

with a GDNF-releasing capsule with either half a VM tissue

or half a VM tissue-pretreated with GDNF.

Hemi-Parkinsonian Rat Model

Sprague Dawley rats weighing 220 to 250 g were anesthe-

tized (nembutal, 40 mg/kg, intraperitoneal [IP]) and

mounted on a stereoscopic frame (Kopf Instruments,

Tujunga, CA, USA). 6-Hydroxydopamine (6-OHDA)

lesions were performed as described earlier.23 Briefly,
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animals received an injection of 4 mL of 32 mM 6-OHDA

(Sigma-Aldrich, St Louis, MO, USA) into the right ascend-

ing mesotelencephalic pathway through a small burr hole

created in the skull. The injection was performed over 6 min

using a 10-mL Hamilton syringe. The following coordinates

in relation to bregma were used: posterior 2.8 mm, lateral

2.0 mm, and 8.4 mm ventral to the dura, and the incisor bar

was set at �3.9 mm. Thereafter, the rats were allowed to

recover for 12 wk. The following numbers of animals were

included for the 3 experimental groups: experiment I:

GDNF-capsule group, n ¼ 4 and VM transplant group,

n ¼ 4; experiment II: VM transplant and mock-capsule

group, n ¼ 11 and VM transplant and GDNF-capsule group,

n ¼ 11 (1 animal died during the experimental period and

was therefore not included for the final analyses; hence, this

group consisted of 10 rats); experiment III: GDNF-capsule

and VM transplant group, n ¼ 6 and GDNF-capsule and

GDNF-pretreated VM transplant group, n ¼ 6.

Capsule Preparation and Enzyme-Linked
Immunosorbent Assay (ELISA) Measurements

C2C12 mouse myoblasts were genetically modified with the

pP1-DNT-hGDNF plasmid as previously described.31 Non-

transfected C2C12 control cells and transfected C2C12 cells

were filled into 5-mm long polymer fibers (150,000 cells per

capsule) and were heat sealed.31 The amount of GDNF

released from the capsules was determined using an ELISA

prior to implantation and after explantation of the cap-

sules.27,31,32 GDNF release 2 d prior to transplantation was

9.8 + 4.5 ng/mL/24 h and 10.8 + 2.3 ng/mL/24 h in experi-

ment I and II, respectively. In all capsules, surviving cells

were detected at the time of capsule retrieval at the end of the

experiments. Likewise, all capsules were found to produce

GDNF at the time of sacrifice with 9.5 + 2.5 ng/mL/24 h and

28.7 + 9.3 ng/mL/24 h in experiment I and II, respectively. In

experiment III, GDNF release 2 d prior to transplantation was

20.3 + 1.4 ng/mL/24 h and 71.0 + 3.9 ng/mL/24 h at the end

of the experiments. In all mock capsules, GDNF release was

below the detection level.

Preparation of Transplants

Cultures of fetal rat VM were prepared using the free-float-

ing roller-tube culture technique described by Spenger et al.

with minor modifications.33 In brief, time-pregnant Sprague-

Dawley rats (Janvier Labs) were anesthetized (nembutal, 40

mg/kg, IP) and their fetuses removed by cesarean section.

Thereafter, the VM was dissected from the fetuses aged E14

embryonic day 14 ([E14], E0¼day of vaginal plug), was cut

in the midline, and was divided into 4 equally sized pieces.

Each piece was transferred into a conical 15-mL plastic tube

containing 1 mL of culture medium (55% Dulbecco’s mod-

ified Eagle medium [DMEM Gibco, Reinach, Switzerland],

32.5% Hank’s balanced salt solution [HBSS Gibco, Reinach,

Switzerland], 1.5% glucose, 10% fetal calf serum [FCS

Gibco, Reinach, Switzerland], 1% 0.01 M 4-(2-hydro-

xyethyl)-1-piperazineethanesulfonic acid [HEPES Merck

KGaA, Darmstadt, Germany]) and was placed in a roller drum

(60 revolutions/h) in an incubator (37� C) with 5% CO2.

Cultures were grown for 7 d in vitro (DIV), and the medium

was changed after DIV 3 and DIV 6. For experiment III,

cultures were randomly assigned to the control or to the

GDNF group. GDNF (10 ng/mL; Promega was added at DIV

0 and then at every medium change [Dübendorf, Switzer-

land]). Control cultures were grown in medium with no

trophic factor added.23

Transplantation Surgery

Thirteen weeks after the 6-OHDA, lesioned rats were

anesthetized (nembutal, 40 mg/kg, IP) and mounted on a

Fig. 1. Schematic diagram of the experimental setup. A lesion
induced by injection of 6-hydroxydopamine into the right striatum
produced a hemi-parkinsonian rat model. Thirteen weeks after the
lesion, the rats received either a transplant of fetal rat ventral
mesencephalic tissue (Tx) or a glial cell line-derived neurotrophic
factor (GDNF)-releasing capsule (GDNF caps; experiment I), a
ventral mesencephalic (VM) transplant and a GDNF-releasing
capsule or a mock capsule (Mock caps; experiment II), a GDNF-
releasing capsule with a control VM transplant or with a GDNF-
pretreated VM transplant (pre-Tx; experiment III) into the
striatum. Nine weeks after the transplantation or capsule implanta-
tion, the rats were perfused and their brains used for histological
analyses. The rats turning response to amphetamine was assessed
12 wk after the lesion (behavior pre) and 2, 4, 6 and 9 wk after the
transplantation (behavior 2, 4, 6, 9 Wp.T.).
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stereoscopic frame. For transplantation, 2 VM cultures, cor-

responding to half of a VM (1 rostral and 1 caudal part),27,34

were loaded into a 20-gauge spinal needle (Unisys Corp.,

Tokyo, Japan) and the capsule loaded into a specially

designed cannula with an inserter, as depicted in Fig. 2A.

The cultures and the capsule were stereotactically injected

into the right caudate putamen slowly over 10 min. The

following coordinates in relation to bregma were used for

placement of the needle: posterior 1.0 mm, lateral 2.7 mm,

and 4.5 mm ventral to the dura, and the incisor bar was set at

�2.5 mm. After injection, the needle and cannula were

slowly retracted (1 mm/min). The capsule was placed later-

ally in the striatum at an angle of 45� in respect to the tissue

grafts. This was achieved by fixing in the same holder at the

selected alignment and distance (45� angle; 1.5 mm dis-

tance) the specially designed cannula, with the inserter for

the capsules and the needle used for grafting (Fig. 2A, B).

Magnetic Resonance Imaging

Magnetic resonance (MR) images were used to verify the pla-

cement of tissue grafts and capsules (Fig. 2C, D). MR scanning

was performed on a Siemens Magnetom Vision at 1.5 T (Sie-

mens, Erlangen, Germany) using a flexible surface coil, as

previously described.35,36 In brief, rats were anesthetized

(nembutal, 40 mg/kg IP) and placed into a polyvinyl chloride

rat holder. Coronal and sagittal T2-weighted images were

obtained as previously described.35,36 In brief, the field of view

was set to 80 mm (8/8). The T2-weighted images were

recorded with time to repetition ¼ 3,300 ms and time to echo

¼ 119 ms at a slice gap of 0.2 mm. Twenty radiofrequency

excitations were employed and summed for signal averaging to

increase signal to noise ratio. Acquisition time was 16:03 min.

Behavioral Testing

Amphetamine-induced rotational behavior was tested in all

rats before the transplantation (pre) and 2, 4, 6, and 9 wk

after the transplantation (Fig. 1). Immediately after injection

of D-amphetamine sulfate (2.5 mg/kg IP), rats were placed in

automated rotameter cylinders and monitored for 90 min.

Only rats exhibiting a net rotational asymmetry of at least

5 full ipsilateral body turns/min were selected for the experi-

ments and were assigned to the groups in order to have a

balanced pretransplantation rotation score.13,27

Perfusion and Tissue Processing

Two days after the last rotation behavior test, rats were

deeply anesthetized (nembutal, 40 mg/kg, IP) and mounted

in the stereoscopic frame. The capsules were carefully

removed from the brains and placed in maintenance

medium.27,31 Thereafter, the rats were perfused through the

ascending aorta first with a prewash solution of 200 mL

0.1 M phosphate-buffered saline (PBS), pH 7.4 containing

heparin (1,000 IE/100 mL; NOVO Nordisk), followed by

250 mL fixative (4% paraformaldehyde [PFA] and 0.16%
picric acid in PBS). Immediately thereafter, the brains were

removed from the skull, postfixed overnight in 4% PFA, and

cryoprotected in 20% sucrose in PBS solution. Horizontal

sections were cut at 30 mm on a freezing microtome (Frigo-

cut; Reichert-Jung) and the sections mounted onto gelatin

chrome-alum-precoated glass slides.

Immunohistochemistry and Analysis
of Histological Sections

Every third slice containing a graft was selected for tyrosine

hydroxylase (TH) immunohistochemistry. After 3 rinses in

PBS, tissue sections were preincubated in 0.3% Triton X-100

in PBS plus 10% horse serum (HS) for 60 min, washed, and

incubated overnight with the rabbit polyclonal anti-TH anti-

body (1:500; Pel Freez) for 48 h at 4 �C in 0.1% Triton

X-100 in PBS plus 2.5% HS. Following 3 washes, sections

were incubated with a biotinylated secondary antibody

(horse antirabbit 1:200; Vector Labs) in 0.1% Triton

X-100 in PBS plus 2.5% HS for 90 min. Endogenous perox-

idase was blocked by 3% H2O2 and 10% methanol in PBS

for 10 min. Following incubation with an avidin-peroxidase

complex (1:150; Vector Labs) for 45 min, specifically

bound antibody was visualized with a metal-enhanced

3,30-diaminobenzidine (DAB) substrate kit (Pierce). Sec-

tions were dehydrated in alcohol, cleared in xylene, and

mounted in Eukitt.

Fig. 2. Illustration of simultaneous capsule and tissue transplanta-
tion. Photographs depicting the specially designed cannula with the
needles used for simultaneous placement of ventral mesencephalic
(VM) cultures (white arrow) and capsules (black arrowhead; A) and
the position after transplantation in the right striatum (B). In the
T2-weighted magnetic resonance scans, the site of injection of VM
cultures could be noticed as a hyperintense area (white arrow) and
the capsule as a hypointense area (black arrowheads) 2 d after
simultaneous implantation of the transplants and capsules (coronal
level, C; sagittal level, D). Scale bar: 2 mm.

Perez-Bouza et al 1575



Histological Analysis

Histological analyses were conducted by a researcher

blinded to the treatments, as described previously.23,37 In

brief, for the estimation of the graft volume, every third

section containing a graft was used to determine the graft

boundaries using an Olympus microscope (Olympus DP72)

equipped with a digital camera and connected to a PC with a

calibrated neuron tracing software (Cellsens Dimension;

Olympus). Thereafter, an automated computation integrated

the areas to yield the graft volume. TH-ir-positive cell num-

bers were counted in the same sections at 40� magnifica-

tions on an Olympus light microscope equipped with a

motorized stage and a digital camera connected to a PC.

To correct 4 double counting, the Abercrombie’s formula

was applied.13,38 Graft-derived TH-ir fibers were determined

at 3 sites, that is, medial, rostral, and lateral of the graft host

interface (distance form border: 100 mm), and at the site in

the middle between graft and capsule. All TH-ir fibers cross-

ing a virtual line of 300-mm length were counted using an

Olympus microscope equipped with a digital camera and

connected to a PC with a calibrated neuron tracing software

(Cellsens Dimension; Olympus). For the analyses, we have

chosen a 300-mm line as we did in our previous studies,23,27

based on the observation that this length is feasible for asses-

sing the TH-ir fiber outgrowth from different graft sizes as

well as providing a reasonable means of overall TH-ir fiber

outgrowth from the grafts. The mean numbers of TH-ir fibers

of the medial, rostral, and lateral sites were summarized as

fiber growth from the graft (Fig. 3A).

Statistical Analysis

Statistical comparisons were performed by means of com-

mercially available software package (GraphPad Prism 4,

CA, USA). Analysis of variance (ANOVA) followed by

Student-Newman-Keuls post hoc test was used to compare

treatment groups in the behavioral assessments. For the com-

parison between 2 groups, the Welch t test for unpaired

samples or the Mann-Whitney rank sum test was used. Dif-

ferences were considered statistically significant at P� 0.05.

Values are presented as mean + standard error of the mean

(SEM).

Results

Assessment of the 6-OHDA Lesions

Analysis of 6-OHDA-lesioned animals showed a nearly

complete loss of TH-ir neurons in the right substantia nigra

which was in accordance with the outcome seen with the

pregrafting amphetamine-induced rotational asymmetry and

our previous study.13 We observed no loss of the rat’s body

Fig. 3. Histological assessment of fiber outgrowth in experiment II.
Schematic drawing illustrating the assessment of the tyrosine
hydroxylase immunoreactive (TH-ir) fiber outgrowth medial (m),
rostral (r), and lateral (l) from the graft as well as at the site in the
middle (b) between graft and capsule (Cap; A). Quantitative analysis
of TH-ir fibers crossing a virtual line of 300 mm determined at the 3
sites, that is, medial, rostral, and lateral of the graft host interface
(B) and of TH-ir fibers crossing a virtual line between tissue graft
and capsules in the dopamine-depleted host striatum (C). Note the
significantly higher TH-ir fiber growth between the ventral mesen-
cephalic (VM) transplant and glial cell line-derived neurotrophic
factor (GDNF)-capsule compared to the VM transplant and
mock-capsule group. Values are expressed as mean + standard
error of the mean (SEM) and presented as percentage of the
mock-capsule groups. *P < 0.05 versus the corresponding mock-
capsule group; #P < 0.1 versus the corresponding mock-capsule
group. Representative photomicrographs illustrating the higher
number of TH-ir fibers (arrow heads) between the graft and the
capsule in the VM transplant and GDNF-capsule group (E) as com-
pared to the VM transplant and mock-capsule group (D). Scale bar:
50 mm.

Fig. 4. Behavioral assessment in experiment I. Amphetamine-
induced ipsilateral net rotations of hemi-parkinsonian 6-
hydroxydopamine (6-OHDA)-lesioned rats implanted with glial cell
line-derived neurotrophic factor (GDNF) capsules alone (hatched
bars) or VM transplants alone (gray bars). Behavior was assessed
before grafting (pre) and 2, 4, 6, and 9 wk after transplantation
surgery. No change in the number of ipsilateral turns could be
observed. Values are expressed as mean + standard error of the
mean (SEM) and presented as ipsilateral rotation per minute.
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weight due to the simultaneous transplantation of capsules

and tissue grafts as assessed over the experimental period of

9 wk posttransplantation (data not shown).

Experiment I
Amphetamine-induced rotational behavior. As expected, we

found that 6-OHDA-lesioned rats that were transplanted

with VM cultures only and 6-OHDA-lesioned rats receiving

GDNF capsules only did not show altered amphetamine-

induced rotational asymmetry34 (Fig. 4).

Experiment II
Amphetamine-induced rotational behavior. Similar to the

outcome in experiment I, no reduction in the rotational

asymmetry was observed in the group of rats transplanted

with VM and mock capsules over the experimental period

(Fig. 5). Most importantly, however, a near complete recov-

ery was observed in the rats simultaneously transplanted

with VM and GDNF capsules 4 wk after transplantation

compared to pregrafting values. No further improvement

was observed at later time points, that is, 6 and 9 wk after

transplantation (Fig. 5).

Histological Analyses

Analysis of the brains revealed that in all rats surviving

TH-ir neurons were present. The number of TH-ir neurons

per graft was found to be significantly (2.1-fold) higher in

the VM transplant and GDNF-capsule group (Fig. 6B, C) as

compared to rats with VM transplant and mock-capsules

(Fig. 6A, C). Similarly, graft volume was larger (1.7-fold)

in the VM transplant and GDNF-capsule group as compared

to the VM transplant and mock-capsule group, however, did

not reach statistical significance (Fig. 6D). The number of

TH-ir fibers growing around the graft showed an overall

tendency to be higher (1.7-fold) in the VM transplant and

GDNF-capsule group as compared to rats in the VM trans-

plant and mock-capsule group (Fig. 3B). Notably, number of

TH-ir fibers between transplant and capsule was signifi-

cantly higher (8.9-fold) in the VM transplant and GDNF-

capsule group (Fig. 3C, E) as compared to the VM transplant

and mock-capsule group (Fig. 3C, D).

Experiment III
Amphetamine-induced rotational behavior. Given the obser-

vation that the GDNF released by the capsule exerted a remark-

able effect on rat behavior and graft fiber outgrowth, we next

reasoned whether these benefits might be further enhanced by

concomitantly transplanting VM cultures that have been

treated with GDNF prior to transplantation. Accordingly, we

Fig. 5. Behavioral assessment in experiment II. Amphetamine-
induced ipsilateral net rotations of hemi-parkinsonian 6-
hydroxydopamine (6-OHDA)-lesioned rats implanted with ventral
mesencephalic (VM) transplant and mock capsules (open bars) and
VM transplant and glial cell line-derived neurotrophic factor
(GDNF) capsules (filled bars) before grafting (pre) and 2, 4, 6, and
9 wk after transplantation surgery. Rats that received VM trans-
plants and GDNF capsules demonstrated a significant reduction in
rotational asymmetry. Values are expressed as mean + standard
error of the mean (SEM) and presented as ipsilateral rotations per
minute. *P < 0.05 versus the corresponding rotations before graft-
ing (pre).

Fig. 6. Histological assessments in experiment II. Representative
photomicrographs of tyrosine hydroxylase immunoreactive (TH-ir)
neurons in the dopamine-depleted host striatum 9 wk after trans-
plantation from rats transplanted with ventral mesencephalic (VM)
transplant and mock capsules (A) and rats implanted with VM trans-
plants and glial cell line-derived neurotrophic factor (GDNF) cap-
sules (B). Scale bar ¼ 40 mm. Quantification of the number of TH-ir
cells in the grafts (C) and graft volume (D) of rats transplanted with
VM transplants and mock capsules (white bars) and VM transplants
and GDNF capsules (black bars). Note the significant increase in
TH-ir cells per graft in the VM transplant and GDNF-capsule group
compared to the VM transplant and mock-capsule group. More-
over, a tendency toward a larger graft volume was detected in the
VM transplant and GDNF-capsule group as compared to the VM
transplant and mock-capsule group. Values are expressed as mean
+ standard error of the mean (SEM) and presented as percentage
of mock-capsule group. *P < 0.05 versus the corresponding mock-
capsule group. #P < 0.1 versus the corresponding mock-capsule
group.
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found that the amphetamine-induced rotational behavior

improved over the 9-wk posttransplantation period but did not

differ between the 2 experimental groups (Fig. 7A).

Histological Analyses

Immunohistochemical analysis of the grafts demonstrated that

the pretreatment with GDNF did not significantly influence the

graft volume (Fig. 7B) or the number of TH-ir neurons in the

transplants (Fig. 7C) compared to the GDNF-capsule and VM

transplant group. The number of TH-ir fibers around the graft

(Fig. 7D) and between transplant and capsule (Fig. 7E) was

augmented in the GDNF-capsule and GDNF-pretreated VM

transplant group as compared to the GDNF-capsule and VM

transplant group (by 1.7-fold and 2.3-fold, respectively), but

the increase was not statistically significant.

Discussion

The present study shows that GDNF released from engi-

neered encapsulated cells promotes the functional recovery

in hemi-parkinsonian rats when co-transplanted with fetal rat

VM tissue. It is important to note that in our experiments

these 2 treatment regimens were individually necessary but

not sufficient to reach therapeutic efficacy. The subtherapeu-

tic amount of VM tissue transplanted (corresponding to half

a VM) was deliberately chosen in order to uncover the effect

of other treatments37 and is in agreement with our previous

studies.27,34 Similarly, no behavioral recovery was found in

the GDNF-capsule-only group. Moreover, the body weight

of the animal was not affected by the treatment, indicating

that the capsules were well tolerated. In contrast to our

observations, others reported that capsules releasing GDNF

implanted 2 wk after a 6-OHDA lesion resulted in reduced

rotations as compared to mock-treated animals.39 This dif-

ferent outcome is likely due to the animal models employed.

In fact Date et al. used intrastriatal 6-ODHA injections39

typically leading to only partial denervation of the stria-

tum,40 whereas we used animals with medial forebrain bun-

dle lesions. In addition, in our experimental setting, the

implantation of GDNF capsules was done at a progressed

stage of the disease, that is, 13 wk after the 6-OHDA lesions.

We cannot exclude that the GDNF capsules might have

exerted effects in the host tissue by, for example, promoting

the sprouting of the remaining dopaminergic striatal fibers,

but not enough to induce functional recovery.

Our results from experiment II are consistent with the

hypothesis that the improved functional recovery is a con-

sequence of better dopaminergic cell survival and integra-

tion into the host tissue.6,41 Accordingly, we found a 2.1-fold

higher number of surviving TH-ir cells with GDNF treat-

ment, which is in agreement with the 1.9-fold increase

reported by Rosenblad et al.42 and the 2.6-fold increase

observed in our previous study.27 Other reports, however,

have described that the cell survival induced by GDNF is

not necessarily associated with increased fiber outgrowth.28

In our work, the effect of the fiber outgrowth was particu-

larly evident between the graft and the capsule. This prefer-

ential growth of the fibers in close proximity to the capsule is

suggestive of a presence of a GDNF gradient into the host

brain. How far GDNF can diffuse from the implantation sites

was not investigated in the present study, but our data pro-

vide the functional evidence that GDNF can diffuse for at

least 1.5 mm from the implantation site and this did not alter

behavior. An earlier report demonstrated that the radius of

Fig. 7. Behavioral and histological assessments in experiment III:
Amphetamine-induced ipsilateral net rotations of hemi-
parkinsonian 6-hydroxydopamine (6-OHDA)-lesioned rats
implanted with glial cell line-derived neurotrophic factor (GDNF)
capsules and control ventral mesencephalic (VM) transplant (black
bars) or with GDNF capsules and GDNF-pretreated VM transplant
(gray bars) before (pre) and 2, 4, 6, and 9 wk after transplantation
surgery (A). Both groups improved asymmetrical turning behavior
over time; however, no significant differences could be observed
between groups. In line with this observation, no significant differ-
ences in graft volume (B) and TH-ir cell numbers per graft (C) could
be found between the 2 treatment groups. A modestly higher tyr-
osine hydroxylase immunoreactive (TH-ir) fiber outgrowth from
the graft (D) and between the graft and capsule (E) was detected in
the GDNF-capsule and GDNF-pretreated VM transplant group as
compared to the GDNF-capsule and VM transplant group. Values
are expressed as mean + standard error of the mean (SEM) and
presented as percentage of the GDNF-capsule and VM transplant
group.
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GDNF-ir was at 11 mm from the infusion site43 in the mon-

key brain, while Ahn et al. demonstrated that GDNF-ir

reached as far as 2 to 3 mm from the implanted GDNF-

releasing capsules.32,44 The importance of determined levels

of GDNF for therapeutic purposes has been highlighted by

several studies describing severe side effects when bolus

GDNF infusions were made into the striatum or into the

ventricles.8,45–47 This notion would call for a wider distribu-

tion of capsules, particularly in the proximity of the grafts,

for clinical applications in humans. The period of 4 wk after

the transplantation in which the behavioral recovery was

detected in the group of rats receiving concomitant VM

transplant and GDNF capsules is shorter than the 12 wk

period described in the xenograft study by Ahn et al.32 One

reason for this difference might be the slower development

of human compared to rat fetal tissue.

In the framework of the supportive actions of GDNF on

the grafts, the duration of the exposure is an important aspect

that should be considered. Sajadi et al. showed that a tem-

porary delivery of GDNF is sufficient to induce long-lasting

functional and morphological improvement.48 Hence, they

concluded that GDNF needs to be present during the estab-

lishment of DAergic fibers and the source can be removed

thereafter. In agreement, Winkler et al. postulated that

GDNF needs to be present at the time of transplantation or

shortly thereafter in order to be beneficial. In their study

using a regime of delayed GDNF application by means of

lentiviral transduction, no effects were observed.10 In the

present work, presumably a shorter exposure time of VM

tissue to GDNF would have been sufficient as indicated by

the unchanged rotational asymmetry after 4 wk. Moreover,

one can speculate that genetically modified encapsulated

cells releasing growth factor(s) might support maintenance

of a neuronal phenotype and/or maturation of transplanted

neural stem cell-derived cells.49,50

Our results demonstrated that the pretreatment of VM

tissue prior to transplantation did not exert significant dif-

ferences in volume and number of TH-ir cells in the trans-

plant as compared to the grafts cultured under standard

conditions. These results are thus in agreement with the

similar pattern of behavioral recovery displayed by the 2

groups. Moreover, the GDNF pretreatment of VM tissues

moderately increased DAergic fiber outgrowth, but did not

reach statistical significance. Overall, these observations are

in line with our previous findings with regard to the

increased fiber outgrowth but not with the enhanced survival

of grafted DAergic cells.23 This divergence might be attri-

butable to the extent of the pretreatment of the VM tissue

with GDNF (which was longer in the present study). In fact,

in our earlier report, the peak of behavioral improvement

was observed in the VM tissues preincubated with GDNF

for 4 d.23 It should be noted that our experimental design

does not allow the monitoring of dynamic changes of the

graft at the histological level upon transplantation. In this

respect, the intrastriatal levels of GDNF in the long post-

grafting period might level off the effect of the pretreatment

on TH-ir cell number. Moreover, we speculate that an opti-

mal combination of neurotrophic factors for pretreatment,

that is, GDNF and NT-4/5,51 would result in an improved

outcome.

In summary, our study provides evidence that an optimal

pretreatment of graft tissue in combination with creating the

best possible environment of the host tissue might improve

transplantation approaches for PD.
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